1
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
2
|
Zhu Y, Vvedenskaya IO, Sze SH, Nickels BE, Kaplan CD. Quantitative analysis of transcription start site selection reveals control by DNA sequence, RNA polymerase II activity and NTP levels. Nat Struct Mol Biol 2024; 31:190-202. [PMID: 38177677 PMCID: PMC10928753 DOI: 10.1038/s41594-023-01171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
Transcription start site (TSS) selection is a key step in gene expression and occurs at many promoter positions over a wide range of efficiencies. Here we develop a massively parallel reporter assay to quantitatively dissect contributions of promoter sequence, nucleoside triphosphate substrate levels and RNA polymerase II (Pol II) activity to TSS selection by 'promoter scanning' in Saccharomyces cerevisiae (Pol II MAssively Systematic Transcript End Readout, 'Pol II MASTER'). Using Pol II MASTER, we measure the efficiency of Pol II initiation at 1,000,000 individual TSS sequences in a defined promoter context. Pol II MASTER confirms proposed critical qualities of S. cerevisiae TSS -8, -1 and +1 positions, quantitatively, in a controlled promoter context. Pol II MASTER extends quantitative analysis to surrounding sequences and determines that they tune initiation over a wide range of efficiencies. These results enabled the development of a predictive model for initiation efficiency based on sequence. We show that genetic perturbation of Pol II catalytic activity alters initiation efficiency mostly independently of TSS sequence, but selectively modulates preference for the initiating nucleotide. Intriguingly, we find that Pol II initiation efficiency is directly sensitive to guanosine-5'-triphosphate levels at the first five transcript positions and to cytosine-5'-triphosphate and uridine-5'-triphosphate levels at the second position genome wide. These results suggest individual nucleoside triphosphate levels can have transcript-specific effects on initiation, representing a cryptic layer of potential regulation at the level of Pol II biochemical properties. The results establish Pol II MASTER as a method for quantitative dissection of transcription initiation in eukaryotes.
Collapse
Affiliation(s)
- Yunye Zhu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Collin A, González-Jiménez A, González-Jiménez MDC, Alfonso MJ, Calvo O. The Role of S. cerevisiae Sub1/PC4 in Transcription Elongation Depends on the C-Terminal Region and Is Independent of the ssDNA Binding Domain. Cells 2022; 11:cells11203320. [PMID: 36291192 PMCID: PMC9600219 DOI: 10.3390/cells11203320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Saccharomyces cerevisiae Sub1 (ScSub1) has been defined as a transcriptional stimulatory protein due to its homology to the ssDNA binding domain (ssDBD) of human PC4 (hPC4). Recently, PC4/Sub1 orthologues have been elucidated in eukaryotes, prokaryotes, and bacteriophages with functions related to DNA metabolism. Additionally, ScSub1 contains a unique carboxyl–terminal region (CT) of unknown function up to date. Specifically, it has been shown that Sub1 is required for transcription activation, as well as other processes, throughout the transcription cycle. Despite the progress that has been made in understanding the mechanism underlying Sub1′s functions, some questions remain unanswered. As a case in point: whether Sub1’s roles in initiation and elongation are differentially predicated on distinct regions of the protein or how Sub1′s functions are regulated. Here, we uncover some residues that are key for DNA–ScSub1 interaction in vivo, localized in the ssDBD, and required for Sub1 recruitment to promoters. Furthermore, using an array of genetic and molecular techniques, we demonstrate that the CT region is required for transcription elongation by RNA polymerase II (RNAPII). Altogether, our data indicate that Sub1 plays a dual role during transcription—in initiation through the ssDBD and in elongation through the CT region.
