1
|
Amiama-Roig A, Barrientos-Moreno M, Cruz-Zambrano E, López-Ruiz LM, González-Prieto R, Ríos-Orelogio G, Prado F. A Rfa1-MN-based system reveals new factors involved in the rescue of broken replication forks. PLoS Genet 2025; 21:e1011405. [PMID: 40168399 PMCID: PMC11984746 DOI: 10.1371/journal.pgen.1011405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/10/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
The integrity of the replication forks is essential for an accurate and timely completion of genome duplication. However, little is known about how cells deal with broken replication forks. We have generated in yeast a system based on a chimera of the largest subunit of the ssDNA binding complex RPA fused to the micrococcal nuclease (Rfa1-MN) to induce double-strand breaks (DSBs) at replication forks and searched for mutants affected in their repair. Our results show that the core homologous recombination (HR) proteins involved in the formation of the ssDNA/Rad51 filament are essential for the repair of DSBs at forks, whereas non-homologous end joining plays no role. Apart from the endonucleases Mus81 and Yen1, the repair process employs fork-associated HR factors, break-induced replication (BIR)-associated factors and replisome components involved in sister chromatid cohesion and fork stability, pointing to replication fork restart by BIR followed by fork restoration. Notably, we also found factors controlling the length of G1, suggesting that a minimal number of active origins facilitates the repair by converging forks. Our study has also revealed a requirement for checkpoint functions, including the synthesis of Dun1-mediated dNTPs. Finally, our screening revealed minimal impact from the loss of chromatin factors, suggesting that the partially disassembled nucleosome structure at the replication fork facilitates the accessibility of the repair machinery. In conclusion, this study provides an overview of the factors and mechanisms that cooperate to repair broken forks.
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Marta Barrientos-Moreno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Esther Cruz-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Luz M. López-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Román González-Prieto
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Gabriel Ríos-Orelogio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
Frigerio C, Galli M, Castelli S, Da Prada A, Clerici M. Control of Replication Stress Response by Cytosolic Fe-S Cluster Assembly (CIA) Machinery. Cells 2025; 14:442. [PMID: 40136691 PMCID: PMC11941123 DOI: 10.3390/cells14060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Accurate DNA replication is essential for the maintenance of genome stability and the generation of healthy offspring. When DNA replication is challenged, signals accumulate at blocked replication forks that elicit a multifaceted cellular response, orchestrating DNA replication, DNA repair and cell cycle progression. This replication stress response promotes the recovery of DNA replication, maintaining chromosome integrity and preventing mutations. Defects in this response are linked to heightened genetic instability, which contributes to tumorigenesis and genetic disorders. Iron-sulfur (Fe-S) clusters are emerging as important cofactors in supporting the response to replication stress. These clusters are assembled and delivered to target proteins that function in the cytosol and nucleus via the conserved cytosolic Fe-S cluster assembly (CIA) machinery and the CIA targeting complex. This review summarizes recent advances in understanding the structure and function of the CIA machinery in yeast and mammals, emphasizing the critical role of Fe-S clusters in the replication stress response.
Collapse
Affiliation(s)
| | | | | | | | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy; (C.F.); (M.G.); (S.C.); (A.D.P.)
| |
Collapse
|
3
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Shaz H, Nandi P, Sengupta S. Site directed mutagenesis reveals functional importance of conserved amino acid residues within the N-terminal domain of Dpb2 in budding yeast. Arch Microbiol 2024; 207:14. [PMID: 39690285 DOI: 10.1007/s00203-024-04214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
In spite of being dispensable for catalysis, Dpb2, the second largest subunit of leading strand DNA polymerase (Polymerase ε) is essential for cell survival in budding yeast. Dpb2 physically connects polymerase epsilon with the replicative helicase (CMG,Cdc45-Mcm-GINS) by interacting with its Psf1 subunit. Dpb2-Psf1 interaction has been shown to be critical for incorporating polymerase ε into the replisome. Site-directed mutagenesis studies on conserved amino acid residues within the N-terminal domain of Dpb2 led to identification of key amino acid residues involved in interaction with Psf1 subunit of GINS. These amino acid residues are found to be well conserved among Dpb2 orthologues in higher eukaryotes thereby indicating the protein-protein interaction to be evolutionarily conserved. Replicating cells are known to mount a strong replicative stress response and DNA damage response upon exposure to diverse range of stressors. Here, we show that the absence of the N-terminal domain of Dpb2 increases the vulnerability of the budding yeast cells towards the cytotoxic effects of hydroxyurea (HU) and methyl methane sulphonate (MMS). Our results illustrate the importance of N-terminal domain of Dpb2 not only during replisome assembly but also in coordinating stress response in budding yeast. Considering high degree of sequence conservation across eukaryotes, Dpb2 subunit of leading-strand DNA polymerase appears to have important implications in maintenance of genome integrity.
