1
|
Pena GE, Zhou X, Slevin L, Brownlee C, Heald R. The NLS3 Motif in TPX2 Regulates Spindle Architecture in Xenopus Egg Extracts. Cytoskeleton (Hoboken) 2025. [PMID: 40326229 DOI: 10.1002/cm.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
A bipolar spindle composed of microtubules and many associated proteins functions to segregate chromosomes during cell division in all eukaryotes, yet both spindle size and architecture vary dramatically across different species and cell types. Targeting protein for Xklp2 (TPX2) is one candidate factor for modulating spindle microtubule organization through its roles in branching microtubule nucleation, activation of the mitotic kinase Aurora A, and association with the kinesin-5 (Eg5) motor. Here we characterize a conserved nuclear localization sequence (NLS) motif, 123KKLK126 in Xenopus laevis TPX2, which regulates astral microtubule formation and spindle pole morphology in Xenopus egg extracts. Addition of recombinant TPX2 with this sequence mutated to AALA stimulated spontaneous formation of microtubule asters and increased recruitment of phosphorylated Aurora A, pericentrin, and Eg5 to meiotic spindle poles while still binding to the regulatory transport factor importin α. We propose that TPX2 is a linchpin spindle assembly factor whose regulation contributes to the activation of multiple microtubule polymerizing and organizing proteins, generating distinct spindle architectures.
Collapse
Affiliation(s)
- Guadalupe E Pena
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Xiao Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- AbbVie, South San Francisco, California, USA
| | - Lauren Slevin
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Swedish Maternal and Fetal Specialty Center, Seattle, Washington, USA
| | - Christopher Brownlee
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Deparment of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
2
|
Yue W, Zhang HY, Schatten H, Meng TG, Sun QY. CtIP regulates G2/M transition and bipolar spindle assembly during mouse oocyte meiosis. J Genet Genomics 2024; 51:1435-1446. [PMID: 39277031 DOI: 10.1016/j.jgg.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
CtBP-interacting protein (CtIP) is known for its multifaceted roles in DNA repair and genomic stability, directing the homologous recombination-mediated DNA double-stranded break repair pathway via DNA end resection, an essential error-free repair process vital for genome stability. Mammalian oocytes are highly prone to DNA damage accumulation due to prolonged G2/prophase arrest. Here, we explore the functions of CtIP in meiotic cell cycle regulation via a mouse oocyte model. Depletion of CtIP by siRNA injection results in delayed germinal vesicle breakdown and failed polar body extrusion. Mechanistically, CtIP deficiency increases DNA damage and decreases the expression and nuclear entry of CCNB1, resulting in marked impairment of meiotic resumption, which can be rescued by exogenous CCNB1 overexpression. Furthermore, depletion of CtIP disrupts microtubule-organizing centers coalescence at spindle poles as indicated by failed accumulation of γ-tubulin, p-Aurora kinase A, Kif2A, and TPX2, leading to abnormal spindle assembly and prometaphase arrest. These results provide valuable insights into the important roles of CtIP in the G2/M checkpoint and spindle assembly in mouse oocyte meiotic cell cycle regulation.
Collapse
Affiliation(s)
- Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Yong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong 524045, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| |
Collapse
|
3
|
Pena GE, Zhou X, Slevin L, Brownlee C, Heald R. Identification of a motif in TPX2 that regulates spindle architecture in Xenopus egg extracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579770. [PMID: 38370704 PMCID: PMC10871311 DOI: 10.1101/2024.02.10.579770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A bipolar spindle composed of microtubules and many associated proteins functions to segregate chromosomes during cell division in all eukaryotes, yet spindle size and architecture varies dramatically across different species and cell types. Targeting protein for Xklp2 (TPX2) is one candidate factor for modulating spindle microtubule organization through its roles in branching microtubule nucleation, activation of the mitotic kinase Aurora A, and association with the kinesin-5 (Eg5) motor. Here we identify a conserved nuclear localization sequence (NLS) motif, 123 KKLK 126 in X. laevis TPX2, which regulates astral microtubule formation and spindle pole morphology in Xenopus egg extracts. Addition of recombinant TPX2 with this sequence mutated to AALA dramatically increased spontaneous formation of microtubule asters and recruitment of phosphorylated Aurora A, pericentrin, and Eg5 to meiotic spindle poles. We propose that TPX2 is a linchpin spindle assembly factor whose regulation contributes to the recruitment and activation of multiple microtubule polymerizing and organizing proteins, generating distinct spindle architectures.
Collapse
|
4
|
Scrofani J, Ruhnow F, Chew WX, Normanno D, Nedelec F, Surrey T, Vernos I. Branched microtubule nucleation and dynein transport organize RanGTP asters in Xenopus laevis egg extract. Mol Biol Cell 2024; 35:ar12. [PMID: 37991893 PMCID: PMC10881172 DOI: 10.1091/mbc.e23-10-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Chromosome segregation relies on the correct assembly of a bipolar spindle. Spindle pole self-organization requires dynein-dependent microtubule (MT) transport along other MTs. However, during M-phase RanGTP triggers MT nucleation and branching generating polarized arrays with nonastral organization in which MT minus ends are linked to the sides of other MTs. This raises the question of how branched-MT nucleation and dynein-mediated transport cooperate to organize the spindle poles. Here, we used RanGTP-dependent MT aster formation in Xenopus laevis (X. laevis) egg extract to study the interplay between these two seemingly conflicting organizing principles. Using temporally controlled perturbations of MT nucleation and dynein activity, we found that branched MTs are not static but instead dynamically redistribute over time as poles self-organize. Our experimental data together with computer simulations suggest a model where dynein together with dynactin and NuMA directly pulls and move branched MT minus ends toward other MT minus ends.
Collapse
Affiliation(s)
- Jacopo Scrofani
- Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Felix Ruhnow
- Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Wei-Xiang Chew
- Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Davide Normanno
- Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Francois Nedelec
- Sainsbury Laboratory, Cambridge University, Bateman street, CB2 1LR Cambridge, UK
| | - Thomas Surrey
- Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Institución Catalana de Investigación y Estudios Avanzados (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Isabelle Vernos
- Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Institución Catalana de Investigación y Estudios Avanzados (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
6
|
Tang X, Wei W, Snowball JM, Nakayasu ES, Bell SM, Ansong C, Lin X, Whitsett JA. EMC3 regulates mesenchymal cell survival via control of the mitotic spindle assembly. iScience 2022; 26:105667. [PMID: 36624844 PMCID: PMC9823123 DOI: 10.1016/j.isci.2022.105667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells transit through the cell cycle to produce two daughter cells. Dysregulation of the cell cycle leads to cell death or tumorigenesis. Herein, we found a subunit of the ER membrane complex, EMC3, as a key regulator of cell cycle. Conditional deletion of Emc3 in mouse embryonic mesoderm led to reduced size and patterning defects of multiple organs. Emc3 deficiency impaired cell proliferation, causing spindle assembly defects, chromosome mis-segregation, cell cycle arrest at G2/M, and apoptosis. Upon entry into mitosis, mesenchymal cells upregulate EMC3 protein levels and localize EMC3 to the mitotic centrosomes. Further analysis indicated that EMC3 works together with VCP to tightly regulate the levels and activity of Aurora A, an essential factor for centrosome function and mitotic spindle assembly: while overexpression of EMC3 or VCP degraded Aurora A, their loss led to increased Aurora A stability but reduced Aurora A phosphorylation in mitosis.