Collapse
Affiliation(s)
- Alejandro Collin
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas-INICSA, CONICET-Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, 2º piso. Ciudad Universitaria, Cordoba CP5000, Argentina
| | - Araceli González-Jiménez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González, nº2, 37007 Salamanca, Spain
| | | | - Manuel J. Alfonso
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González, nº2, 37007 Salamanca, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González, nº2, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
4
|
Ajazi A, Choudhary R, Tronci L, Bachi A, Bruhn C. CTP sensing and Mec1ATR-Rad53CHK1/CHK2 mediate a two-layered response to inhibition of glutamine metabolism. PLoS Genet 2022; 18:e1010101. [PMID: 35239666 PMCID: PMC8923462 DOI: 10.1371/journal.pgen.1010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/15/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Glutamine analogs are potent suppressors of general glutamine metabolism with anti-cancer activity. 6-diazo-5-oxo-L-norleucine (DON) is an orally available glutamine analog which has been recently improved by structural modification for cancer treatment. Here, we explored the chemogenomic landscape of DON sensitivity using budding yeast as model organism. We identify evolutionarily conserved proteins that mediate cell resistance to glutamine analogs, namely Ura8CTPS1/2, Hpt1HPRT1, Mec1ATR, Rad53CHK1/CHK2 and Rtg1. We describe a function of Ura8 as inducible CTP synthase responding to inhibition of glutamine metabolism and propose a model for its regulation by CTP levels and Nrd1-dependent transcription termination at a cryptic unstable transcript. Disruption of the inducible CTP synthase under DON exposure hyper-activates the Mec1-Rad53 DNA damage response (DDR) pathway, which prevents chromosome breakage. Simultaneous inhibition of CTP synthase and Mec1 kinase synergistically sensitizes cells to DON, whereas CTP synthase over-expression hampers DDR mutant sensitivity. Using genome-wide suppressor screening, we identify factors promoting DON-induced CTP depletion (TORC1, glutamine transporter) and DNA breakage in DDR mutants. Together, our results identify CTP regulation and the Mec1-Rad53 DDR axis as key glutamine analog response pathways, and provide a rationale for the combined targeting of glutamine and CTP metabolism in DDR-deficient cancers. Cancer cell proliferation is supported by high metabolic activity. Targeting metabolic pathways is therefore a strategy to suppress cancer cell growth and survival. Glutamine is a key metabolite that supports a plethora of anabolic, growth-promoting reactions in the cell. Therefore, the use of small molecules that block glutamine-dependent reactions has been extensively investigated in cancer therapy. Knowledge about the pathways that influence sensitivity towards glutamine metabolism inhibitors would help to tailor the use of such glutamine-targeting therapies. In this study, we use budding yeast as model system to identify the pathways that mediate or restrict the toxicity of a representative inhibitor of glutamine metabolism, the glutamine analog 6-diazo-5-oxo-L-norleucine (DON). We describe a response mechanism mediated by an inducible CTP synthase that promotes nucleotide homeostasis during DON exposure to prevent DNA breaks. Moreover, we show that combined inhibition of the inducible CTP synthase and DNA damage response enhances DON toxicity, pointing out a potential therapeutic application in cancers with defective DNA damage response.
Collapse
Affiliation(s)
- Arta Ajazi
- The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
- * E-mail: (AA); (CB)
| | | | - Laura Tronci
- The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
- IRCCS San Raffaele Scientific Institute, Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Milan, Italy
| | - Angela Bachi
- The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Christopher Bruhn
- The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
- * E-mail: (AA); (CB)
| |
Collapse
|
5
|
Gupta R, Walvekar AS, Liang S, Rashida Z, Shah P, Laxman S. A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis. eLife 2019; 8:e44795. [PMID: 31259691 PMCID: PMC6688859 DOI: 10.7554/elife.44795] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/30/2019] [Indexed: 12/21/2022] Open
Abstract
Cells must appropriately sense and integrate multiple metabolic resources to commit to proliferation. Here, we report that S. cerevisiae cells regulate carbon and nitrogen metabolic homeostasis through tRNA U34-thiolation. Despite amino acid sufficiency, tRNA-thiolation deficient cells appear amino acid starved. In these cells, carbon flux towards nucleotide synthesis decreases, and trehalose synthesis increases, resulting in a starvation-like metabolic signature. Thiolation mutants have only minor translation defects. However, in these cells phosphate homeostasis genes are strongly down-regulated, resulting in an effectively phosphate-limited state. Reduced phosphate enforces a metabolic switch, where glucose-6-phosphate is routed towards storage carbohydrates. Notably, trehalose synthesis, which releases phosphate and thereby restores phosphate availability, is central to this metabolic rewiring. Thus, cells use thiolated tRNAs to perceive amino acid sufficiency, balance carbon and amino acid metabolic flux and grow optimally, by controlling phosphate availability. These results further biochemically explain how phosphate availability determines a switch to a 'starvation-state'.