Collapse
Affiliation(s)
- Huma Shaz
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Prakash Nandi
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
5
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
6
|
Natalino M, Fumasoni M. Compensatory Evolution to DNA Replication Stress is Robust to Nutrient Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620637. [PMID: 39553989 PMCID: PMC11565888 DOI: 10.1101/2024.10.29.620637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Evolutionary repair refers to the compensatory evolution that follows perturbations in cellular processes. While evolutionary trajectories are often reproducible, other studies suggest they are shaped by genotype-by-environment (GxE) interactions. Here, we test the predictability of evolutionary repair in response to DNA replication stress-a severe perturbation impairing the conserved mechanisms of DNA synthesis, resulting in genetic instability. We conducted high-throughput experimental evolution on Saccharomyces cerevisiae experiencing constitutive replication stress, grown under different glucose availabilities. We found that glucose levels impact the physiology and adaptation rate of replication stress mutants. However, the genetics of adaptation show remarkable robustness across environments. Recurrent mutations collectively recapitulated the fitness of evolved lines and are advantageous across macronutrient availability. We also identified a novel role of the mediator complex of RNA polymerase II in adaptation to replicative stress. Our results highlight the robustness and predictability of evolutionary repair mechanisms to DNA replication stress and provide new insights into the evolutionary aspects of genome stability, with potential implications for understanding cancer development.
Collapse
Affiliation(s)
- Mariana Natalino
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| | - Marco Fumasoni
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| |
Collapse
|
7
|
Ouyang Y, Al-Amodi A, Tehseen M, Alhudhali L, Shirbini A, Takahashi M, Raducanu VS, Yi G, Danazumi A, De Biasio A, Hamdan S. Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10. Nucleic Acids Res 2024; 52:8880-8896. [PMID: 38967018 PMCID: PMC11347169 DOI: 10.1093/nar/gkae565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.
Collapse
Affiliation(s)
- Yujing Ouyang
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Amani Al-Amodi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lubna Alhudhali
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Afnan Shirbini
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Masateru Takahashi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Gang Yi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Ammar Usman Danazumi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alfredo De Biasio
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
8
|
Di Biagi L, Marozzi G, Malacaria E, Honda M, Aiello FA, Valenzisi P, Spies M, Franchitto A, Pichierri P. RAD52 prevents accumulation of Polα -dependent replication gaps at perturbed replication forks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536536. [PMID: 37090680 PMCID: PMC10120653 DOI: 10.1101/2023.04.12.536536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Replication gaps can arise as a consequence of perturbed DNA replication and their accumulation might undermine the stability of the genome. Loss of RAD52, a protein involved in the regulation of fork reversal, promotes accumulation of parental ssDNA gaps during replication perturbation. Here, we demonstrate that this is due to the engagement of Polα downstream of the extensive degradation of perturbed replication forks after their reversal, and is not dependent on PrimPol. Polα is hyper-recruited at parental ssDNA in the absence of RAD52, and this recruitment is dependent on fork reversal enzymes and RAD51. Of note, we report that the interaction between Polα and RAD51 is stimulated by RAD52 inhibition, and Polα -dependent gap accumulation requires nucleation of RAD51 suggesting that it occurs downstream strand invasion. Altogether, our data indicate that RAD51- Polα -dependent repriming is essential to promote fork restart and limit DNA damage accumulation when RAD52 function is disabled.
