1
|
Escamilla-Vega E, Seton LWG, Kyomen S, Murillo-Rincón AP, Petersen J, Tautz D, Kaucká M. Evolution of the essential gene MN1 during the macroevolutionary transition toward patterning the vertebrate hindbrain. Proc Natl Acad Sci U S A 2025; 122:e2416061122. [PMID: 40424121 DOI: 10.1073/pnas.2416061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/27/2025] [Indexed: 05/29/2025] Open
Abstract
The tight link between brain and skull formation is a fundamental aspect of vertebrate evolution and embryogenesis. Their developmental synchronization is essential for structural and functional integration. The brain and skull shape coevolution is evident along the vertebrate phylogeny; however, the genetic basis underlying their close evolutionary and developmental relationship remains little explored. Here, we reveal the evolution and function of the MN1 gene that was previously found to be associated with significant shape variation in the mouse skull and the formation of cranial bones. We show that the vertebrate MN1 gene evolved from an ancestral deuterostome sequence. In vertebrates, the MN1 gene structure, synteny, and spatiotemporal expression pattern are remarkably conserved, indicating that the gene carries out a core function. Using a newly generated mouse knock-out model, we demonstrate in vivo that Mn1 integrated into an ancient molecular machinery and controls the expression of the Cyp26 genes in the developing hindbrain, thereby tuning the retinoic acid levels and patterning of the developing central nervous system. This study thus showcases the emergence of a novel gene function from an ancestral sequence and its role in generating a macroevolutionary innovation. The data expand our knowledge of brain and skull codevelopment and coevolution and highlight the role of this regulatory loop in craniofacial human syndromes.
Collapse
Affiliation(s)
| | - Louk W G Seton
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Stella Kyomen
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | | | - Julian Petersen
- Department of Orthodontics, University Leipzig Medical Center, Leipzig 04103, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
2
|
Sousa Junior LPB, Pinto LFB, Cruz VAR, Oliveira Junior GA, Oliveira HR, Chud TS, Pedrosa VB, Miglior F, Schenkel FS, Brito LF. Genome-wide association and functional genomic analyses for body conformation traits in North American Holstein cattle. Front Genet 2024; 15:1478788. [PMID: 39512801 PMCID: PMC11540798 DOI: 10.3389/fgene.2024.1478788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Body conformation traits are directly associated with longevity, fertility, health, and workability in dairy cows and have been under direct genetic selection for many decades in various countries worldwide. The main objectives of this study were to perform genome-wide association studies and functional enrichment analyses for fourteen body conformation traits using imputed high-density single nucleotide polymorphism (SNP) genotypes. The traits analyzed include body condition score (BCS), body depth (BD), bone quality (BQ), chest width (CW), dairy capacity (DC), foot angle (FAN), front legs view (FLV), heel depth (HDe), height at front end (HFE), locomotion (LOC), rear legs rear view (RLRV), rear legs side view (RLSV), stature (ST), and a composite feet and legs score index (FL) of Holstein cows scored in Canada. De-regressed estimated breeding values from a dataset of 39,135 North American Holstein animals were used as pseudo-phenotypes in the genome-wide association analyses. A mixed linear model was used to estimate the SNP effects, which ranged from 239,533 to 242,747 markers depending on the trait analyzed. Genes and quantitative trait loci (QTL) located up to 100 Kb upstream or downstream of the significant SNPs previously cited in the Animal QTLdb were detected, and functional enrichment analyses were performed for the candidate genes identified for each trait. A total of 20, 60, 13, 17, 27, 8, 7, 19, 4, 10, 13, 15, 7, and 13 genome-wide statistically significant SNPs for Bonferroni correction based on independent chromosomal segments were identified for BCS, BD, BQ, CW, DC, FAN, FLV, HDe, HFE, LOC, RLRV, RLSV, ST, and FL, respectively. The significant SNPs were located across the whole genome, except on chromosomes BTA24, BTA27, and BTA29. Four markers (for BCS, BD, HDe, and RLRV) were statistically significant when considering a much stricter threshold for the Bonferroni correction for multiple tests. Moreover, the genomic regions identified overlap with various QTL previously reported for the trait groups of exterior, health, meat and carcass, milk, production, and reproduction. The functional enrichment analyses revealed 27 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously reported as linked to bone development, metabolism, as well as infectious and immunological diseases.