Collapse
Affiliation(s)
- Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Adhish S Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Shun Liang
- Department of GeneticsRutgers UniversityPiscatawayUnited States
| | - Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Premal Shah
- Department of GeneticsRutgers UniversityPiscatawayUnited States
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| |
Collapse
|
6
|
Leśniewska E, Cieśla M, Boguta M. Repression of yeast RNA polymerase III by stress leads to ubiquitylation and proteasomal degradation of its largest subunit, C160. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:25-34. [PMID: 30342998 DOI: 10.1016/j.bbagrm.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022]
Abstract
Respiratory growth and various stress conditions repress RNA polymerase III (Pol III) transcription in Saccharomyces cerevisiae. Here we report a degradation of the largest Pol III catalytic subunit, C160 as a consequence of Pol III transcription repression. We observed C160 degradation in response to transfer of yeast from fermentation to respiration conditions, as well as treatment with rapamycin or inhibition of nucleotide biosynthesis. We also detected ubiquitylated forms of C160 and demonstrated that C160 protein degradation is dependent on proteasome activity. A comparable time-course study of Pol III repression upon metabolic shift from fermentation to respiration shows that the transcription inhibition is correlated with Pol III dissociation from chromatin but that the degradation of C160 subunit is a downstream event. Despite blocking degradation of C160 by proteasome, Pol III-transcribed genes are under proper regulation. We postulate that the degradation of C160 is activated under stress conditions to reduce the amount of existing Pol III complex and prevent its de novo assembly.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Małgorzata Cieśla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
7
|
RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene, DEF1, Involves Sen1-Dependent and Polyadenylation Site-Dependent Termination. G3-GENES GENOMES GENETICS 2018; 8:2043-2058. [PMID: 29686108 PMCID: PMC5982831 DOI: 10.1534/g3.118.200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Termination of RNA Polymerase II (Pol II) activity serves a vital cellular role by separating ubiquitous transcription units and influencing RNA fate and function. In the yeast Saccharomyces cerevisiae, Pol II termination is carried out by cleavage and polyadenylation factor (CPF-CF) and Nrd1-Nab3-Sen1 (NNS) complexes, which operate primarily at mRNA and non-coding RNA genes, respectively. Premature Pol II termination (attenuation) contributes to gene regulation, but there is limited knowledge of its prevalence and biological significance. In particular, it is unclear how much crosstalk occurs between CPF-CF and NNS complexes and how Pol II attenuation is modulated during stress adaptation. In this study, we have identified an attenuator in the DEF1 DNA repair gene, which includes a portion of the 5′-untranslated region (UTR) and upstream open reading frame (ORF). Using a plasmid-based reporter gene system, we conducted a genetic screen of 14 termination mutants and their ability to confer Pol II read-through defects. The DEF1 attenuator behaved as a hybrid terminator, relying heavily on CPF-CF and Sen1 but without Nrd1 and Nab3 involvement. Our genetic selection identified 22 cis-acting point mutations that clustered into four regions, including a polyadenylation site efficiency element that genetically interacts with its cognate binding-protein Hrp1. Outside of the reporter gene context, a DEF1 attenuator mutant increased mRNA and protein expression, exacerbating the toxicity of a constitutively active Def1 protein. Overall, our data support a biologically significant role for transcription attenuation in regulating DEF1 expression, which can be modulated during the DNA damage response.
Collapse
|
8
|
Martínez-Fernández V, Garrido-Godino AI, Mirón-García MC, Begley V, Fernández-Pévida A, de la Cruz J, Chávez S, Navarro F. Rpb5 modulates the RNA polymerase II transition from initiation to elongation by influencing Spt5 association and backtracking. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1-13. [DOI: 10.1016/j.bbagrm.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
|
9
|
Abstract
Sub1 was initially identified as a coactivator factor with a role during transcription initiation. However, over the last years, many evidences showed that it influences processes downstream during mRNA biogenesis, such as elongation, termination, and RNAPII phosphorylation. The recent discover that Sub1 directly interacts with the RNAPII stalk adds new insights into how it achieves all these tasks.
Collapse
Affiliation(s)
- Olga Calvo
- a Instituto de Biología Funcional y Genómica (CSIC) , Salamanca , Spain
| |
Collapse
|
10
|
Garavís M, González-Polo N, Allepuz-Fuster P, Louro JA, Fernández-Tornero C, Calvo O. Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis. Nucleic Acids Res 2017; 45:2458-2471. [PMID: 27924005 PMCID: PMC5389574 DOI: 10.1093/nar/gkw1206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Biogenesis of messenger RNA is critically influenced by the phosphorylation state of the carboxy-terminal domain (CTD) in the largest RNA polymerase II (RNAPII) subunit. Several kinases and phosphatases are required to maintain proper CTD phosphorylation levels and, additionally, several other proteins modulate them, including Rpb4/7 and Sub1. The Rpb4/7 heterodimer, constituting the RNAPII stalk, promote phosphatase functions and Sub1 globally influences CTD phosphorylation, though its mechanism remains mostly unknown. Here, we show that Sub1 physically interacts with the RNAPII stalk domain, Rpb4/7, likely through its C-terminal region, and associates with Fcp1. While Rpb4 is not required for Sub1 interaction with RNAPII complex, a fully functional heterodimer is required for Sub1 association to promoters. We also demonstrate that a complete CTD is necessary for proper association of Sub1 to chromatin and to the RNAPII. Finally, genetic data show a functional relationship between Sub1 and the RNAPII clamp domain. Altogether, our results indicate that Sub1, Rpb4/7 and Fcp1 interaction modulates CTD phosphorylation. In addition, Sub1 interaction with Rpb4/7 can also modulate transcription start site selection and transcription elongation rate likely by influencing the clamp function.