Collapse
Affiliation(s)
- Ludovica Di Biagi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Giorgia Marozzi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Masayoshi Honda
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242 (USA)
| | - Francesca Antonella Aiello
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Pasquale Valenzisi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242 (USA)
| | - Annapaola Franchitto
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
- Istituto Nazionale Biostrutture e Biosistemi - Roma Area Research - Via delle Medaglie d’Oro 305, 00136 Rome (Italy)
| |
Collapse
|
9
|
Jurkovic CM, Raisch J, Tran S, Nguyen HD, Lévesque D, Scott MS, Campos EI, Boisvert FM. Replisome Proximal Protein Associations and Dynamic Proteomic Changes at Stalled Replication Forks. Mol Cell Proteomics 2024; 23:100767. [PMID: 38615877 PMCID: PMC11101681 DOI: 10.1016/j.mcpro.2024.100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024] Open
Abstract
DNA replication is a fundamental cellular process that ensures the transfer of genetic information during cell division. Genome duplication takes place in S phase and requires a dynamic and highly coordinated recruitment of multiple proteins at replication forks. Various genotoxic stressors lead to fork instability and collapse, hence the need for DNA repair pathways. By identifying the multitude of protein interactions implicated in those events, we can better grasp the complex and dynamic molecular mechanisms that facilitate DNA replication and repair. Proximity-dependent biotin identification was used to identify associations with 17 proteins within four core replication components, namely the CDC45/MCM2-7/GINS helicase that unwinds DNA, the DNA polymerases, replication protein A subunits, and histone chaperones needed to disassemble and reassemble chromatin. We further investigated the impact of genotoxic stress on these interactions. This analysis revealed a vast proximity association network with 108 nuclear proteins further modulated in the presence of hydroxyurea; 45 being enriched and 63 depleted. Interestingly, hydroxyurea treatment also caused a redistribution of associations with 11 interactors, meaning that the replisome is dynamically reorganized when stressed. The analysis identified several poorly characterized proteins, thereby uncovering new putative players in the cellular response to DNA replication arrest. It also provides a new comprehensive proteomic framework to understand how cells respond to obstacles during DNA replication.
Collapse
Affiliation(s)
- Carla-Marie Jurkovic
- Faculty of Medicine and Health Sciences, Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jennifer Raisch
- Faculty of Medicine and Health Sciences, Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Stephanie Tran
- Genetics & Genome Biology Program, Department of Molecular Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hoang Dong Nguyen
- Faculty of Medicine and Health Sciences, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Lévesque
- Faculty of Medicine and Health Sciences, Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Michelle S Scott
- Faculty of Medicine and Health Sciences, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, Department of Molecular Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - François-Michel Boisvert
- Faculty of Medicine and Health Sciences, Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
10
|
Rankin BD, Rankin S. The MCM2-7 Complex: Roles beyond DNA Unwinding. BIOLOGY 2024; 13:258. [PMID: 38666870 PMCID: PMC11048021 DOI: 10.3390/biology13040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The MCM2-7 complex is a hexameric protein complex that serves as a DNA helicase. It unwinds the DNA double helix during DNA replication, thereby providing the single-stranded replication template. In recent years, it has become clear that the MCM2-7 complex has additional functions that extend well beyond its role in DNA replication. Through physical and functional interactions with different pathways, it impacts other nuclear events and activities, including folding of the genome, histone inheritance, chromosome segregation, DNA damage sensing and repair, and gene transcription. Collectively, the diverse roles of the MCM2-7 complex suggest it plays a critical role in maintaining genome integrity by integrating the regulation of DNA replication with other pathways in the nucleus.
Collapse
Affiliation(s)
- Brooke D. Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Nathanailidou P, Dhakshnamoorthy J, Xiao H, Zofall M, Holla S, O’Neill M, Andresson T, Wheeler D, Grewal SIS. Specialized replication of heterochromatin domains ensures self-templated chromatin assembly and epigenetic inheritance. Proc Natl Acad Sci U S A 2024; 121:e2315596121. [PMID: 38285941 PMCID: PMC10861883 DOI: 10.1073/pnas.2315596121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
Heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), spreads across large domains and can be epigenetically inherited in a self-propagating manner. Heterochromatin propagation depends upon a read-write mechanism, where the Clr4/Suv39h methyltransferase binds to preexisting trimethylated H3K9 (H3K9me3) and further deposits H3K9me. How the parental methylated histone template is preserved during DNA replication is not well understood. Here, we demonstrate using Schizosaccharomyces pombe that heterochromatic regions are specialized replication domains demarcated by their surrounding boundary elements. DNA replication throughout these domains is distinguished by an abundance of replisome components and is coordinated by Swi6/HP1. Although mutations in the replicative helicase subunit Mcm2 that affect histone binding impede the maintenance of a heterochromatin domain at an artificially targeted ectopic site, they have only a modest impact on heterochromatin propagation via the read-write mechanism at an endogenous site. Instead, our findings suggest a crucial role for the replication factor Mcl1 in retaining parental histones and promoting heterochromatin propagation via a mechanism involving the histone chaperone FACT. Engagement of FACT with heterochromatin requires boundary elements, which position the heterochromatic domain at the nuclear peripheral subdomain enriched for heterochromatin factors. Our findings highlight the importance of replisome components and boundary elements in creating a specialized environment for the retention of parental methylated histones, which facilitates epigenetic inheritance of heterochromatin.