Collapse
Affiliation(s)
- Xiaofang Tang
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sheila M. Bell
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China,Corresponding author
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Corresponding author
| |
Collapse
|
7
|
He Y, Peng L, Li J, Li Q, Chu Y, Lin Q, Rui R, Ju S. TPX2 deficiency leads to spindle abnormity and meiotic impairment in porcine oocytes. Theriogenology 2022; 187:164-172. [DOI: 10.1016/j.theriogenology.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
|
8
|
Wang X, Baumann C, De La Fuente R, Viveiros MM. Loss of acentriolar MTOCs disrupts spindle pole Aurora A and assembly of the liquid-like meiotic spindle domain in oocytes. J Cell Sci 2021; 134:jcs256297. [PMID: 34152366 PMCID: PMC8325960 DOI: 10.1242/jcs.256297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Oocyte-specific knockdown of pericentrin (PCNT) in transgenic (Tg) mice disrupts acentriolar microtubule-organizing center (aMTOC) formation, leading to spindle instability and error-prone meiotic division. Here, we show that PCNT-depleted oocytes lack phosphorylated Aurora A (pAURKA) at spindle poles, while overall levels are unaltered. To test aMTOC-associated AURKA function, metaphase II (MII) control (WT) and Tg oocytes were briefly exposed to a specific AURKA inhibitor (MLN8237). Similar defects were observed in Tg and MLN8237-treated WT oocytes, including altered spindle structure, increased chromosome misalignment and impaired microtubule regrowth. Yet, AURKA inhibition had a limited effect on Tg oocytes, revealing a critical role for aMTOC-associated AURKA in regulating spindle stability. Notably, spindle instability was associated with disrupted γ-tubulin and lack of the liquid-like meiotic spindle domain (LISD) in Tg oocytes. Analysis of this Tg model provides the first evidence that LISD assembly depends expressly on aMTOC-associated AURKA, and that Ran-mediated spindle formation ensues without the LISD. These data support that loss of aMTOC-associated AURKA and failure of LISD assembly contribute to error-prone meiotic division in PCNT-depleted oocytes, underscoring the essential role of aMTOCs for spindle stability.
Collapse
Affiliation(s)
- Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia,Athens, GA 30602, USA
| | - Maria M. Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia,Athens, GA 30602, USA
| |
Collapse
|
9
|
Yang L, Baumann C, De La Fuente R, Viveiros MM. Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds. Reproduction 2021; 159:383-396. [PMID: 31990668 DOI: 10.1530/rep-19-0494] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Accurate chromosome segregation relies on correct chromosome-microtubule interactions within a stable bipolar spindle apparatus. Thus, exposure to spindle disrupting compounds can impair meiotic division and genomic stability in oocytes. The endocrine disrupting activity of bisphenols such as bisphenol A (BPA) is well recognized, yet their damaging effects on spindle microtubules (MTs) is poorly understood. Here, we tested the effect(s) of acute exposure to BPA and bisphenol F (BPF) on assembled spindle stability in ovulated oocytes. Brief (4 h) exposure to increasing concentrations (5, 25, and 50 µg/mL) of BPA or BPF disrupted spindle organization in a dose-dependent manner, resulting in significantly shorter spindles with highly unfocused poles and fragmented pericentrin. The chromosomes remained congressed in an abnormally elongated metaphase-like configuration, yet normal end-on chromosome-MT attachments were reduced in BPF-treated oocytes. Live-cell imaging revealed a rapid onset of bisphenol-mediated spindle MT disruption that was reversed upon compound removal. Moreover, MT stability and regrowth were impaired in BPA-exposed oocytes, with few cold-stable MTs and formation of multipolar spindles upon MT regrowth. MT-associated kinesin-14 motor protein (HSET/KIFC1) labeling along the spindle was also lower in BPA-treated oocytes. Conversely, cold stable MTs and HSET labeling persisted after BPF exposure. Notably, inhibition of Aurora Kinase A limited bisphenol-mediated spindle pole widening, revealing a potential interaction. These results demonstrate rapid MT disrupting activity by bisphenols, which is highly detrimental to meiotic spindle stability and organization. Moreover, we identify an important link between these defects and altered distribution of key spindle associated factors as well as Aurora Kinase A activity.
Collapse
Affiliation(s)
- Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Rabindranth De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Regenerative Biosciences Center (RBC), University of Georgia, Athens, Georgia, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Regenerative Biosciences Center (RBC), University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Wang X, Baumann C, De La Fuente R, Viveiros MM. CEP215 and AURKA regulate spindle pole focusing and aMTOC organization in mouse oocytes. Reproduction 2021; 159:261-274. [PMID: 31895686 DOI: 10.1530/rep-19-0263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023]
Abstract
Acentriolar microtubule-organizing centers (aMTOCs) play a critical role in stable meiotic spindle assembly in oocytes, necessary for accurate chromosome segregation. Yet, there is a limited understanding of the essential regulatory components of these unique MTOCs. In somatic cells, CEP215 (Centrosomal Protein 215) serves as an important regulator of centrosome maturation and spindle organization. Here, we assessed whether it has a similar function in mouse oocytes. CEP215 was detected in oocyte lysates and specifically localized to aMTOCs throughout the progression of meiosis in a pericentrin-dependent manner. Super-resolution microscopy revealed CEP215 co-localization with pericentrin and a unique pore/ring-like structural organization of aMTOCs. Interestingly, inhibition of Aurora Kinase A in either MI or MII-stage oocytes resulted in a striking loss of the ring-like aMTOC organization and pronounced CEP215 clustering at spindle poles, as well as shorter spindles with highly focused poles. In vitro siRNA-mediated transcript knockdown effectively reduced CEP215 in approximately 85% of the oocytes. Maturation rates to MII were similar in the Cep215 siRNA and injected controls; however, a high percentage (~40%) of the Cep215-knockdown oocytes showed notable variations in spindle pole focusing. Surprisingly, pericentrin and γ-tubulin localization and fluorescence intensity at aMTOCs were unaltered in knockdown oocytes, contrasting with mitotic cells where CEP215 depletion reduced γ-tubulin at centrosomes. Our results demonstrate that CEP215 is a functional component of oocyte aMTOCs and participates in the regulation of meiotic spindle pole focusing. Moreover, these studies reveal a vital role for Aurora Kinase A activity in the maintenance of aMTOC organization in oocytes.
Collapse
Affiliation(s)
- Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Wellard SR, Schindler K, Jordan PW. Aurora B and C kinases regulate chromosome desynapsis and segregation during mouse and human spermatogenesis. J Cell Sci 2020; 133:jcs248831. [PMID: 33172986 PMCID: PMC7725601 DOI: 10.1242/jcs.248831] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Precise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC occurs prior to segregation of homologous chromosomes during meiosis I. We examined the requirements of the mammalian Aurora kinases (AURKA, AURKB and AURKC) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when the kinase activity of AURKB and AURKC are chemically inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout mouse spermatocytes successfully progress through meiosis, and the mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes fail to coordinate disassembly of SC lateral elements with chromosome condensation and segregation, resulting in delayed meiotic progression. In addition, deletion of Aurkb and Aurkc leads to an accumulation of metaphase spermatocytes, chromosome missegregation and aberrant cytokinesis. Collectively, our data demonstrate that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stephen R Wellard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Komar D, Juszczynski P. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy. Clin Epigenetics 2020; 12:147. [PMID: 33054831 PMCID: PMC7556946 DOI: 10.1186/s13148-020-00941-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background With the discovery that more than half of human cancers harbor mutations in chromatin proteins, deregulation of epigenetic mechanisms has been recognized a hallmark of malignant transformation. Post-translational modifications (PTMs) of histone proteins, as main components of epigenetic regulatory machinery, are also broadly accepted as therapeutic target. Current “epigenetic” therapies target predominantly writers, erasers and readers of histone acetylation and (to a lesser extent) methylation, leaving other types of PTMs largely unexplored. One of them is the phosphorylation of serine 10 on histone H3 (H3S10ph). Main body H3S10ph is emerging as an important player in the initiation and propagation of cancer, as it facilitates cellular malignant transformation and participates in fundamental cellular functions. In normal cells this histone mark dictates the hierarchy of additional histone modifications involved in the formation of protein binding scaffolds, transcriptional regulation, blocking repressive epigenetic information and shielding gene regions from heterochromatin spreading. During cell division, this mark is essential for chromosome condensation and segregation. It is also involved in the function of specific DNA–RNA hybrids, called R-loops, which modulate transcription and facilitate chromosomal instability. Increase in H3S10ph is observed in numerous cancer types and its abundance has been associated with inferior prognosis. Many H3S10-kinases, including MSK1/2, PIM1, CDK8 and AURORA kinases, have been long considered targets in cancer therapy. However, since these proteins also participate in other critical processes, including signal transduction, apoptotic signaling, metabolic fitness and transcription, their chromatin functions are often neglected. Conclusions H3S10ph and enzymes responsible for deposition of this histone modification are important for chromatin activity and oncogenesis. Epigenetic-drugs targeting this axis of modifications, potentially in combination with conventional or targeted therapy, provide a promising angle in search for knowledge-driven therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Dorota Komar
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Gandhi 14 Str, 02-776, Warsaw, Poland.
| | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Gandhi 14 Str, 02-776, Warsaw, Poland
| |
Collapse
|
13
|
Aurora A controls CD8 + T cell cytotoxic activity and antiviral response. Sci Rep 2019; 9:2211. [PMID: 30778113 PMCID: PMC6379542 DOI: 10.1038/s41598-019-38647-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/28/2018] [Indexed: 12/05/2022] Open
Abstract
Aurora A is a serine/threonine kinase whose role in cell cycle progression and tumour generation has been widely studied. Recent work has revealed an unexpected function for Aurora A during CD4+ T cell activation and, also, in graft versus host disease development. However, it remains unknown whether Aurora A is involved in CD8+ T cell effector function and in cytotoxic T lymphocyte-mediated antiviral response. Here, we show that Aurora A chemical inhibition leads to an impairment of both the peptide-specific cytotoxicity and the degranulation activity of CD8+ T cells. This finding was similarly proven for both mice and human CD8+ CTL activity. As a result of Aurora A blockade, we detected a reduction in the expression induced by T cell activation of genes classically related to the effector function of cytotoxic T lymphocytes such as granzyme B or perforin1. Finally, we have found that Aurora A is necessary for CD8+ T cell-mediated antiviral response, in an in vivo model of vaccinia virus infection. Thus, we can conclude that Aurora A activity is, indeed, needed for the proper effector function of cytotoxic T lymphocytes and for their activity against viral threats.
Collapse
|
14
|
Potential involvement of RITA in the activation of Aurora A at spindle poles during mitosis. Oncogene 2019; 38:4199-4214. [PMID: 30705408 DOI: 10.1038/s41388-019-0716-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
The mitotic kinase Aurora A is crucial for various mitotic events. Its activation has been intensively investigated and is not yet completely understood. RITA, the RBP-J interacting and tubulin-associated protein, has been shown to modulate microtubule dynamics in mitosis. We asked if RITA could be related to the activation of Aurora A. We show here that RITA is colocalized with Aurora A and its activator TPX2 at spindle poles during mitosis. FLAG-RITA is precipitated with the complex of Aurora A, TPX2 and tubulin. Depletion of RITA increases exclusively active Aurora A and TPX2 at spindle poles in diverse cancer cell lines and in RITA knockout mouse embryonic fibroblasts. The enhanced active Aurora A, its substrate p-TACC3 and TPX2 are restored by adding back of RITA but not its Δtub mutant with an impaired tubulin-binding capability, indicating that RITA's role as Aurora A's modulator is mediated through its interaction with tubulin. Also, the mitotic failures in cells depleted of RITA are rescued by the inhibition of Aurora A. RITA itself does not directly interfere with the catalytic activity of Aurora A, instead, affects the microtubule binding of its activator TPX2. Moreover, Aurora A's activation correlates with microtubule stabilization induced by the microtubule stabilizer paclitaxel, implicating that stabilized microtubules caused by RITA depletion could also account for increased active Aurora A. Our data suggest a potential role for RITA in the activation of Aurora A at spindle poles by modulating the microtubule binding of TPX2 and the microtubule stability during mitosis.
Collapse
|
15
|
Courthéoux T, Reboutier D, Vazeille T, Cremet JY, Benaud C, Vernos I, Prigent C. Microtubule nucleation during central spindle assembly requires NEDD1 phosphorylation on Serine 405 by Aurora A. J Cell Sci 2019; 132:jcs.231118. [DOI: 10.1242/jcs.231118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
During mitosis, the cell sequentially constructs two microtubule-based spindles to ensure faithful segregation of chromosomes. A bipolar spindle first pulls apart the sister chromatids, then a central spindle further separates them away. Although the assembly of the first spindle is well described, the assembly of the second remains poorly understood. We report here that the inhibition of Aurora A leads to an absence of the central spindle due to a lack of nucleation of microtubules in the midzone. In the absence of Aurora A, the HURP and NEDD1 proteins that are involved in nucleation of microtubules fail to concentrate in the midzone. HURP is an effector of RanGTP and NEDD1 serves as an anchor for the γTURC. Interestingly, Aurora A already phosphorylates them during assembly of the bipolar spindle. We show here that the expression of a NEDD1 isoform mimicking Aurora A phosphorylation is sufficient to restore microtubule nucleation in the midzone in a context of Aurora A inhibition. These results reveal a new control mechanism of nucleation of microtubules by Aurora A during assembly of the central spindle.
Collapse
Affiliation(s)
- Thibault Courthéoux
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - David Reboutier
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Thibaut Vazeille
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jean-Yves Cremet
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Christelle Benaud
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Claude Prigent
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| |
Collapse
|
16
|
Yoon JT, Ahn HK, Pai HS. The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization. PLANTA 2018; 248:1551-1567. [PMID: 30191298 DOI: 10.1007/s00425-018-3000-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/30/2018] [Indexed: 05/07/2023]
Abstract
The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) regulate the cortical microtubule dynamics in Arabidopsis, through interaction with TONNEAU2 (TON2)/FASS and modulation of α-tubulin dephosphorylation. Protein phosphatase 2A is a major protein phosphatase in eukaryotes that dephosphorylates many different substrates to regulate their function. PP2A is assembled into a heterotrimeric complex of scaffolding A subunit, regulatory B subunit, and catalytic C subunit. Plant PP2A catalytic C subunit (PP2AC) isoforms are classified into two subfamilies. In this study, we investigated the cellular functions of the Arabidopsis PP2AC subfamily II genes PP2AC-3 and PP2AC-4, particularly regarding the cortical microtubule (MT) organization. PP2AC-3 and PP2AC-4 strongly interacted with the B'' regulatory subunit TON2. Simultaneous silencing of PP2AC-3 and PP2AC-4 by virus-induced gene silencing (PP2AC-3,4 VIGS) significantly altered plant morphology in Arabidopsis, increasing cell numbers in leaves and stems. The leaf epidermis of PP2AC-3,4 VIGS plants largely lost its jigsaw-puzzle shape and exhibited reduced trichome branch numbers. VIGS of PP2AC-3,4 in Arabidopsis transgenic plants that expressed GFP-fused β-tubulin 6 isoform (GFP-TUB6) for the visualization of MTs caused a reduction in the cortical MT array density in the pavement cells. VIGS of TON2 also led to similar cellular phenotypes and cortical MT patterns compared with those after VIGS of PP2AC-3,4, suggesting that PP2AC-3,4 and their interaction partner TON2 play a role in cortical MT organization in leaf epidermal cells. Furthermore, silencing of PP2AC-3,4 did not affect salt-induced phosphorylation of α-tubulin but delayed its dephosphorylation after salt removal. The reappearance of cortical MT arrays after salt removal was impaired in PP2AC-3,4 VIGS plants. These results suggest an involvement of PP2AC subfamily II in the regulation of cortical MT dynamics under normal and salt-stress conditions in Arabidopsis.