Collapse
Affiliation(s)
- Miguel Garavís
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Noelia González-Polo
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Paula Allepuz-Fuster
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Jaime Alegrio Louro
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Olga Calvo
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
11
|
Chen X, Poorey K, Carver MN, Müller U, Bekiranov S, Auble DT, Brow DA. Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome. PLoS Genet 2017; 13:e1006863. [PMID: 28665995 PMCID: PMC5513554 DOI: 10.1371/journal.pgen.1006863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/17/2017] [Accepted: 06/10/2017] [Indexed: 01/04/2023] Open
Abstract
Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or “NNS” pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation. The information stored in the DNA of a cell’s chromosomes is transmitted to the rest of the cell by transcribing the DNA into RNA copies or “transcripts”. The fidelity of this process, and thus the health of the cell, depends critically on the proper function of proteins that direct transcription. Since hundreds of genes, each specifying a unique RNA transcript, are arranged in tandem along each chromosome, the beginning and end of each gene must be marked in the DNA sequence. Although encoded in DNA, the signal for terminating an RNA transcript is usually recognized in the transcript itself. We examined the genome-wide functional targets of six proteins implicated in transcription termination by identifying transcripts whose structure or abundance is altered by a mutation that compromises the activity of each protein. For a small minority of transcripts, a mutation in any of the six proteins disrupts termination. Much more commonly, a transcript is affected by a mutation in only one or a few of the six proteins, revealing the varying extent to which the proteins cooperate with one another. We discovered affected transcripts that were not known to be controlled by any of the six proteins, including a cohort of genes required for meiosis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Melissa N. Carver
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Ulrika Müller
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
- * E-mail: (DAB); (DTA)
| | - David A. Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (DAB); (DTA)
| |
Collapse
|
12
|
Zhou H, Liu Q, Shi T, Yu Y, Lu H. Genome-wide screen of fission yeast mutants for sensitivity to 6-azauracil, an inhibitor of transcriptional elongation. Yeast 2015; 32:643-55. [DOI: 10.1002/yea.3085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Qi Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Tianfang Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing Technology; Shanghai 200237 People's Republic of China
| |
Collapse
|
13
|
Kwapisz M, Ruault M, van Dijk E, Gourvennec S, Descrimes M, Taddei A, Morillon A. Expression of Subtelomeric lncRNAs Links Telomeres Dynamics to RNA Decay in S. cerevisiae. Noncoding RNA 2015; 1:94-126. [PMID: 29861418 PMCID: PMC5932542 DOI: 10.3390/ncrna1020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to regulate gene expression, chromatin domains and chromosome stability in eukaryotic cells. Recent observations have reported the existence of telomeric repeats containing long ncRNAs – TERRA in mammalian and yeast cells. However, their functions remain poorly characterized. Here, we report the existence in S. cerevisiae of several lncRNAs within Y′ subtelomeric regions. We have called them subTERRA. These belong to Cryptic Unstable Transcripts (CUTs) and Xrn1p-sensitive Unstable Transcripts (XUTs) family. subTERRA transcription, carried out mainly by RNAPII, is initiated within the subtelomeric Y’ element and occurs in both directions, towards telomeres as well as centromeres. We show that subTERRA are distinct from TERRA and are mainly degraded by the general cytoplasmic and nuclear 5′- and 3′- RNA decay pathways in a transcription-dependent manner. subTERRA accumulates preferentially during the G1/S transition and in C-terminal rap1 mutant but independently of Rap1p function in silencing. The accumulation of subTERRA in RNA decay mutants coincides with telomere misregulation: shortening of telomeres, loss of telomeric clustering in mitotic cells and changes in silencing of subtelomeric regions. Our data suggest that subtelomeric RNAs expression links telomere maintenance to RNA degradation pathways.
Collapse
Affiliation(s)
- Marta Kwapisz
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
- Authors to whom correspondence should be addressed; E-Mails: (M.K.); (A.M.); Tel.: +33-561-335-824 (M.K.); +33-(0)-156-246-515 (A.M.); Fax: +33-524-335-886 (M.K.); +33-(0)-156-246-674 (A.M.)
| | - Myriam Ruault
- Nuclear Dynamics, Institut Curie, PSL Research University, CNRS UMR3664, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mails: (M.R.); (A.T.)
| | - Erwin van Dijk
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Stephanie Gourvennec
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Marc Descrimes
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Angela Taddei
- Nuclear Dynamics, Institut Curie, PSL Research University, CNRS UMR3664, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mails: (M.R.); (A.T.)
| | - Antonin Morillon
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
- Authors to whom correspondence should be addressed; E-Mails: (M.K.); (A.M.); Tel.: +33-561-335-824 (M.K.); +33-(0)-156-246-515 (A.M.); Fax: +33-524-335-886 (M.K.); +33-(0)-156-246-674 (A.M.)