Collapse
Affiliation(s)
- Patroula Nathanailidou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Maura O’Neill
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Shiv I. S. Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
12
|
Boavida A, Napolitano LM, Santos D, Cortone G, Jegadesan NK, Onesti S, Branzei D, Pisani FM. FANCJ DNA helicase is recruited to the replisome by AND-1 to ensure genome stability. EMBO Rep 2024; 25:876-901. [PMID: 38177925 PMCID: PMC10897178 DOI: 10.1038/s44319-023-00044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.
Collapse
Affiliation(s)
- Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giuseppe Cortone
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Dana Branzei
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy.
| |
Collapse
|
13
|
Yuzon JD, Schultzhaus Z, Wang Z. Transcriptomic and genomic effects of gamma-radiation exposure on strains of the black yeast Exophiala dermatitidis evolved to display increased ionizing radiation resistance. Microbiol Spectr 2023; 11:e0221923. [PMID: 37676019 PMCID: PMC10581076 DOI: 10.1128/spectrum.02219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Ionizing radiation poses a significant threat to living organisms and human health, given its destructive nature and widespread use in fields such as medicine and the potential for nuclear disasters. Melanized fungi exhibit remarkable survival capabilities, enduring doses up to 1,000-fold higher than mammals. Through adaptive laboratory evolution, we validated the protective role of constitutive upregulation of DNA repair genes in the black yeast Exophiala dermatitidis, enhancing survival after radiation exposure. Surprisingly, we found that evolved strains lacking melanin still achieved high levels of radioresistance. Our study unveiled the significance of robust activation and enhancement of redox homeostasis, as evidenced by the profound transcriptional changes and increased accumulation of mutations, in substantially improving ionizing radiation resistance in the absence of melanin. These findings underscore the delicate balance between DNA repair and redox homeostasis for an organism's ability to endure and recover from radiation exposure.
Collapse
Affiliation(s)
- Jennifer D. Yuzon
- National Research Council Postdoctoral Research Associate, US Naval Research Laboratory, Washington, USA
| | - Zachary Schultzhaus
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, USA
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, USA
| |
Collapse
|
14
|
Xu Z, Feng J, Yu D, Huo Y, Ma X, Lam WH, Liu Z, Li XD, Ishibashi T, Dang S, Zhai Y. Synergism between CMG helicase and leading strand DNA polymerase at replication fork. Nat Commun 2023; 14:5849. [PMID: 37730685 PMCID: PMC10511561 DOI: 10.1038/s41467-023-41506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
The replisome that replicates the eukaryotic genome consists of at least three engines: the Cdc45-MCM-GINS (CMG) helicase that separates duplex DNA at the replication fork and two DNA polymerases, one on each strand, that replicate the unwound DNA. Here, we determined a series of cryo-electron microscopy structures of a yeast replisome comprising CMG, leading-strand polymerase Polε and three accessory factors on a forked DNA. In these structures, Polε engages or disengages with the motor domains of the CMG by occupying two alternative positions, which closely correlate with the rotational movement of the single-stranded DNA around the MCM pore. During this process, the polymerase remains stably coupled to the helicase using Psf1 as a hinge. This synergism is modulated by a concerted rearrangement of ATPase sites to drive DNA translocation. The Polε-MCM coupling is not only required for CMG formation to initiate DNA replication but also facilitates the leading-strand DNA synthesis mediated by Polε. Our study elucidates a mechanism intrinsic to the replisome that coordinates the activities of CMG and Polε to negotiate any roadblocks, DNA damage, and epigenetic marks encountered during translocation along replication forks.