Collapse
Affiliation(s)
- Luis Paulo B. Sousa Junior
- Department of Animal Sciences, Federal University of Bahia, Salvador, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Luis Fernando B. Pinto
- Department of Animal Sciences, Federal University of Bahia, Salvador, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Valdecy A. R. Cruz
- Department of Animal Sciences, Federal University of Bahia, Salvador, Brazil
| | - Gerson A. Oliveira Junior
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Tatiane S. Chud
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- PEAK, Madison, WI, United States
| | - Victor B. Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Lactanet Canada, Guelph, ON, Canada
| | - Flávio S. Schenkel
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Trizuljak J, Duben J, Blaháková I, Vrzalová Z, Kozubík KS, Štika J, Radová L, Bergerová V, Mejstříková S, Hořínová V, Jančálek R, Pospíšilová Š, Doubek M. Extensive, 3.8 Mb-Sized Deletion of 22q12 in a Patient with Bilateral Schwannoma, Intellectual Disability, Sensorineural Hearing Loss, and Epilepsy. Mol Syndromol 2023; 14:439-448. [PMID: 37908896 PMCID: PMC10613852 DOI: 10.1159/000528744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 11/02/2023] Open
Abstract
Introduction In contrast with the well-known and described deletion of the 22q11 chromosome region responsible for DiGeorge syndrome, 22q12 deletions are much rarer. Only a few dozen cases have been reported so far. This region contains genes responsible for cell cycle control, chromatin modification, transmembrane signaling, cell adhesion, and neural development, as well as several cancer predisposition genes. Case Presentation We present a patient with cleft palate, sensorineural hearing loss, vestibular dysfunction, epilepsy, mild to moderate intellectual disability, divergent strabism, pes equinovarus, platyspondylia, and bilateral schwannoma. Using Microarray-based Comparative Genomic Hybridization (aCGH), we identified the de novo 3.8 Mb interstitial deletion at 22q12.1→22q12.3. We confirmed deletion of the critical NF2 region by MLPA analysis. Discussion Large 22q12 deletion in the proband encases the critical NF2 region, responsible for development of bilateral schwannoma. We compared the phenotype of the patient with previously reported cases. Interestingly, our patient developed cleft palate even without deletion of the MN1 gene, deemed responsible in previous studies. We also strongly suspect the DEPDC5 gene deletion to be responsible for seizures, consistent with previously reported cases.
Collapse
Affiliation(s)
- Jakub Trizuljak
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jakub Duben
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Ivona Blaháková
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Vrzalová
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kateřina Staňo Kozubík
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Štika
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Veronika Bergerová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Soňa Mejstříková
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Věra Hořínová
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Outpatient Ward for Genetics, Hospital Jihlava, Jihlava, Czech Republic
| | - Radim Jančálek
- Department of Neurosurgery, St. Anne University Hospital, Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Neurofibromatosis type 2 with mild Pierre-Robin sequence showing a heterozygous chromosome 22q12 microdeletion encompassing NF2 and MN1. J Hum Genet 2022; 67:675-678. [PMID: 35970985 DOI: 10.1038/s10038-022-01068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Pierre-Robin sequence (PRS) is a rare, congenital defect presenting with micrognathia, glossoptosis, and airway obstruction with variable inclusion of a cleft palate. Overlapping PRS with neurofibromatosis type 2 (NF2) is a syndrome caused by a chromosome 22q12 microdeletion including NF2. We describe a patient with severe early-onset NF2 overlapping with PRS that showed micrognathia, glossoptosis, and a mild form of cleft palate. We detected a de novo chromosome 22q12 microdeletion including MN1 and NF2 in the patient. Previous cases of overlapping PRS and NF2 caused by the chromosome 22q12 microdeletions showed severe NF2 phenotypes with variable severity of cleft palate and microdeletions of varying sizes. Genotype-phenotype correlations and comparison of the size and breakpoint of microdeletions suggest that some modifier genes distal to MN1 and NF2 might be linked to the cleft palate severity.