| |
Collapse
|
14
|
Zuehlke AD, Wren N, Tenge V, Johnson JL. Interaction of heat shock protein 90 and the co-chaperone Cpr6 with Ura2, a bifunctional enzyme required for pyrimidine biosynthesis. J Biol Chem 2013; 288:27406-27414. [PMID: 23926110 PMCID: PMC3779735 DOI: 10.1074/jbc.m113.504142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/06/2013] [Indexed: 01/16/2023] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is an essential protein required for the activity and stability of multiple proteins termed clients. Hsp90 cooperates with a set of co-chaperone proteins that modulate Hsp90 activity and/or target clients to Hsp90 for folding. Many of the Hsp90 co-chaperones, including Cpr6 and Cpr7, contain tetratricopeptide repeat (TPR) domains that bind a common acceptor site at the carboxyl terminus of Hsp90. We found that Cpr6 and Hsp90 interacted with Ura2, a protein critical for pyrimidine biosynthesis. Mutation or inhibition of Hsp90 resulted in decreased accumulation of Ura2, indicating it is an Hsp90 client. Cpr6 interacted with Ura2 in the absence of stable Cpr6-Hsp90 interaction, suggesting a direct interaction. However, loss of Cpr6 did not alter the Ura2-Hsp90 interaction or Ura2 accumulation. The TPR domain of Cpr6 was required for Ura2 interaction, but other TPR containing co-chaperones, including Cpr7, failed to interact with Ura2 or rescue CPR6-dependent growth defects. Further analysis suggests that the carboxyl-terminal 100 amino acids of Cpr6 and Cpr7 are critical for specifying their unique functions, providing new information about this important class of Hsp90 co-chaperones.
Collapse
Affiliation(s)
- Abbey D Zuehlke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Nicholas Wren
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Victoria Tenge
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844.
| |
Collapse
|
15
|
Kaplan CD. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:39-54. [PMID: 23022618 DOI: 10.1016/j.bbagrm.2012.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 01/12/2023]
Abstract
Transcription by RNA polymerase II (Pol II), and all RNA polymerases for that matter, may be understood as comprising two cycles. The first cycle relates to the basic mechanism of the transcription process wherein Pol II must select the appropriate nucleoside triphosphate (NTP) substrate complementary to the DNA template, catalyze phosphodiester bond formation, and translocate to the next position on the DNA template. Performing this cycle in an iterative fashion allows the synthesis of RNA chains that can be over one million nucleotides in length in some larger eukaryotes. Overlaid upon this enzymatic cycle, transcription may be divided into another cycle of three phases: initiation, elongation, and termination. Each of these phases has a large number of associated transcription factors that function to promote or regulate the gene expression process. Complicating matters, each phase of the latter transcription cycle are coincident with cotranscriptional RNA processing events. Additionally, transcription takes place within a highly dynamic and regulated chromatin environment. This chromatin environment is radically impacted by active transcription and associated chromatin modifications and remodeling, while also functioning as a major platform for Pol II regulation. This review will focus on our basic knowledge of the Pol II transcription mechanism, and how altered Pol II activity impacts gene expression in vivo in the model eukaryote Saccharomyces cerevisiae. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
16
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
17
|
Kaplan CD, Jin H, Zhang IL, Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012; 8:e1002627. [PMID: 22511879 PMCID: PMC3325174 DOI: 10.1371/journal.pgen.1002627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process. Transcription by multisubunit RNA polymerases (msRNAPs) is essential for all kingdoms of life. A conserved region within msRNAPs called the trigger loop (TL) is critical for selection of nucleotide substrates and activity. We present analysis of the RNA Polymerase II (Pol II) TL from the model eukaryote Saccharomyces cerevisiae. Our experiments reveal how TL residues differentially contribute to viability and transcriptional activity. We find that in vivo growth phenotypes correlate with severity of transcriptional defects and that changing Pol II activity to either faster or slower than wild type causes specific transcription defects. We identify transcription start site selection as sensitive to Pol II catalytic activity, proposing that RNA synthesis (an event downstream of many steps in the initiation process) contributes to where productive transcription occurs. Pol II transcription activity was excluded from previous models for selection of productive Pol II start sites. Finally, drug sensitivity data have been widely interpreted to indicate that Pol II mutants defective in elongation properties are sensitized to reduction in GTP levels (a Pol II substrate). Our data suggest an alternate explanation, that sensitivity to decreased GTP levels may be explained in light of Pol II mutant transcriptional start site defects.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
18
|
Servant G, Pinson B, Tchalikian-Cosson A, Coulpier F, Lemoine S, Pennetier C, Bridier-Nahmias A, Todeschini AL, Fayol H, Daignan-Fornier B, Lesage P. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress. Nucleic Acids Res 2012; 40:5271-82. [PMID: 22379133 PMCID: PMC3384299 DOI: 10.1093/nar/gks166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.