Collapse
Affiliation(s)
- Zhichun Xu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jianrong Feng
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Yunjing Huo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiaohui Ma
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Wai Hei Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Toyotaka Ishibashi
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- HKUST-Shenzhen Research Institute, 518057, Nanshan, Shenzhen, China.
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Ghaddar N, Luciano P, Géli V, Corda Y. Chromatin assembly factor-1 preserves genome stability in ctf4Δ cells by promoting sister chromatid cohesion. Cell Stress 2023; 7:69-89. [PMID: 37662646 PMCID: PMC10468696 DOI: 10.15698/cst2023.09.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chromatin assembly and the establishment of sister chromatid cohesion are intimately connected to the progression of DNA replication forks. Here we examined the genetic interaction between the heterotrimeric chromatin assembly factor-1 (CAF-1), a central component of chromatin assembly during replication, and the core replisome component Ctf4. We find that CAF-1 deficient cells as well as cells affected in newly-synthesized H3-H4 histones deposition during DNA replication exhibit a severe negative growth with ctf4Δ mutant. We dissected the role of CAF-1 in the maintenance of genome stability in ctf4Δ yeast cells. In the absence of CTF4, CAF-1 is essential for viability in cells experiencing replication problems, in cells lacking functional S-phase checkpoint or functional spindle checkpoint, and in cells lacking DNA repair pathways involving homologous recombination. We present evidence that CAF-1 affects cohesin association to chromatin in a DNA-damage-dependent manner and is essential to maintain cohesion in the absence of CTF4. We also show that Eco1-catalyzed Smc3 acetylation is reduced in absence of CAF-1. Furthermore, we describe genetic interactions between CAF-1 and essential genes involved in cohesin loading, cohesin stabilization, and cohesin component indicating that CAF-1 is crucial for viability when sister chromatid cohesion is affected. Finally, our data indicate that the CAF-1-dependent pathway required for cohesion is functionally distinct from the Rtt101-Mms1-Mms22 pathway which functions in replicated chromatin assembly. Collectively, our results suggest that the deposition by CAF-1 of newly-synthesized H3-H4 histones during DNA replication creates a chromatin environment that favors sister chromatid cohesion and maintains genome integrity.
Collapse
Affiliation(s)
- Nagham Ghaddar
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Pierre Luciano
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Yves Corda
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| |
Collapse
|
16
|
Jones ML, Aria V, Baris Y, Yeeles JTP. How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication. Mol Cell 2023; 83:2911-2924.e16. [PMID: 37506699 PMCID: PMC10501992 DOI: 10.1016/j.molcel.2023.06.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.
Collapse
Affiliation(s)
- Morgan L Jones
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Valentina Aria
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yasemin Baris
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
17
|
Zhang Z, Zhu Q. WD Repeat and HMG Box DNA Binding Protein 1: An Oncoprotein at the Hub of Tumorigenesis and a Novel Therapeutic Target. Int J Mol Sci 2023; 24:12494. [PMID: 37569867 PMCID: PMC10420296 DOI: 10.3390/ijms241512494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
WD repeat and HMG-box DNA binding protein 1 (WDHD1) is a highly conserved gene from yeast to humans. It actively participates in DNA replication, playing a crucial role in DNA damage repair and the cell cycle, contributing to centromere formation and sister chromosome segregation. Notably, several studies have implicated WDHD1 in the development and progression of diverse tumor types, including esophageal carcinoma, pulmonary carcinoma, and breast carcinoma. Additionally, the inhibitor of WDHD1 has been found to enhance radiation sensitivity, improve drug resistance, and significantly decrease tumor cell proliferation. This comprehensive review aims to provide an overview of the molecular structure, biological functions, and regulatory mechanisms of WDHD1 in tumors, thereby establishing a foundation for future investigations and potential clinical applications of WDHD1.
