1
|
Yasin S, Görücü Yılmaz Ş, Geyik S, Oğuzkan Balcı S. The holistic approach to the CHRNA7 gene, hsa-miR-3158-5p, and 15q13.3 hotspot CNVs in migraineurs. Mol Pain 2023; 19:17448069231152104. [PMID: 36604774 PMCID: PMC9850133 DOI: 10.1177/17448069231152104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Migraine is a neurological disease characterized by severe headache attacks. Combinations of different genetic variations such as copy number variation (CNV) in a gene and microRNA (miRNA) expression can provide a holistic approach to the disease as a pathophysiological, diagnostic, and therapeutic target. CNVs, the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, and expression of gene-targeting miRNAs (hsa-miR-548e-5p and hsa-miR-3158-5p) in migraineurs (n = 102; with aura, n = 43; without aura, n = 59) and non-migraines (n = 120) aged 15-60 years, comparative, case-control study was conducted. Genetic markers were compared with biochemical parameters (BMI, WBC, Urea, GFR, ESR, CRP, HBG). All analyzes were performed by quantitative Real-Time PCR (q-PCR) and fold change was calculated with the 2-ΔΔCT method. The diagnostic power of the CHRNA7 gene, CNV, and miRNAs were analyzed with the receiver operating curve (ROC). CHRNA7 gene and hsa-miR-3158-5p are down-regulated in migraineurs and the gene is controlled by this miRNA via CNVs (p < .05). Both deletion and duplication were detected in patients with migraine for CVN numbers (p = .05). The number of CNV deletions was higher than duplications. When CHRNA7-CNV-hsa-miR-3158-5p was modeled together in the ROC analysis, the area under the curve (AUC) was 0.805, and the diagnostic power was "good". In migraineurs, the CHRNA7 gene can be controlled by hsa-miR-3158-5p via CNVs to modulate the mechanism of pain. These three genetic markers have diagnostic potential and may be used in antimigraine treatments.
Collapse
Affiliation(s)
- Sedat Yasin
- Department of Neurology,
Gaziantep
University, Gaziantep, Turkey
| | - Şenay Görücü Yılmaz
- Department of Nutrition and
Dietetics, Gaziantep
University, Gaziantep, Turkey
| | - Sırma Geyik
- Department of Neurology,
Gaziantep
University, Gaziantep, Turkey
| | | |
Collapse
|
2
|
Imany-Shakibai H, Yin O, Russell MR, Sklansky M, Satou G, Afshar Y. Discordant congenital heart defects in monochorionic twins: Risk factors and proposed pathophysiology. PLoS One 2021; 16:e0251160. [PMID: 33956871 PMCID: PMC8101911 DOI: 10.1371/journal.pone.0251160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
A six-fold increase in congenital heart defects (CHD) exists among monochorionic (MC) twins compared to singleton or dichorionic twin pregnancies. Though MC twins share an identical genotype, discordant phenotypes related to CHD and other malformations have been described, with reported rates of concordance for various congenital anomalies at less than 20%. Our objective was to characterize the frequency and spectrum of CHD in a contemporary cohort of MC twins, coupled with genetic and clinical variables to provide insight into risk factors and pathophysiology of discordant CHD in MC twins. Retrospective analysis of all twins receiving prenatal fetal echocardiography at a single institution from January 2010 –March 2020 (N = 163) yielded 23 MC twin pairs (46 neonates) with CHD (n = 5 concordant CHD, n = 18 discordant CHD). The most common lesions were septal defects (60% and 45.5% in concordant and discordant cohorts, respectively) and right heart lesions (40% and 18.2% in concordant and discordant cohorts, respectively). Diagnostic genetic testing was abnormal for 20% of the concordant and 5.6% of the discordant pairs, with no difference in rate of abnormal genetic results between the groups (p = 0.395). No significant association was found between clinical risk factors and development of discordant CHD (p>0.05). This data demonstrates the possibility of environmental and epigenetic influences versus genotypic factors in the development of discordant CHD in monochorionic twins.