Collapse
Affiliation(s)
- Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- The Sainsbury Laboratory (TSL), Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
17
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
18
|
Size matters! Aurora A controls Drosophila larval development. Dev Biol 2018; 440:88-98. [DOI: 10.1016/j.ydbio.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
|
19
|
TACC3 transcriptionally upregulates E2F1 to promote cell growth and confer sensitivity to cisplatin in bladder cancer. Cell Death Dis 2018; 9:72. [PMID: 29358577 PMCID: PMC5833822 DOI: 10.1038/s41419-017-0112-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/28/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has shown that transforming acidic coiled-coil 3 (TACC3) is deregulated in a broad spectrum of cancers. In the present study, we reported that TACC3 was markedly elevated in bladder cancer, especially in muscle-invasive bladder cancers (MIBCs). The upregulation of TACC3 was positively associated with tumor invasiveness, grade, T stage, and progression in patients with bladder cancer. Furthermore, a Kaplan-Meier survival analysis showed that patients with bladder cancer whose tumors had high TACC3 expression experienced a dismal prognosis compared with patients whose tumors had low TACC3 expression. Functional studies have found that TACC3 is a prerequisite for the development of malignant characteristics of bladder cancer cells, including cell proliferation and invasion. Moreover, TACC3 promoted G1/S transition, which was mediated via activation of the transcription of E2F1, eventually enhancing cell proliferation. Notably, the overexpression of TACC3 or E2F1 indicates a high sensitivity to cisplatin. Taken together, these findings define a tumor-supportive role for TACC3, which may also serve as a prognostic and therapeutic indicator in bladder cancers.
Collapse
|
20
|
AGBL2 promotes cancer cell growth through IRGM-regulated autophagy and enhanced Aurora A activity in hepatocellular carcinoma. Cancer Lett 2017; 414:71-80. [PMID: 29126912 DOI: 10.1016/j.canlet.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
AGBL2 has been reported to catalyze α-tubulin detyrosination, by which it promotes tumorigenesis and cancer progression. However, its potential role in the pathogenesis of hepatocellular carcinoma (HCC) has not been revealed yet. In the present study, AGBL2 was frequently found being overexpressed in HCC tissues and cell lines. In a large cohort of clinical HCC tissues, high expression of AGBL2 was positively associated with tumor size, tumor multiplicity and advanced clinical stage (p < 0.05), and it was an independent prognostic factor for HCC patients. In HCC cell lines, ectopic overexpression of AGBL2 substantially enhanced HCC cells survival and proliferation in vitro and promoted tumor growth in vivo. In addition, we demonstrated that overexpression of AGBL2 in HCC cells notably inhibited apoptosis by enhancing IRGM-regulated autophagy. Meanwhile, AGBL2 could up-regulate the expression of TPX2 and Aurora A activity to promote cell proliferation in HCC cells. In summary, our findings suggest that up-regulation of AGBL2 plays a critical oncogenic role in the pathogenesis of HCC through modulation on autophagy and Aurora A activity, and it could be a candidate for prognostic marker and therapeutic target in HCC.
Collapse
|
21
|
Huang Y, Li T, Ems-McClung SC, Walczak CE, Prigent C, Zhu X, Zhang X, Zheng Y. Aurora A activation in mitosis promoted by BuGZ. J Cell Biol 2017; 217:107-116. [PMID: 29074706 PMCID: PMC5748987 DOI: 10.1083/jcb.201706103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/25/2022] Open
Abstract
Mitotic spindle component BuGZ is known to undergo phase separation. Huang et al. show that BuGZ promotes Aurora A phosphorylation and activation and that this is inhibited when BuGZ phase separation is disrupted. Protein phase separation or coacervation has emerged as a potential mechanism to regulate biological functions. We have shown that coacervation of a mostly unstructured protein, BuGZ, promotes assembly of spindle and its matrix. BuGZ in the spindle matrix binds and concentrates tubulin to promote microtubule (MT) assembly. It remains unclear, however, whether BuGZ could regulate additional proteins to promote spindle assembly. In this study, we report that BuGZ promotes Aurora A (AurA) activation in vitro. Depletion of BuGZ in cells reduces the amount of phosphorylated AurA on spindle MTs. BuGZ also enhances MCAK phosphorylation. The two zinc fingers in BuGZ directly bind to the kinase domain of AurA, which allows AurA to incorporate into the coacervates formed by BuGZ in vitro. Importantly, mutant BuGZ that disrupts the coacervation activity in vitro fails to promote AurA phosphorylation in Xenopus laevis egg extracts. These results suggest that BuGZ coacervation promotes AurA activation in mitosis.
Collapse
Affiliation(s)
- Yuejia Huang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Teng Li
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD.,Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | | | | | - Claude Prigent
- Institut de Génétique et Développement de Rennes, Equipe laboratoryélisée Ligue Nationale Contre la Cancer 2014-2017, Centre National de la Recherche Scientifique, Université Rennes 1, Rennes, France
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuemin Zhang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| |
Collapse
|
22
|
Bayliss R, Burgess SG, Leen E, Richards MW. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochem Soc Trans 2017; 45:709-717. [PMID: 28620032 DOI: 10.1042/bst20160328] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 02/11/2024]
Abstract
The Myc proteins comprise a family of ubiquitous regulators of gene expression implicated in over half of all human cancers. They interact with a large number of other proteins, such as transcription factors, chromatin-modifying enzymes and kinases. Remarkably, few of these interactions have been characterized structurally. This is at least in part due to the intrinsically disordered nature of Myc proteins, which adopt a defined conformation only in the presence of binding partners. Owing to this behaviour, crystallographic studies on Myc proteins have been limited to short fragments in complex with other proteins. Most recently, we determined the crystal structure of Aurora-A kinase domain bound to a 28-amino acid fragment of the N-Myc transactivation domain. The structure reveals an α-helical segment within N-Myc capped by two tryptophan residues that recognize the surface of Aurora-A. The kinase domain acts as a molecular scaffold, independently of its catalytic activity, upon which this region of N-Myc becomes ordered. The binding site for N-Myc on Aurora-A is disrupted by certain ATP-competitive inhibitors, such as MLN8237 (alisertib) and CD532, and explains how these kinase inhibitors are able to disrupt the protein-protein interaction to affect Myc destabilization. Structural studies on this and other Myc complexes will lead to the design of protein-protein interaction inhibitors as chemical tools to dissect the complex pathways of Myc regulation and function, which may be developed into Myc inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
23
|
Abstract
The mitotic spindle has a crucial role in ensuring the accurate segregation of chromosomes into the two daughter cells during cell division, which is paramount for maintaining genome integrity. It is a self-organized and dynamic macromolecular structure that is constructed from microtubules, microtubule-associated proteins and motor proteins. Thirty years of research have led to the identification of centrosome-, chromatin- and microtubule-mediated microtubule nucleation pathways that each contribute to mitotic spindle assembly. Far from being redundant pathways, data are now emerging regarding how they function together to ensure the timely completion of mitosis. We are also beginning to comprehend the multiple mechanisms by which cells regulate spindle scaling. Together, this research has increased our understanding of how cells coordinate hundreds of proteins to assemble the dynamic, precise and robust structure that is the mitotic spindle.
Collapse
|
24
|
Blas-Rus N, Bustos-Morán E, Martín-Cófreces NB, Sánchez-Madrid F. Aurora-A shines on T cell activation through the regulation of Lck. Bioessays 2016; 39. [PMID: 27910998 DOI: 10.1002/bies.201600156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Different protein kinases control signaling emanating from the T cell receptor (TCR) during antigen-specific T cell activation. Mitotic kinases, e.g. Aurora-A, have been widely studied in the context of mitosis due to their role during microtubule (MT) nucleation, becoming critical regulators of cell cycle progression. We have recently described a specific role for Aurora-A kinase in antigenic T cell activation. Blockade of Aurora-A in T cells severely disrupts the dynamics of MTs and CD3ζ-bearing signaling vesicles during T cell activation. Furthermore, Aurora-A deletion impairs the activation of signaling molecules downstream of the TCR. Targeting Aurora-A disturbs the activation of Lck, which is one of the first signals that drive T cell activation in an antigen-dependent manner. This work describes possible models of regulation of Lck by Aurora-A during T cell activation. We also discuss possible roles for Aurora-A in other systems similar to the IS, and its putative functions in cell polarization.