Collapse
Affiliation(s)
- Géraldine Servant
- CNRS UPR9073, associated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pérez-Ortín JE, de Miguel-Jiménez L, Chávez S. Genome-wide studies of mRNA synthesis and degradation in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:604-15. [PMID: 22182827 DOI: 10.1016/j.bbagrm.2011.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
In recent years, the use of genome-wide technologies has revolutionized the study of eukaryotic transcription producing results for thousands of genes at every step of mRNA life. The statistical analyses of the results for a single condition, different conditions, different transcription stages, or even between different techniques, is outlining a totally new landscape of the eukaryotic transcription process. Although most studies have been conducted in the yeast Saccharomyces cerevisiae as a model cell, others have also focused on higher eukaryotes, which can also be comparatively analyzed. The picture which emerges is that transcription is a more variable process than initially suspected, with large differences between genes at each stage of the process, from initiation to mRNA degradation, but with striking similarities for functionally related genes, indicating that all steps are coordinately regulated. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | | | | |
Collapse
|
20
|
Leporé N, Lafontaine DLJ. A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast. PLoS One 2011; 6:e24962. [PMID: 21949810 PMCID: PMC3176313 DOI: 10.1371/journal.pone.0024962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/24/2011] [Indexed: 12/21/2022] Open
Abstract
Ribogenesis is a multistep error-prone process that is actively monitored by quality control mechanisms. How ribosomal RNA synthesis, pre-rRNA processing and nucleolar surveillance are integrated is unclear. Nor is it understood how defective ribosomes are recognized. We report in budding yeast that, in vivo, the interaction between the transcription elongation factor Spt5 and Rpa190, the largest subunit of RNA polymerase (Pol) I, requires the Spt5 C-terminal region (CTR), a conserved and highly repetitive domain that is reminiscent of the RNA Pol II C-terminal domain (CTD). We show that this sequence is also required for the interaction between Spt5 and Nrd1, an RNA specific binding protein, and an exosome cofactor. Both the Spt4-Spt5, and the Nrd1-Nab3 complexes interact functionally with Rrp6, and colocalize at the rDNA. Mutations in the RNA binding domain of Nrd1, but not in its RNA Pol II CTD-interacting domain, and mutations in the RRM of Nab3 led to the accumulation of normal and aberrant polyadenylated pre-rRNAs. Altogether these results indicate that Nrd1-Nab3 contributes to recruiting the nucleolar surveillance to elongating polymerases to survey nascent rRNA transcripts.
Collapse
Affiliation(s)
- Nathalie Leporé
- RNA Metabolism, Fonds de la Recherche Scientifique (FRS-FNRS), Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
| | - Denis L. J. Lafontaine
- RNA Metabolism, Fonds de la Recherche Scientifique (FRS-FNRS), Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Académie Wallonie–Bruxelles, Charleroi-Gosselies, Belgium
- * E-mail:
| |
Collapse
|
21
|
Tisseur M, Kwapisz M, Morillon A. Pervasive transcription - Lessons from yeast. Biochimie 2011; 93:1889-96. [PMID: 21771634 DOI: 10.1016/j.biochi.2011.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Pervasive transcription is now accepted to be a general feature of eukaryotic genomes, generating short and long non-coding RNAs (ncRNAs). Growing number of examples have shown that regulatory ncRNAs can control gene expression and chromatin domain formation. In this review, we discuss recent reports that show that Saccharomyces cerevisiae's genome also supports pervasive transcription, which is strongly controlled by RNA decay pathways and nucleosome positioning. We therefore propose that S. cerevisiae is an excellent model for studying large ncRNAs, which has already provided important examples of antisense-mediated transcriptional silencing.
Collapse
Affiliation(s)
- Mathieu Tisseur
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
22
|
Overexpression of SNG1 causes 6-azauracil resistance in Saccharomyces cerevisiae. Curr Genet 2010; 56:251-63. [PMID: 20424846 DOI: 10.1007/s00294-010-0297-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/04/2010] [Accepted: 03/14/2010] [Indexed: 10/19/2022]
Abstract
The mechanism of action of 6AU, a growth inhibitor for many microorganisms causing depletion of intracellular nucleotide pools of GTP and UTP, is not well understood. To gain insight into the mechanisms leading to 6AU resistance, and in an attempt to uncover novel genes required for this resistance, we undertook a high-copy-number suppressor screening to identify genes whose overexpression could repair the 6AU(S) growth defect caused by rpb1 mutations in Saccharomyces cerevisiae. We have identified SNG1 as a multicopy suppressor of the 6AU(S) growth defect caused by the S. cerevisiae rpb1 mutant. The mechanism by which Sng1 causes 6AU resistance is independent of the transcriptional elongation and of the nucleotide-pool regulation through Imd2 and Ura2, as well as of the Ssm1-mediated 6AU detoxification. This resistance to 6AU is not extended to other uracil analogues, such as 5-fluorouracil, 5FU. In addition, our results suggest that 6AU enters S. cerevisiae cells through the uracil permease Fur4. Our results demonstrate that Sng1 is localised in the plasma membrane and evidence SNG1 and FUR4 genes as determinants of resistance and susceptibility to this inhibitory compound, respectively. Taken together, these results show new mechanisms involved in the resistance and susceptibility to 6AU.