Collapse
|
5
|
Zhao A, Shu D, Zhang D, Yang B, Hong L, Wang A, Yao R, Wang J, Lv H, Wang J, Shen Y, Wang H, Gu Q. Novel truncating variant of MN1 penultimate exon identified in a Chinese patient with newly recognized MN1 C-terminal truncation syndrome: Case report and literature review. Int J Dev Neurosci 2021; 82:96-103. [PMID: 34708882 DOI: 10.1002/jdn.10154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
MN1 C-terminal truncation (MCTT) syndrome is a newly recognized neurodevelopmental disorder due to heterozygous gain-of-function C-terminal truncating mutations clustering in the last or penultimate exon of MN1 gene (MIM: 156100). Up to date, only 25 affected patients have been reported. Here, we report a 2-year-old Chinese girl with MCTT syndrome. The girl presented with the characteristic features of the syndrome, including global developmental delay (GDD), facial dysmorphism and hearing impairment. Notably, the patient did not have other frequently observed symptoms such as hypotonia, cranial or brain abnormalities, indicating variability of the phenotype of patients with MN1 C-terminal truncating mutations. Trio whole-exome sequencing revealed a novel de novo heterozygous nonsense variant in the extreme 3' region of penultimate exon of MN1 (NM_002430.3: c.3743G > A, p.Trp1248*). This rare truncating variant was classified as pathogenic due to its predicted gain-of-function effect, given that the gain-of-function MN1 truncating variants producing C-terminally truncated proteins have been confirmed to cause the recognizable syndrome. Additionally, a systematic review of previously reported MN1 variants including C-terminal truncating variants and N-terminal truncating variants shows that different location of MN1 truncating variants causes two distinct clinical subtypes. To our knowledge, this is the first reported case of MCTT syndrome caused by a novel MN1 C-terminal truncating variant in a Chinese population, which enriched the mutation spectrum of MN1 gene and further supporting the association of the novel MCTT syndrome with MN1 C-terminal truncating variants.
Collapse
Affiliation(s)
- Arman Zhao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Dandan Shu
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Daxue Zhang
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Bin Yang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Liyi Hong
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Andi Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Hongying Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China.,Department of Clinical Laboratory, Children's Hospital of Wujiang District, Suzhou, Suzhou, China
| | - Qin Gu
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Shu L, He D, Wu D, Peng Y, Xi H, Mao X, Wang H. MN1 gene loss-of-function mutation causes cleft palate in a pedigree. Brain 2021; 144:e18. [PMID: 33351070 PMCID: PMC7940500 DOI: 10.1093/brain/awaa431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Li Shu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Department of School of Life Sciences, Central South University, Changsha, China
| | - Dinghua He
- Department of Otorhinolaryngology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Dan Wu
- Department of Otorhinolaryngology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Ying Peng
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Hui Xi
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Correspondence may also be addressed to: Xiao Mao E-mail:
| | - Hua Wang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Correspondence to: Hua Wang Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China E-mail:
| |
Collapse
|
7
|
Vegas N, Low K, Mak CCY, Fung JLF, Hing AV, Chung BHY, Doherty D, Amiel J, Gordon CT. Reply: MN1 gene loss-of-function mutation causes cleft palate in a pedigree. Brain 2021; 144:e19. [PMID: 33351141 DOI: 10.1093/brain/awaa432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nancy Vegas
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France
| | - Karen Low
- Department of Clinical Genetics, St Michaels Hospital, University Hospitals Bristol and Weston NHS Trust, Bristol BS2 8EJ, UK
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jasmine L F Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anne V Hing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Seattle Craniofacial Center, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France
| |
Collapse
|
8
|