Collapse
Affiliation(s)
- Noelia Blas-Rus
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
| | - Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Noa B Martín-Cófreces
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain.,Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
25
|
Le LTT, Couvet M, Favier B, Coll JL, Nguyen CH, Molla A. Discovery of benzo[e]pyridoindolones as kinase inhibitors that disrupt mitosis exit while erasing AMPK-Thr172 phosphorylation on the spindle. Oncotarget 2016; 6:22152-66. [PMID: 26247630 PMCID: PMC4673153 DOI: 10.18632/oncotarget.4158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/30/2015] [Indexed: 01/09/2023] Open
Abstract
Aurora kinases play an essential role in mitotic progression and are attractive targets in cancer therapy. The first generation of benzo[e]pyridoindole exhibited powerful aurora kinase inhibition but their low solubility limited further development. Grafting a pyperidine-ethoxy group gives rise to a hydrosoluble inhibitor: compound C5M.C5M could efficiently inhibit the proliferation of cells from different origins. C5M prevented cell cycling, induced a strong mitotic arrest then, cells became polyploid and finally died. C5M did not impair the spindle checkpoint, the separation of the sister chromatids and the transfer of aurora B on the mid-zone. C5M prevented histone H3 phosphorylation at mitotic entry and erased AMPK-Thr172 phosphorylation in late mitosis. With this unique profile of inhibition, C5M could be useful for understanding the role of phospho-Thr172-AMPK in abscission and the relationship between the chromosomal complex and the energy sensing machinery.C5M is a multikinase inhibitor with interesting preclinical characteristics: high hydro-solubility and a good stability in plasma. A single dose prevents the expansion of multicellular spheroids. C5M can safely be injected to mice and reduces significantly the development of xenograft. The next step will be to define the protocol of treatment and the cancer therapeutic field of this new anti-proliferative drug.
Collapse
Affiliation(s)
- Ly-Thuy-Tram Le
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France.,Department of Biotechnology, University of Sciences and Technology, DaNang, Vietnam
| | - Morgane Couvet
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| | - Bertrand Favier
- Université Joseph Fourier - Grenoble, Team GREPI, Etablissement Français du Sang, BP35, La Tronche France
| | - Jean-Luc Coll
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR 9187 - U 1196 CNRS-Institut Curie, INSERM, Bat 110 Centre Universitaire, Orsay, France
| | - Annie Molla
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| |
Collapse
|
26
|
Janeček M, Rossmann M, Sharma P, Emery A, Huggins DJ, Stockwell SR, Stokes JE, Tan YS, Almeida EG, Hardwick B, Narvaez AJ, Hyvönen M, Spring DR, McKenzie GJ, Venkitaraman AR. Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci Rep 2016; 6:28528. [PMID: 27339427 PMCID: PMC4919790 DOI: 10.1038/srep28528] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 02/02/2023] Open
Abstract
The essential mitotic kinase Aurora A (AURKA) is controlled during cell cycle progression via two distinct mechanisms. Following activation loop autophosphorylation early in mitosis when it localizes to centrosomes, AURKA is allosterically activated on the mitotic spindle via binding to the microtubule-associated protein, TPX2. Here, we report the discovery of AurkinA, a novel chemical inhibitor of the AURKA-TPX2 interaction, which acts via an unexpected structural mechanism to inhibit AURKA activity and mitotic localization. In crystal structures, AurkinA binds to a hydrophobic pocket (the 'Y pocket') that normally accommodates a conserved Tyr-Ser-Tyr motif from TPX2, blocking the AURKA-TPX2 interaction. AurkinA binding to the Y- pocket induces structural changes in AURKA that inhibit catalytic activity in vitro and in cells, without affecting ATP binding to the active site, defining a novel mechanism of allosteric inhibition. Consistent with this mechanism, cells exposed to AurkinA mislocalise AURKA from mitotic spindle microtubules. Thus, our findings provide fresh insight into the catalytic mechanism of AURKA, and identify a key structural feature as the target for a new class of dual-mode AURKA inhibitors, with implications for the chemical biology and selective therapeutic targeting of structurally related kinases.
Collapse
Affiliation(s)
- Matej Janeček
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke’s Site, Cambridge CB2 1GA
| | - Pooja Sharma
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Amy Emery
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - David J. Huggins
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Simon R. Stockwell
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Jamie E. Stokes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yaw S. Tan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | - Bryn Hardwick
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Ana J. Narvaez
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke’s Site, Cambridge CB2 1GA
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Grahame J. McKenzie
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Ashok R. Venkitaraman
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom, or
| |
Collapse
|
27
|
Abstract
The mitotic spindle is made of microtubules (MTs) nucleated through different pathways involving the centrosomes, the chromosomes or the walls of pre-existing MTs. MCRS1 is a RanGTP target that specifically associates with the chromosome-driven MTs protecting them from MT depolymerases. MCRS1 is also needed for the control of kinetochore fiber (K-fiber) MT minus-ends dynamics in metaphase. Here, we investigated the regulation of MCRS1 activity in M-phase. We show that MCRS1 is phosphorylated by the Aurora-A kinase in mitosis on Ser35/36. Although this phosphorylation has no role on MCRS1 localization to chromosomal MTs and K-fiber minus-ends, we show that it regulates MCRS1 activity in mitosis. We conclude that Aurora-A activity is particularly important in the tuning of K-fiber minus-ends dynamics in mitosis.
Collapse
Affiliation(s)
- Sylvain Meunier
- a Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology , Barcelona , Spain.,b Universitat Pompeu Fabra (UPF) , Barcelona , Spain
| | - Krystal Timón
- a Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology , Barcelona , Spain.,b Universitat Pompeu Fabra (UPF) , Barcelona , Spain
| | - Isabelle Vernos
- a Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology , Barcelona , Spain.,b Universitat Pompeu Fabra (UPF) , Barcelona , Spain.,c Insitució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Spain
| |
Collapse
|
28
|
Cavazza T, Peset I, Vernos I. From meiosis to mitosis - the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus. J Cell Sci 2016; 129:2538-47. [PMID: 27179073 DOI: 10.1242/jcs.183624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/06/2016] [Indexed: 11/20/2022] Open
Abstract
Bipolar spindle assembly in the vertebrate oocyte relies on a self-organization chromosome-dependent pathway. Upon fertilization, the male gamete provides a centrosome, and the first and subsequent embryonic divisions occur in the presence of duplicated centrosomes that act as dominant microtubule organizing centres (MTOCs). The transition from meiosis to embryonic mitosis involves a necessary adaptation to integrate the dominant chromosome-dependent pathway with the centrosomes to form the bipolar spindle. Here, we took advantage of the Xenopus laevis egg extract system to mimic in vitro the assembly of the first embryonic spindle and investigate the respective contributions of the centrosome and the chromosome-dependent pathway to the kinetics of the spindle bipolarization. We found that centrosomes control the transition from the meiotic to the mitotic spindle assembly mechanism. By defining the kinetics of spindle bipolarization, the centrosomes ensure their own positioning to each spindle pole and thereby their essential correct inheritance to the two first daughter cells of the embryo for the development of a healthy organism.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Isabel Peset
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
29
|
Blas-Rus N, Bustos-Morán E, Pérez de Castro I, de Cárcer G, Borroto A, Camafeita E, Jorge I, Vázquez J, Alarcón B, Malumbres M, Martín-Cófreces NB, Sánchez-Madrid F. Aurora A drives early signalling and vesicle dynamics during T-cell activation. Nat Commun 2016; 7:11389. [PMID: 27091106 PMCID: PMC4838898 DOI: 10.1038/ncomms11389] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/21/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal. Aurora A is a protein kinase that contributes to the progression of mitosis by stimulating microtubule nucleation. Here the authors show that Aurora A also functions during T cell activation by maintaining TCR signaling through Lck activation.