Collapse
|
23
|
Harrison BR, Yazgan O, Krebs JE. Life without RNAi: noncoding RNAs and their functions in Saccharomyces cerevisiae. Biochem Cell Biol 2010; 87:767-79. [PMID: 19898526 DOI: 10.1139/o09-043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are a number of well-characterized and fundamental roles for noncoding RNAs (ncRNAs) in gene regulation in all kingdoms of life. ncRNAs, such as ribosomal RNAs, transfer RNAs, small nuclear RNAs, small nucleolar RNAs, and small interfering RNAs, can serve catalytic and scaffolding functions in transcription, messenger RNA processing, translation, and RNA degradation. Recently, our understanding of gene expression has been dramatically challenged by the identification of large and diverse populations of novel ncRNAs in the eukaryotic genomes surveyed thus far. Studies carried out using the budding yeast Saccharomyces cerevisiae indicate that at least some coding genes are regulated by these novel ncRNAs. S. cerevisiae lacks RNA interference (RNAi) and, thus, provides an ideal system for studying the RNAi-independent mechanisms of ncRNA-based gene regulation. The current picture of gene regulation is one of great unknowns, in which the transcriptional environment surrounding a given locus may have as much to do with its regulation as its DNA sequence or local chromatin structure. Drawing on the recent research in S. cerevisiae and other organisms, this review will discuss the identification of ncRNAs, their origins and processing, and several models that incorporate ncRNAs into the regulation of gene expression and chromatin structure.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | | | | |
Collapse
|
24
|
Jacquier A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 2009; 10:833-44. [PMID: 19920851 DOI: 10.1038/nrg2683] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past few years, techniques have been developed that have allowed the study of transcriptomes without bias from previous genome annotations, which has led to the discovery of a plethora of unexpected RNAs that have no obvious coding capacities. There are many different kinds of products that are generated by this pervasive transcription; this Review focuses on small non-coding RNAs (ncRNAs) that have been found to be associated with promoters in eukaryotes from animals to yeast. After comparing the different classes of such ncRNAs described in various studies, the Review discusses how the models proposed for their origins and their possible functions challenge previous views of the basic transcription process and its regulation.
Collapse
Affiliation(s)
- Alain Jacquier
- Unité de Génétique des Interactions Macromoléculaires, Institut Pasteur, Centre National de la Recherche Scientifique URA2171, 25 Rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
25
|
RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 2009; 462:323-30. [PMID: 19820686 DOI: 10.1038/nature08548] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
Abstract
To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the 'B-core' domain that binds the wall at the end of the cleft. DNA is then opened with the help of the 'B-linker' that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the 'B-reader' that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.
Collapse
|
26
|
Pelechano V, Jimeno-González S, Rodríguez-Gil A, García-Martínez J, Pérez-Ortín JE, Chávez S. Regulon-specific control of transcription elongation across the yeast genome. PLoS Genet 2009; 5:e1000614. [PMID: 19696888 PMCID: PMC2721418 DOI: 10.1371/journal.pgen.1000614] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 07/24/2009] [Indexed: 11/19/2022] Open
Abstract
Transcription elongation by RNA polymerase II was often considered an invariant non-regulated process. However, genome-wide studies have shown that transcriptional pausing during elongation is a frequent phenomenon in tightly-regulated metazoan genes. Using a combination of ChIP-on-chip and genomic run-on approaches, we found that the proportion of transcriptionally active RNA polymerase II (active versus total) present throughout the yeast genome is characteristic of some functional gene classes, like those related to ribosomes and mitochondria. This proportion also responds to regulatory stimuli mediated by protein kinase A and, in relation to cytosolic ribosomal-protein genes, it is mediated by the silencing domain of Rap1. We found that this inactive form of RNA polymerase II, which accumulates along the full length of ribosomal protein genes, is phosphorylated in the Ser5 residue of the CTD, but is hypophosphorylated in Ser2. Using the same experimental approach, we show that the in vivo–depletion of FACT, a chromatin-related elongation factor, also produces a regulon-specific effect on the expression of the yeast genome. This work demonstrates that the regulation of transcription elongation is a widespread, gene class–dependent phenomenon that also affects housekeeping genes. Transcription of DNA–encoded information into RNA is the first step in gene regulation. RNA polymerases initiate transcription at the promoter region and elongate the transcripts traveling throughout the gene until reaching the termination sequences. Classical models of transcriptional regulation were focused on the initiation step, but there is increasing evidence for gene regulation after initiation. We have investigated the importance of elongation in gene regulation using the yeast Saccharomyces cerevisiae, one of the main experimental systems in modern biology. By comparing the genomic distribution of RNA polymerase molecules with the actual transcriptional signal across the genome, we have detected that many genes are regulated at the elongation level. We show that yeast cells use this step to modulate the expression of several groups of genes, which have to be simultaneously regulated in a very coordinated manner. Genes encoding essential functions, like those related to protein synthesis and respiration, change their transcriptional activities in response to environmental stimuli, without changing in the same extension the amount of RNA polymerase that is physically associated to them. We also show that this kind of regulation, in spite of taking place during the elongation step, can be mediated by promoter-binding transcription factors.