Mak CCY, Doherty D, Lin AE, Vegas N, Cho MT, Viot G, Dimartino C, Weisfeld-Adams JD, Lessel D, Joss S, Li C, Gonzaga-Jauregui C, Zarate YA, Ehmke N, Horn D, Troyer C, Kant SG, Lee Y, Ishak GE, Leung G, Barone Pritchard A, Yang S, Bend EG, Filippini F, Roadhouse C, Lebrun N, Mehaffey MG, Martin PM, Apple B, Millan F, Puk O, Hoffer MJV, Henderson LB, McGowan R, Wentzensen IM, Pei S, Zahir FR, Yu M, Gibson WT, Seman A, Steeves M, Murrell JR, Luettgen S, Francisco E, Strom TM, Amlie-Wolf L, Kaindl AM, Wilson WG, Halbach S, Basel-Salmon L, Lev-El N, Denecke J, Vissers LELM, Radtke K, Chelly J, Zackai E, Friedman JM, Bamshad MJ, Nickerson DA, Reid RR, Devriendt K, Chae JH, Stolerman E, McDougall C, Powis Z, Bienvenu T, Tan TY, Orenstein N, Dobyns WB, Shieh JT, Choi M, Waggoner D, Gripp KW, Parker MJ, Stoler J, Lyonnet S, Cormier-Daire V, Viskochil D, Hoffman TL, Amiel J, Chung BHY, Gordon CT. MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis. Brain 2020; 143:55-68. [PMID: 31834374 DOI: 10.1093/brain/awz379] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 11/12/2022] Open
Abstract
MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.
Collapse
Affiliation(s)
- Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Angela E Lin
- Medical Genetics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Nancy Vegas
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Géraldine Viot
- Gynécologie Obstétrique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Clémantine Dimartino
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - James D Weisfeld-Adams
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Chumei Li
- McMaster University Medical Center, Hamilton, Ontario, Canada
| | | | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Nadja Ehmke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Denise Horn
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Caitlin Troyer
- Pediatrics and Medical Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gisele E Ishak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Radiology, University of Washington, Seattle, WA, USA
| | - Gordon Leung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | - Eric G Bend
- Greenwood Genetic Center, Greenwood, SC, USA.,PreventionGenetics, Marshfield, WI, USA
| | - Francesca Filippini
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Nicolas Lebrun
- Institut Cochin, INSERM U1016, CNRS UMR, Paris Descartes University, Paris, France
| | | | - Pierre-Marie Martin
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin Apple
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | | | - Oliver Puk
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, RC Leiden, The Netherlands
| | | | - Ruth McGowan
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Steven Pei
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Farah R Zahir
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Mullin Yu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ann Seman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Marcie Steeves
- Medical Genetics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Jill R Murrell
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sabine Luettgen
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Louise Amlie-Wolf
- Division of Medical Genetics, A I duPont Hospital for Children/Nemours, Wilmington, DE, USA
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Institute of Neuroanatomy and Cell Biology, Department of Pediatric Neurology and Center for Chronically Sick Children, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - William G Wilson
- Pediatrics and Medical Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Sara Halbach
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel.,Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Noa Lev-El
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Kelly Radtke
- Clinical Genomics Department, Ambry Genetics, Aliso Viejo, CA, USA
| | - Jamel Chelly
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA.,University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | | | - Russell R Reid
- Department of Surgery, Section of Plastic Surgery, University of Chicago, Chicago, IL, USA
| | - Koenraad Devriendt
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Carey McDougall
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zöe Powis
- Clinical Genomics Department, Ambry Genetics, Aliso Viejo, CA, USA
| | - Thierry Bienvenu
- Institut Cochin, INSERM U1016, CNRS UMR, Paris Descartes University, Paris, France.,Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, 75014 Paris, France
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, 3052, Australia
| | - Naama Orenstein
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - William B Dobyns
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Darrel Waggoner
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Karen W Gripp
- Division of Medical Genetics, A I duPont Hospital for Children/Nemours, Wilmington, DE, USA
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield S10 2TH, UK
| | - Joan Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Valérie Cormier-Daire