Collapse
Affiliation(s)
- Noelia Blas-Rus
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain
| | - Eugenio Bustos-Morán
- Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Ignacio Pérez de Castro
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/ Nicolás cabrera 1, Madrid 28049, Spain
| | - Emilio Camafeita
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/ Nicolás cabrera 1, Madrid 28049, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Noa B Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain.,Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain.,Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| |
Collapse
|
30
|
Garrido G, Vernos I. Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Front Oncol 2016; 6:88. [PMID: 27148480 PMCID: PMC4831974 DOI: 10.3389/fonc.2016.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A has been extensively characterized as a centrosomal kinase with essential functions during cell division including centrosome maturation and separation and spindle assembly. However, Aurora A localization is not restricted to the centrosomes and compelling evidence support the existence of specific mechanisms of activation and functions for non-centrosomal Aurora A in the dividing cell. It has been now well established that spindle assembly involves an acentrosomal RanGTP-dependent pathway that triggers microtubule assembly and organization in the proximity of the chromosomes whether centrosomes are present or not. The mechanism involves the regulation of a number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) that exert their functions upon release from karyopherins by RanGTP. One of them, the nuclear protein TPX2 interacts with and activates Aurora A upon release from importins by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity of the chromosomes potentially translating the RanGTP signaling gradient centered on the chromosome into an Aurora A phosphorylation network. Here, we will review our current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from centrosomes: from the mechanism of activation and its functional consequences on the kinase stability and regulation to its roles in spindle assembly and cell division. We will then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule nucleation, stabilization, and organization. Finally, we will briefly discuss the implications of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional interaction with TPX2.
Collapse
Affiliation(s)
- Georgina Garrido
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
31
|
Rajaratnam R, Martin EK, Dörr M, Harms K, Casini A, Meggers E. Correlation between the Stereochemistry and Bioactivity in Octahedral Rhodium Prolinato Complexes. Inorg Chem 2015; 54:8111-20. [DOI: 10.1021/acs.inorgchem.5b01349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rajathees Rajaratnam
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Elisabeth K. Martin
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Markus Dörr
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Angela Casini
- Department of Pharmacokinetics, Toxicology
and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
- Cardiff School
of Chemistry, University of Cardiff, Park Place, Cardiff CF10 3A, U.K
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
32
|
An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis. Nat Commun 2015; 6:7889. [PMID: 26243146 PMCID: PMC4918316 DOI: 10.1038/ncomms8889] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/23/2015] [Indexed: 01/29/2023] Open
Abstract
The evolutionary conserved NSL complex is a prominent epigenetic regulator controlling expression of thousands of genes. Here we uncover a novel function of the NSL complex members in mitosis. As the cell enters mitosis, KANSL1 and KANSL3 undergo a marked relocalisation from the chromatin to the mitotic spindle. By stabilizing microtubule minus ends in a RanGTP-dependent manner, they are essential for spindle assembly and chromosome segregation. Moreover, we identify KANSL3 as a microtubule minus-end-binding protein, revealing a new class of mitosis-specific microtubule minus-end regulators. By adopting distinct functions in interphase and mitosis, KANSL proteins provide a link to coordinate the tasks of faithful expression and inheritance of the genome during different phases of the cell cycle.
Collapse
|
33
|
Wei JH, Zhang ZC, Wynn RM, Seemann J. GM130 Regulates Golgi-Derived Spindle Assembly by Activating TPX2 and Capturing Microtubules. Cell 2015; 162:287-299. [PMID: 26165940 DOI: 10.1016/j.cell.2015.06.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/16/2015] [Accepted: 05/18/2015] [Indexed: 11/16/2022]
Abstract
Spindle assembly requires the coordinated action of multiple cellular structures to nucleate and organize microtubules in a precise spatiotemporal manner. Among them, the contributions of centrosomes, chromosomes, and microtubules have been well studied, yet the involvement of membrane-bound organelles remains largely elusive. Here, we provide mechanistic evidence for a membrane-based, Golgi-derived microtubule assembly pathway in mitosis. Upon mitotic entry, the Golgi matrix protein GM130 interacts with importin α via a classical nuclear localization signal that recruits importin α to the Golgi membranes. Sequestration of importin α by GM130 liberates the spindle assembly factor TPX2, which activates Aurora-A kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GM130, thus linking Golgi membranes to the spindle. Our results reveal an active role for the Golgi in regulating spindle formation to ensure faithful organelle inheritance.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Zi Chao Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - R Max Wynn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Burgess SG, Peset I, Joseph N, Cavazza T, Vernos I, Pfuhl M, Gergely F, Bayliss R. Aurora-A-Dependent Control of TACC3 Influences the Rate of Mitotic Spindle Assembly. PLoS Genet 2015; 11:e1005345. [PMID: 26134678 PMCID: PMC4489650 DOI: 10.1371/journal.pgen.1005345] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/09/2015] [Indexed: 11/21/2022] Open
Abstract
The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.
Collapse
Affiliation(s)
- Selena G. Burgess
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Isabel Peset
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nimesh Joseph
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Tommaso Cavazza
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King’s College London, London, United Kingdom
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Richard Bayliss
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
35
|
Gottardo M, Callaini G, Riparbelli MG. Aurora A inhibition by MNL8054 promotes centriole elongation during Drosophila male meiosis. Cell Cycle 2015; 14:2844-52. [PMID: 25785740 DOI: 10.1080/15384101.2015.1026488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aurora A kinase plays an important role in several aspects of cell division, including centrosome maturation and separation, a crucial step for the correct organization of the bipolar spindle. Although it has long been showed that this kinase accumulates at the centrosome throughout mitosis its precise contribution to centriole biogenesis and structure has until now not been reported. It is not surprising that so little is known, due to the small size of somatic centrioles, where only dramatic structural changes may be identified by careful electron microscopy analysis. Conversely, centrioles of Drosophila primary spermatocytes increase tenfold in length during the first prophase, thus making any change easily detectable. Therefore, we examined the consequence of the pharmacological inhibition of Aurora A by MLN8054 on centriole biogenesis during early Drosophila gametogenesis. Here, we show that depletion of this kinase results in longer centrioles, mainly during transition from prophase to prometaphase of the first meiosis. We also found abnormal ciliogenesis characterized by irregularly growing axonemal doublets. Our results represent the first documentation of a potential requirement of Aurora A in centriole integrity and elongation.
Collapse
Affiliation(s)
- Marco Gottardo
- a Department of Life Sciences ; University of Siena ; Siena , Italy
| | | | | |
Collapse
|
36
|
Scrofani J, Sardon T, Meunier S, Vernos I. Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Curr Biol 2014; 25:131-140. [PMID: 25532896 DOI: 10.1016/j.cub.2014.11.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND The γ-tubulin ring complex (γTuRC) is a multisubunit complex responsible for microtubule (MT) nucleation in eukaryotic cells. During mitosis, its spatial and temporal regulation promotes MT nucleation through different pathways. One of them is triggered around the chromosomes by RanGTP. Chromosomal MTs are essential for functional spindle assembly, but the mechanism by which RanGTP activates MT nucleation has not yet been resolved. RESULTS We used a combination of Xenopus egg extracts and in vitro experiments to dissect the mechanism by which RanGTP triggers MT nucleation. In egg extracts, NEDD1-coated beads promote MT nucleation only in the presence of RanGTP. We show that RanGTP promotes a direct interaction between one of its targets, TPX2, and XRHAMM that defines a specific γTuRC subcomplex. Through depletion/add-back experiments using mutant forms of TPX2 and NEDD1, we show that the activation of MT nucleation by RanGTP requires both NEDD1 phosphorylation on S405 by the TPX2-activated Aurora A and the recruitment of the complex through a TPX2-dependent mechanism. CONCLUSIONS The XRHAMM-γTuRC complex is the target for activation by RanGTP that promotes an interaction between TPX2 and XRHAMM. The resulting TPX2-RHAMM-γTuRC supracomplex fulfills the two essential requirements for the activation of MT nucleation by RanGTP: NEDD1 phosphorylation on S405 by the TPX2-activated Aurora A and the recruitment of the complex onto a TPX2-dependent scaffold. Our data identify TPX2 as the only direct RanGTP target and NEDD1 as the only Aurora A substrate essential for the activation of the RanGTP-dependent MT nucleation pathway.