Collapse
Affiliation(s)
- Vicent Pelechano
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
| | | | | | - José García-Martínez
- Sección de Chips de DNA, Servei Central de Suport a la Investigació, Universitat de València, Burjassot, Spain
| | - José E. Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- * E-mail: (JEPO); (SC)
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail: (JEPO); (SC)
| |
Collapse
|
27
|
Abstract
The second structure of a eukaryotic RNA polymerase II so far determined, that of the enzyme from the fission yeast Schizosaccharomyces pombe, is reported here. Comparison with the previous structure of the enzyme from the budding yeast Saccharomyces cerevisiae reveals differences in regions implicated in start site selection and transcription factor interaction. These aspects of the transcription mechanism differ between S. pombe and S. cerevisiae, but are conserved between S. pombe and humans. Amino acid changes apparently responsible for the structural differences are also conserved between S. pombe and humans, suggesting that the S. pombe structure may be a good surrogate for that of the human enzyme.
Collapse
|
28
|
Wery M, Ruidant S, Schillewaert S, Leporé N, Lafontaine DLJ. The nuclear poly(A) polymerase and Exosome cofactor Trf5 is recruited cotranscriptionally to nucleolar surveillance. RNA (NEW YORK, N.Y.) 2009; 15:406-419. [PMID: 19141608 PMCID: PMC2657017 DOI: 10.1261/rna.1402709] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 11/25/2008] [Indexed: 05/27/2023]
Abstract
Terminal balls detected at the 5'-end of nascent ribosomal transcripts act as pre-rRNA processing complexes and are detected in all eukaryotes examined, resulting in illustrious Christmas tree images. Terminal balls (also known as SSU-processomes) compaction reflects the various stages of cotranscriptional ribosome assembly. Here, we have followed SSU-processome compaction in vivo by use of a chromatin immunoprecipitation (Ch-IP) approach and shown, in agreement with electron microscopy analysis of Christmas trees, that it progressively condenses to come in close proximity to the 5'-end of the 25S rRNA gene. The SSU-processome is comprised of independent autonomous building blocks that are loaded onto nascent pre-rRNAs and assemble into catalytically active pre-rRNA processing complexes in a stepwise and highly hierarchical process. Failure to assemble SSU-processome subcomplexes with proper kinetics triggers a nucleolar surveillance pathway that targets misassembled pre-rRNAs otherwise destined to mature into small subunit 18S rRNA for polyadenylation, preferentially by TRAMP5, and degradation by the 3' to 5' exoribonucleolytic activity of the Exosome. Trf5 colocalized with nascent pre-rRNPs, indicating that this nucleolar surveillance initiates cotranscriptionally.
Collapse
Affiliation(s)
- Maxime Wery
- Fonds de la Recherche Scientifique (FRS-FNRS), AcadémieWallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041 Belgium
| | | | | | | | | |
Collapse
|
29
|
Corden JL. Yeast Pol II start-site selection: the long and the short of it. EMBO Rep 2008; 9:1084-6. [PMID: 18846104 DOI: 10.1038/embor.2008.192] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
30
|
Thiebaut M, Colin J, Neil H, Jacquier A, Séraphin B, Lacroute F, Libri D. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol Cell 2008; 31:671-82. [PMID: 18775327 DOI: 10.1016/j.molcel.2008.08.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 06/04/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Hidden transcription in eukaryotes carries a large potential of regulatory functions that are only recently beginning to emerge. Cryptic unstable transcripts (CUTs) are generated by RNA polymerase II (Pol II) and rapidly degraded after transcription in wild-type yeast cells. Whether CUTs or the act of transcription without RNA production have a function is presently unclear. We describe here a nonconventional mechanism of transcriptional regulation that relies on the selection of alternative transcription start sites to generate CUTs or mRNAs. Transcription from TATA box proximal start sites generates unstable transcripts and downregulates expression of the URA2 gene under repressing conditions. Uracil deprivation activates selection of distal start sites, leading to the production of stable mRNAs. We describe the elements that govern degradation of the CUT and activation of mRNA production by downstream transcription initiation. Importantly, we show that a similar mechanism applies to other genes in the nucleotides biogenesis pathway.
Collapse
Affiliation(s)
- Marilyne Thiebaut
- LEA Laboratory of Nuclear RNA Metabolism, Centre de Génétique Moléculaire, CNRS, UPR2167, 1, av de la Terrasse, 91190, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|