Collapse
Affiliation(s)
- Helia Imany-Shakibai
- David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Ophelia Yin
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, UCLA, Los Angeles, California, United States of America
| | - Matthew R. Russell
- Department of Pediatrics, Kaiser Permanente Southern California, Los Angeles, California, United States of America
| | - Mark Sklansky
- David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
- Division of Pediatric Cardiology, UCLA Mattel Children’s Hospital, Los Angeles, California, United States of America
| | - Gary Satou
- David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
- Division of Pediatric Cardiology, UCLA Mattel Children’s Hospital, Los Angeles, California, United States of America
| | - Yalda Afshar
- David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Fernando MB. Cross-Platform Validation of 15q13.3 Microdeletion Network Effects in Human Neurons. Biol Psychiatry 2021; 89:e25-e27. [PMID: 33541528 DOI: 10.1016/j.biopsych.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science and the Nash Family Department of Neuroscience, Friedman Brain Institute, Pamela Sklar Division of Psychiatric Genomics, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
4
|
Stern T, Crutcher EH, McCarthy JM, Ali MA, Issachar G, Geva AB, Peremen Z, Schaaf CP. Brain Network Analysis of EEG Recordings Can Be Used to Assess Cognitive Function in Teenagers With 15q13.3 Microdeletion Syndrome. Front Neurosci 2021; 15:622329. [PMID: 33584189 PMCID: PMC7876406 DOI: 10.3389/fnins.2021.622329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
15q13.3 microdeletion syndrome causes a spectrum of cognitive disorders, including intellectual disability and autism. We assessed the ability of the EEG analysis algorithm Brain Network Analysis (BNA) to measure cognitive function in 15q13.3 deletion patients, and to differentiate between patient and control groups. EEG data was collected from 10 individuals with 15q13.3 microdeletion syndrome (14–18 years of age), as well as 30 age-matched healthy controls, as the subjects responded to Auditory Oddball (AOB) and Go/NoGo cognitive tasks. It was determined that BNA can be used to evaluate cognitive function in 15q13.3 microdeletion patients. This analysis also significantly differentiates between patient and control groups using 5 scores, all of which are produced from ERP peaks related to late cortical components that represent higher cognitive functions of attention allocation and response inhibition (P < 0.05).
Collapse
Affiliation(s)
| | - Emeline H Crutcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - John M McCarthy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - May A Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | | | | | | | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Pavone P, Pappalardo XG, Ohazuruike UNN, Striano P, Parisi P, Corsello G, Marino SD, Ruggieri M, Parano E, Falsaperla R. Chromosome 15q BP4-BP5 Deletion in a Girl with Nocturnal Frontal Lobe Epilepsy, Migraine, Circumscribed Hypertrichosis, and Language Impairment. J Epilepsy Res 2020; 10:84-91. [PMID: 33659201 PMCID: PMC7903043 DOI: 10.14581/jer.20014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
The 15q13.3 microdeletion (microdel15q13.3) syndrome (OMIM 612001) has been reported in healthy subjects as well as in individuals with a wide spectrum of clinical manifestations ranging from mild to severe neurological disorders, including developmental delay/intellectual disability, autism spectrum disorder, schizophrenia, epilepsy, behavioral problems and speech dysfunction. This study explored the link between this genomic rearrangement and nocturnal frontal lobe epilepsy (NFLE), which could improve the clinical interpretation. A clinical and genomic investigation was carried out on an 8-year-girl with a de novo deletion flanking the breakpoints (BPs) 4 and 5 of 15q13.3 detected by array comparative genomic hybridization analysis, affected by NFLE, migraine with aura, minor facial features, mild cognitive and language impairment, and circumscribed hypertrichosis. Literature survey of clinical studies was included. Nine years follow-up have displayed a benign course of the epileptic disorder with a progressive reduction and disappearance of the epileptic seizures, mild improvement of cognitive and language skills, partial cutaneous hypertrichosis regression, but stable ongoing of migraine episodes. A likely relationship between the BP4–BP5 deletion and NFLE with other symptoms presented by the girl is discussed together with a review of the literature on phenotypic features in microdel15q13.3.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, Genoa, Italy