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - David Viskochil
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | - Trevor L Hoffman
- Southern California Kaiser Permanente Medical Group, Anaheim, CA, USA
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| |
Collapse
|
9
|
Chang Q, Yang Y, Peng Y, Liu S, Li L, Deng X, Yang M, Lan Y. Prenatal detection of chromosomal abnormalities and copy number variants in fetuses with ventriculomegaly. Eur J Paediatr Neurol 2020; 25:106-112. [PMID: 32014392 DOI: 10.1016/j.ejpn.2020.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To systematically investigate chromosomal abnormalities and copy number variants (CNVs) in fetuses with different types of ventriculomegaly (VM) by karyotyping and/or chromosomal microarray analysis (CMA). METHODS This retrospective study included 312 fetuses diagnosed with VM. Amniotic fluid and umbilical blood samples were collected by amniocentesis and cordocentesis, respectively, and subjected to karyotyping and/or CMA. Subgroup analysis by VM type, including mild VM (MVM) and severe VM (SVM), unilateral and bilateral VM, isolated VM (IVM), and non-isolated VM (NIVM), was performed. RESULTS The detection rate of chromosomal abnormalities was 12.1% (34/281) by karyotyping and 20.6% when CMA was additionally performed (P < 0.05). Abnormalities were identified by CMA in 17.4% (38/218) of fetuses and pathogenic CNVs in 5.0% (11/218). Notably, CMA detected CNVs in 10.6% (23/218) of fetuses with normal karyotypes. The incidence of chromosomal abnormalities by karyotyping was higher in bilateral than in unilateral VM (20.5% versus 6.5%), whereas the incidence detected by CMA was higher in NIVM than in IVM (21.4% versus 10.3%; both P < 0.05). In NIVM, CMA provided an additional detection rate of 11.4% (16/140) and a detection rate of 10.0% for pathogenic CNVs and aneuploidies. Central nervous system (CNS) abnormalities were the most common other ultrasonic abnormalities. CONCLUSIONS CMA is highly recommended for prenatal diagnosis of fetal VM together with karyotyping, especially in fetuses with bilateral VM and NIVM with abnormal CNS findings. Further study is necessary to explore the relationships between genotypes and phenotypes to facilitate prenatal diagnosis of fetal VM.
Collapse
Affiliation(s)
- Qingxian Chang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yanping Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixian Peng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siping Liu
- Technology Center of Prenatal Diagnosis and Genetic Diseases Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyan Li
- Technology Center of Prenatal Diagnosis and Genetic Diseases Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xujie Deng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Lan
- Department of Obstetrics and Gynecology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Gain-of-Function MN1 Truncation Variants Cause a Recognizable Syndrome with Craniofacial and Brain Abnormalities. Am J Hum Genet 2020; 106:13-25. [PMID: 31839203 DOI: 10.1016/j.ajhg.2019.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023] Open
Abstract
MN1 was originally identified as a tumor-suppressor gene. Knockout mouse studies have suggested that Mn1 is associated with craniofacial development. However, no MN1-related phenotypes have been established in humans. Here, we report on three individuals who have de novo MN1 variants that lead to a protein lacking the carboxyl (C) terminus and who presented with severe developmental delay, craniofacial abnormalities with specific facial features, and structural abnormalities in the brain. An in vitro study revealed that the deletion of the C-terminal region led to increased protein stability, an inhibitory effect on cell proliferation, and enhanced MN1 aggregation in nuclei compared to what occurred in the wild type, suggesting that a gain-of-function mechanism is involved in this disease. Considering that C-terminal deletion increases the fraction of intrinsically disordered regions of MN1, it is possible that altered phase separation could be involved in the mechanism underlying the disease. Our data indicate that MN1 participates in transcriptional regulation of target genes through interaction with the transcription factors PBX1, PKNOX1, and ZBTB24 and that mutant MN1 impairs the binding with ZBTB24 and RING1, which is an E3 ubiquitin ligase. On the basis of our findings, we propose the model that C-terminal deletion interferes with MN1's interaction molecules related to the ubiquitin-mediated proteasome pathway, including RING1, and increases the amount of the mutant protein; this increase leads to the dysregulation of MN1 target genes by inhibiting rapid MN1 protein turnover.