Collapse
Affiliation(s)
- Jacopo Scrofani
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Teresa Sardon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Sylvain Meunier
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain.
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
37
|
Alisertib (MLN8237), a selective Aurora-A kinase inhibitor, induces apoptosis in human tongue squamous cell carcinoma cell both in vitro and in vivo. Tumour Biol 2014; 36:1797-802. [PMID: 25366143 DOI: 10.1007/s13277-014-2782-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/27/2014] [Indexed: 02/04/2023] Open
Abstract
Aurora-A kinases are overexpressed in many cancer tissues and cells. Alisertib is an investigational, orally administered, selective, small-molecule Aurora-A kinase inhibitor with preclinical activity against a broad range of tumors. Our study was aimed to detect the effects of alisertib on human tongue squamous cell carcinoma (HTSCC). Treatment of a human tongue squamous cell carcinoma cell line, HSC-3, with alisertib to inhibition of Aurora-A kinases reduced proliferation and induced apoptosis, which was accompanied by activation of the ATM/Chk2/p53 pathway. In vivo, inhibition of Aurora-A kinases in established xenografted tumors decreased tumor size and weight. Kaplan-Meyer survival analysis demonstrated that the cumulative survival time of mice without Aurora-A kinases was significantly longer than those with Aurora-A kinases. Our data provide the basis for developing alisertib to treat human tongue squamous cell carcinoma.
Collapse
|
38
|
Paller CJ, Wissing MD, Mendonca J, Sharma A, Kim E, Kim HS, Kortenhorst MSQ, Gerber S, Rosen M, Shaikh F, Zahurak ML, Rudek MA, Hammers H, Rudin CM, Carducci MA, Kachhap SK. Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer. Cancer Med 2014; 3:1322-35. [PMID: 24989836 PMCID: PMC4302682 DOI: 10.1002/cam4.289] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/08/2014] [Accepted: 05/26/2014] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are being tested in clinical trials for the treatment of solid tumors. While most studies have focused on the reexpression of silenced tumor suppressor genes, a number of genes/pathways are downregulated by HDACIs. This provides opportunities for combination therapy: agents that further disable these pathways through inhibition of residual gene function are speculated to enhance cell death in combination with HDACIs. A previous study from our group indicated that mitotic checkpoint kinases such as PLK1 and Aurora A are downregulated by HDACIs. We used in vitro and in vivo xenograft models of prostate cancer (PCA) to test whether combination of HDACIs with the pan-aurora kinase inhibitor AMG 900 can synergistically or additively kill PCA cells. AMG 900 and HDACIs synergistically decreased cell proliferation activity and clonogenic survival in DU-145, LNCaP, and PC3 PCA cell lines compared to single-agent treatment. Cellular senescence, polyploidy, and apoptosis was significantly increased in all cell lines after combination treatment. In vivo xenograft studies indicated decreased tumor growth and decreased aurora B kinase activity in mice treated with low-dose AMG 900 and vorinostat compared to either agent alone. Pharmacodynamics was assessed by scoring for phosphorylated histone H3 through immunofluorescence. Our results indicate that combination treatment with low doses of AMG 900 and HDACIs could be a promising therapy for future clinical trials against PCA.
Collapse
Affiliation(s)
- Channing J Paller
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, 21231
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
In vitro high throughput screening, what next? Lessons from the screening for aurora kinase inhibitors. BIOLOGY 2014; 3:167-75. [PMID: 24833340 PMCID: PMC4009756 DOI: 10.3390/biology3010167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
Abstract
Based on in vitro assays, we performed a High Throughput Screening (HTS) to identify kinase inhibitors among 10,000 small chemical compounds. In this didactic paper, we describe step-by-step the approach to validate the hits as well as the major pitfalls encountered in the development of active molecules. We propose a decision tree that could be adapted to most in vitro HTS.
Collapse
|
40
|
Lioutas A, Vernos I. Aurora A: Working from dawn to dusk in mitosis. Cell Cycle 2014; 13:499-500. [DOI: 10.4161/cc.27781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Singla P, Luxami V, Paul K. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Adv 2014. [DOI: 10.1039/c3ra46304d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
42
|
Lioutas A, Vernos I. Aurora A kinase and its substrate TACC3 are required for central spindle assembly. EMBO Rep 2013; 14:829-36. [PMID: 23887685 DOI: 10.1038/embor.2013.109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/17/2022] Open
Abstract
Cell division entails a marked reorganization of the microtubule network to form the spindle, a molecular machine that ensures accurate chromosome segregation to the daughter cells. Spindle organization is highly dynamic throughout mitosis and requires the activity of several kinases and complex regulatory mechanisms. Aurora A (AurA) kinase is essential for the assembly of the metaphase bipolar spindle and, thus, it has been difficult to address its function during the last phases of mitosis. Here, we examine the consequences of inhibiting AurA in cells undergoing anaphase, and show that AurA kinase activity is necessary for the assembly of a robust central spindle during anaphase. We also identify TACC3 as an AurA substrate essential in central spindle formation.
Collapse
|
43
|
Kress E, Schwager F, Holtackers R, Seiler J, Prodon F, Zanin E, Eiteneuer A, Toya M, Sugimoto A, Meyer H, Meraldi P, Gotta M. The UBXN-2/p37/p47 adaptors of CDC-48/p97 regulate mitosis by limiting the centrosomal recruitment of Aurora A. ACTA ACUST UNITED AC 2013; 201:559-75. [PMID: 23649807 PMCID: PMC3653362 DOI: 10.1083/jcb.201209107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UBXN-2, a substrate adaptor of the AAA ATPase CDC-48/p97, is required to coordinate centrosome maturation timing with mitosis. Coordination of cell cycle events in space and time is crucial to achieve a successful cell division. Here, we demonstrate that UBXN-2, a substrate adaptor of the AAA ATPase Cdc48/p97, is required to coordinate centrosome maturation timing with mitosis. In UBXN-2–depleted Caenorhabditis elegans embryos, centrosomes recruited more AIR-1 (Aurora A), matured precociously, and alignment of the mitotic spindle with the axis of polarity was impaired. UBXN-2 and CDC-48 coimmunoprecipitated with AIR-1 and the spindle alignment defect was partially rescued by co-depleting AIR-1, indicating that UBXN-2 controls these processes via AIR-1. Similarly, depletion in human cells of the UBXN-2 orthologues p37/p47 resulted in an accumulation of Aurora A at centrosomes and a delay in centrosome separation. The latter defect was also rescued by inhibiting Aurora A. We therefore postulate that the role of this adaptor in cell cycle regulation is conserved.
Collapse
Affiliation(s)
- Elsa Kress
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Le LTT, Vu HL, Nguyen CH, Molla A. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase. Biol Open 2013; 2:379-86. [PMID: 23616922 PMCID: PMC3625866 DOI: 10.1242/bio.20133079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/07/2013] [Indexed: 12/31/2022] Open
Abstract
Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors.