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine & Psychology, "Sapienza" University, c/o Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | - Martino Ruggieri
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Enrico Parano
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Neonatology University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| |
Collapse
|
6
|
Vigdorovich N, Ben‐Sira L, Blumkin L, Precel R, Nezer I, Yosovich K, Cross Z, Vanderver A, Lev D, Lerman‐Sagie T, Zerem A. Brain white matter abnormalities associated with copy number variants. Am J Med Genet A 2019; 182:93-103. [DOI: 10.1002/ajmg.a.61389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/31/2019] [Accepted: 10/04/2019] [Indexed: 01/03/2023]
Affiliation(s)
| | - Liat Ben‐Sira
- Sackler School of Medicine Tel Aviv University Tel‐Aviv Israel
- Division of Pediatric Radiology, Department of Radiology Dana‐Dwek Children's Hospital, Tel‐Aviv Medical Center Tel Aviv Israel
| | - Lubov Blumkin
- Sackler School of Medicine Tel Aviv University Tel‐Aviv Israel
- Pediatric Neurology Unit Wolfson Medical Center Holon Israel
| | - Ronit Precel
- Division of Pediatric Radiology, Department of Radiology Dana‐Dwek Children's Hospital, Tel‐Aviv Medical Center Tel Aviv Israel
| | - Ifat Nezer
- Institute of Medical Genetics, Wolfson Medical Center Holon Israel
| | - Keren Yosovich
- Institute of Medical Genetics, Wolfson Medical Center Holon Israel
| | - Zachary Cross
- Division of Neurology Children's Hospital of Philadelphia Philadelphia Pennsylvania
| | - Adeline Vanderver
- Division of Neurology Children's Hospital of Philadelphia Philadelphia Pennsylvania
- Department of Neurology, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Dorit Lev
- Sackler School of Medicine Tel Aviv University Tel‐Aviv Israel
- Institute of Medical Genetics, Wolfson Medical Center Holon Israel
| | - Tally Lerman‐Sagie
- Sackler School of Medicine Tel Aviv University Tel‐Aviv Israel
- Pediatric Neurology Unit Wolfson Medical Center Holon Israel
| | - Ayelet Zerem
- Sackler School of Medicine Tel Aviv University Tel‐Aviv Israel
- Pediatric Neurology Unit Wolfson Medical Center Holon Israel
| |
Collapse
|
7
|
Assessment of Cognitive Outcome Measures in Teenagers with 15q13.3 Microdeletion Syndrome. J Autism Dev Disord 2016; 46:1455-63. [PMID: 26754479 DOI: 10.1007/s10803-015-2694-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
15q13.3 microdeletion syndrome causes a spectrum of cognitive disorders, including intellectual disability and autism. We aimed to determine if any or all of three cognitive testing systems (the KiTAP, CogState, and Stanford-Binet) are suitable for assessment of cognitive function in affected individuals. These three tests were administered to ten individuals with 15q13.3 microdeletion syndrome (14-18 years of age), and the results were analyzed to determine feasibility of use, potential for improvement, and internal consistency. It was determined that the KiTAP, CogState, and Stanford-Binet are valid tests of cognitive function in 15q13.3 microdeletion patients. Therefore, these tests may be considered for use as objective outcome measures in future clinical trials, assessing change in cognitive function over a period of pharmacological treatment.
Collapse
|
8
|
Zhou D, Gochman P, Broadnax DD, Rapoport JL, Ahn K. 15q13.3 duplication in two patients with childhood-onset schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2016; 171:777-83. [PMID: 26968334 PMCID: PMC5069586 DOI: 10.1002/ajmg.b.32439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/11/2016] [Indexed: 01/06/2023]
Abstract
We report two cases of paternally inherited 15q13.3 duplications in carriers diagnosed with childhood-onset schizophrenia (COS), a rare neurodevelopmental disorder of proposed polygenic origin with onset in children before age 13. This study documents that the 15q13.3 deletion and duplication exhibit pathogenicity for COS, with both copy number variants (CNVs) sharing a disrupted CHRNA7 gene. CHRNA7 encodes the neuronal alpha7 nicotinic acetylcholine receptor (α7nAChR) and is a candidate gene that has been suggested as a pathophysiological process mediating adult-onset schizophrenia (AOS) and other neurodevelopmental disorders. These results support the incomplete penetrance and variable expressivity of this CNV and represent the first report of 15q13.3 duplication carriers exhibiting COS. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dale Zhou
- Child Psychiatry BranchNational Institute of Mental HealthNIHMaryland
| | - Peter Gochman
- Child Psychiatry BranchNational Institute of Mental HealthNIHMaryland
| | - Diane D. Broadnax
- Child Psychiatry BranchNational Institute of Mental HealthNIHMaryland
| | | | - Kwangmi Ahn
- Child Psychiatry BranchNational Institute of Mental HealthNIHMaryland
| |
Collapse
|