Collapse
|
11
|
Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination. PLoS Genet 2015; 11:e1005607. [PMID: 26523602 PMCID: PMC4629907 DOI: 10.1371/journal.pgen.1005607] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
The vertebrate cranium is a prime example of the high evolvability of complex traits. While evidence of genes and developmental pathways underlying craniofacial shape determination is accumulating, we are still far from understanding how such variation at the genetic level is translated into craniofacial shape variation. Here we used 3D geometric morphometrics to map genes involved in shape determination in a population of outbred mice (Carworth Farms White, or CFW). We defined shape traits via principal component analysis of 3D skull and mandible measurements. We mapped genetic loci associated with shape traits at ~80,000 candidate single nucleotide polymorphisms in ~700 male mice. We found that craniofacial shape and size are highly heritable, polygenic traits. Despite the polygenic nature of the traits, we identified 17 loci that explain variation in skull shape, and 8 loci associated with variation in mandible shape. Together, the associated variants account for 11.4% of skull and 4.4% of mandible shape variation, however, the total additive genetic variance associated with phenotypic variation was estimated in ~45%. Candidate genes within the associated loci have known roles in craniofacial development; this includes 6 transcription factors and several regulators of bone developmental pathways. One gene, Mn1, has an unusually large effect on shape variation in our study. A knockout of this gene was previously shown to affect negatively the development of membranous bones of the cranial skeleton, and evolutionary analysis shows that the gene has arisen at the base of the bony vertebrates (Eutelostomi), where the ossified head first appeared. Therefore, Mn1 emerges as a key gene for both skull formation and within-population shape variation. Our study shows that it is possible to identify important developmental genes through genome-wide mapping of high-dimensional shape features in an outbred population. Formation of the face, mandible, and skull is determined in part by genetic factors, but the relationship between genetic variation and craniofacial development is not well understood. We demonstrate how recent advances in mouse genomics and statistical methods can be used to identify genes involved in craniofacial development. We use outbred mice together with a dense panel of genetic markers to identify genetic loci affecting craniofacial shape. Some of the loci we identify are also known from past studies to contribute to craniofacial development and bone formation. For example, the top candidate gene identified in this study, Mn1, is a gene that appeared at a time when animals started to form bony skulls, suggesting that it may be a key gene in this evolutionary innovation. This further suggests that Mn1 and other genes involved in head formation are also responsible for more fine-grained regulation of its shape. Our results confirm that the outbred mouse population used in this study is suitable to identify single genetic factors even under conditions where many genes cooperate to generate a complex phenotype.
Collapse
|
12
|
Danescu A, Mattson M, Dool C, Diewert VM, Richman JM. Analysis of human soft palate morphogenesis supports regional regulation of palatal fusion. J Anat 2015; 227:474-86. [PMID: 26299693 DOI: 10.1111/joa.12365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 01/31/2023] Open
Abstract
It is essential to complete palate closure at the correct time during fetal development, otherwise a serious malformation, cleft palate, will ensue. The steps in palate formation in humans take place between the 7th and 12th week and consist of outgrowth of palatal shelves from the paired maxillary prominences, reorientation of the shelves from vertical to horizontal, apposition of the medial surfaces, formation of a bilayered seam, degradation of the seam and bridging of mesenchyme. However, in the soft palate, the mechanism of closure is unclear. In previous studies it is possible to find support for both fusion and the alternative mechanism of merging. Here we densely sample the late embryonic-early fetal period between 54 and 74 days post-conception to determine the timing and mechanism of soft palate closure. We found the epithelial seam extends throughout the soft palates of 57-day specimens. Cytokeratin antibody staining detected the medial edge epithelium and distinguished clearly that cells in the midline retained their epithelial character. Compared with the hard palate, the epithelium is more rapidly degraded in the soft palate and only persists in the most posterior regions at 64 days. Our results are consistent with the soft palate following a developmentally more rapid program of fusion than the hard palate. Importantly, the two regions of the palate appear to be independently regulated and have their own internal clocks regulating the timing of seam removal. Considering data from human genetic and mouse studies, distinct anterior-posterior signaling mechanisms are likely to be at play in the human fetal palate.
Collapse
Affiliation(s)
- Adrian Danescu
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Mattson
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Carly Dool
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Virginia M Diewert
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joy M Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|