Collapse
Affiliation(s)
- Ly-Thuy-Tram Le
- CRI INSERM UJF U823, Institut Albert Bonniot, 38 706 La Tronche Cedex , France ; Permanent address: Da Nang University of Technology, Da Nang City, Vietnam
| | | | | | | |
Collapse
|
45
|
Le LTT, Vu HL, Naud-Martin D, Bombled M, Nguyen CH, Molla A. Hydrosoluble benzo[e]pyridoindolones as potent inhibitors of aurora kinases. ChemMedChem 2012; 8:289-96. [PMID: 23281044 DOI: 10.1002/cmdc.201200479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Indexed: 01/08/2023]
Abstract
Aurora kinases play an essential role in mitotic progression and are potentially druggable targets in cancer therapy. We identified benzo[e]pyridoindoles (BePI) as powerful aurora kinase inhibitors. Their efficiency was demonstrated both in enzymatic inhibition studies and in cell culture assays. New BePI molecules were synthesized, and a structure-activity relationship study was conducted with the aim of improving the activity and solubility of the lead compound. Tetracyclic BePI derivatives are characterized by a particular curved shape, and the presence of an oxo group on the pyridine ring was found to be required for aurora kinase B inhibition. New hydrosoluble benzo[e]pyridoindolones were subsequently designed, and their efficacy was tested by a combination of cell-cycle analysis and time-lapse experiments in live cells. The most active BePI derivative, 13 b, inhibited the cell cycle, drove cells to polyploidy, and eventually induced apoptosis. It exhibited high antiproliferative activity in HeLa cells with an IC(50) value of 63 nM. Relative to compounds tested in clinical trials, this antiproliferative potency places 13 b among the top 10 aurora kinase inhibitors. Our results justify further in vivo evaluation in preclinical animal models of cancer.
Collapse
Affiliation(s)
- Ly-Thuy-Tram Le
- Biology Laboratory, CRI-INSERM/UJF U823, Institut Albert Bonniot, Université Joseph Fourier, 38706 La Tronche, France
| | | | | | | | | | | |
Collapse
|
46
|
The role of NEDD1 phosphorylation by Aurora A in chromosomal microtubule nucleation and spindle function. Curr Biol 2012; 23:143-9. [PMID: 23273898 DOI: 10.1016/j.cub.2012.11.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/28/2012] [Accepted: 11/21/2012] [Indexed: 01/05/2023]
Abstract
Chromatin directs de novo microtubule (MT) nucleation in dividing cells by generating a gradient of GTP-bound Ran protein (RanGTP) that controls the activity of a number of spindle assembly factors (SAFs). It is now well established that these MTs are essential for the assembly of a functional bipolar spindle. Although it has been shown that RanGTP-dependent MT nucleation requires γ-tubulin and a number of RanGTP-regulated proteins, the mechanism involved is still poorly understood. We previously showed that the mitotic kinase Aurora A, which is activated in a RanGTP-dependent manner in mitotic cells, has a role in this pathway. Here we show that Aurora A interacts with and phosphorylates the γTURC adaptor protein NEDD1 at a single residue, Ser405. Ser405 phosphorylation is not required for centrosomal MT nucleation but is critical for MT nucleation in the vicinity of the chromosomes in mitotic cells. Moreover, it is essential for RanGTP aster formation and chromatin-driven MT assembly in Xenopus egg extracts. Our data suggest that one important function of Aurora A in mitotic cells is to promote MT nucleation around the chromatin by phosphorylating NEDD1, and thereby to promote functional spindle assembly.
Collapse
|
47
|
Leo M, Santino D, Tikhonenko I, Magidson V, Khodjakov A, Koonce MP. Rules of engagement: centrosome-nuclear connections in a closed mitotic system. Biol Open 2012; 1:1111-7. [PMID: 23213391 PMCID: PMC3507195 DOI: 10.1242/bio.20122188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/02/2012] [Indexed: 12/14/2022] Open
Abstract
The assembly of a functional mitotic spindle is essential for cell reproduction and requires a precise coordination between the nuclear cycle and the centrosome. This coordination is particularly prominent in organisms that undergo closed mitosis where centrosomes must not only respond to temporal signals, but also to spatial considerations, e.g. switching from the production of cytoplasmic microtubule arrays to the generation of dynamic intra-nuclear microtubules required for spindle assembly. We utilize a gene knockout of Kif9, a Dictyostelium discoideum Kin-I kinesin, to destabilize the physical association between centrosomes and the nuclear envelope. This approach presents a unique opportunity to reveal temporal and spatial components in the regulation of centrosomal activities in a closed-mitosis organism. Here we report that centrosome–nuclear engagement is not required for the entry into mitosis. Although detached centrosomes can duplicate in the cytoplasm, neither they nor nuclei alone can produce spindle-like microtubule arrays. However, the physical association of centrosomes and the nuclear envelope is required to progress through mitosis beyond prometaphase.
Collapse
Affiliation(s)
- Meredith Leo
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health , Albany, NY 12201-0509 , USA
| | | | | | | | | | | |
Collapse
|
48
|
Foraker AB, Camus SM, Evans TM, Majeed SR, Chen CY, Taner SB, Corrêa IR, Doxsey SJ, Brodsky FM. Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. ACTA ACUST UNITED AC 2012; 198:591-605. [PMID: 22891263 PMCID: PMC3514040 DOI: 10.1083/jcb.201205116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Clathrin inactivation during S phase destabilizes the microtubule-binding protein
ch-TOG, affecting its centrosomal localization and centrosome integrity during
early mitosis. Clathrin depletion by ribonucleic acid interference (RNAi) impairs mitotic
spindle stability and cytokinesis. Depletion of several clathrin-associated
proteins affects centrosome integrity, suggesting a further cell cycle function
for clathrin. In this paper, we report that RNAi depletion of CHC17 (clathrin
heavy chain 17) clathrin, but not the CHC22 clathrin isoform, induced centrosome
amplification and multipolar spindles. To stage clathrin function within the
cell cycle, a cell line expressing SNAP-tagged clathrin light chains was
generated. Acute clathrin inactivation by chemical dimerization of the SNAP-tag
during S phase caused reduction of both clathrin and ch-TOG (colonic, hepatic
tumor overexpressed gene) at metaphase centrosomes, which became fragmented.
This was phenocopied by treatment with Aurora A kinase inhibitor, suggesting a
centrosomal role for the Aurora A–dependent complex of clathrin, ch-TOG,
and TACC3 (transforming acidic coiled-coil protein 3). Clathrin inactivation in
S phase also reduced total cellular levels of ch-TOG by metaphase. Live-cell
imaging showed dynamic clathrin recruitment during centrosome maturation.
Therefore, we propose that clathrin promotes centrosome maturation by
stabilizing the microtubule-binding protein ch-TOG, defining a novel role for
the clathrin–ch-TOG–TACC3 complex.
Collapse
Affiliation(s)
- Amy B Foraker
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Meunier S, Vernos I. Microtubule assembly during mitosis - from distinct origins to distinct functions? J Cell Sci 2012; 125:2805-14. [PMID: 22736044 DOI: 10.1242/jcs.092429] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitotic spindle is structurally and functionally defined by its main component, the microtubules (MTs). The MTs making up the spindle have various functions, organization and dynamics: astral MTs emanate from the centrosome and reach the cell cortex, and thus have a major role in spindle positioning; interpolar MTs are the main constituent of the spindle and are key for the establishment of spindle bipolarity, chromosome congression and central spindle assembly; and kinetochore-fibers are MT bundles that connect the kinetochores with the spindle poles and segregate the sister chromatids during anaphase. The duplicated centrosomes were long thought to be the origin of all of these MTs. However, in the last decade, a number of studies have contributed to the identification of non-centrosomal pathways that drive MT assembly in dividing cells. These pathways are now known to be essential for successful spindle assembly and to participate in various processes such as K-fiber formation and central spindle assembly. In this Commentary, we review the recent advances in the field and discuss how different MT assembly pathways might cooperate to successfully form the mitotic spindle.
Collapse
Affiliation(s)
- Sylvain Meunier
- Microtubule Function and Cell Division group, Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
50
|
Kirik A, Ehrhardt DW, Kirik V. TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. THE PLANT CELL 2012; 24:1158-70. [PMID: 22395485 PMCID: PMC3336111 DOI: 10.1105/tpc.111.094367] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/06/2012] [Accepted: 02/20/2012] [Indexed: 05/19/2023]
Abstract
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B'' subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation.
Collapse
Affiliation(s)
- Angela Kirik
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
- Address correspondence to
| |
Collapse
|