Collapse
Affiliation(s)
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China;
| |
Collapse
|
18
|
Nasheuer HP, Onwubiko NO. Lagging Strand Initiation Processes in DNA Replication of Eukaryotes-Strings of Highly Coordinated Reactions Governed by Multiprotein Complexes. Genes (Basel) 2023; 14:genes14051012. [PMID: 37239371 DOI: 10.3390/genes14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability. Recent findings have provided new insights into the mechanism of the remodelling of the prime initiation enzyme, DNA polymerase α-primase (Pol-prim), during primer synthesis, how the enzyme complex achieves lagging strand synthesis, and how it is linked to replication forks to achieve optimal initiation of Okazaki fragments. Moreover, the central roles of RNA primer synthesis by Pol-prim in multiple genome stability pathways such as replication fork restart and protection of DNA against degradation by exonucleases during double-strand break repair are discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| | - Nichodemus O Onwubiko
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| |
Collapse
|
19
|
Miller CLW, Winston F. The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability. Cell Rep 2023; 42:112264. [PMID: 36924499 PMCID: PMC10106089 DOI: 10.1016/j.celrep.2023.112264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Histone chaperones are an important class of proteins that regulate chromatin accessibility for DNA-templated processes. Spt6 is a conserved histone chaperone and key regulator of transcription and chromatin structure. However, its functions outside of these roles have been little explored. In this work, we demonstrate a requirement for S. cerevisiae Spt6 in DNA replication and, more broadly, as a regulator of genome stability. Depletion or mutation of Spt6 impairs DNA replication in vivo. Additionally, spt6 mutants are sensitive to DNA replication stress-inducing agents. Interestingly, this sensitivity is independent of the association of Spt6 with RNA polymerase II (RNAPII), suggesting that spt6 mutants have a transcription-independent impairment of DNA replication. Specifically, genomic studies reveal that spt6 mutants have decreased loading of the MCM replicative helicase at replication origins, suggesting that Spt6 promotes origin licensing. Our results identify Spt6 as a regulator of genome stability, at least in part through a role in DNA replication.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
21
|
van Schie JJ, de Lint K, Pai GM, Rooimans MA, Wolthuis RM, de Lange J. MMS22L-TONSL functions in sister chromatid cohesion in a pathway parallel to DSCC1-RFC. Life Sci Alliance 2023; 6:e202201596. [PMID: 36622344 PMCID: PMC9733570 DOI: 10.26508/lsa.202201596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The leading strand-oriented alternative PCNA clamp loader DSCC1-RFC functions in DNA replication, repair, and sister chromatid cohesion (SCC), but how it facilitates these processes is incompletely understood. Here, we confirm that loss of human DSCC1 results in reduced fork speed, increased DNA damage, and defective SCC. Genome-wide CRISPR screens in DSCC1-KO cells reveal multiple synthetically lethal interactions, enriched for DNA replication and cell cycle regulation. We show that DSCC1-KO cells require POLE3 for survival. Co-depletion of DSCC1 and POLE3, which both interact with the catalytic polymerase ε subunit, additively impair DNA replication, suggesting that these factors contribute to leading-strand DNA replication in parallel ways. An additional hit is MMS22L, which in humans forms a heterodimer with TONSL. Synthetic lethality of DSCC1 and MMS22L-TONSL likely results from detrimental SCC loss. We show that MMS22L-TONSL, like DDX11, functions in a SCC establishment pathway parallel to DSCC1-RFC. Because both DSCC1-RFC and MMS22L facilitate ESCO2 recruitment to replication forks, we suggest that distinct ESCO2 recruitment pathways promote SCC establishment following either cohesin conversion or de novo cohesin loading.
Collapse
Affiliation(s)
- Janne Jm van Schie
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Klaas de Lint
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Govind M Pai
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Martin A Rooimans
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Rob Mf Wolthuis
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Job de Lange
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| |
Collapse
|
22
|
Choudhary K, Kupiec M. The cohesin complex of yeasts: sister chromatid cohesion and beyond. FEMS Microbiol Rev 2023; 47:6825453. [PMID: 36370456 DOI: 10.1093/femsre/fuac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Each time a cell divides, it needs to duplicate the genome and then separate the two copies. In eukaryotes, which usually have more than one linear chromosome, this entails tethering the two newly replicated DNA molecules, a phenomenon known as sister chromatid cohesion (SCC). Cohesion ensures proper chromosome segregation to separate poles during mitosis. SCC is achieved by the presence of the cohesin complex. Besides its canonical function, cohesin is essential for chromosome organization and DNA damage repair. Surprisingly, yeast cohesin is loaded in G1 before DNA replication starts but only acquires its binding activity during DNA replication. Work in microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe has greatly contributed to the understanding of cohesin composition and functions. In the last few years, much progress has been made in elucidating the role of cohesin in chromosome organization and compaction. Here, we discuss the different functions of cohesin to ensure faithful chromosome segregation and genome stability during the mitotic cell division in yeast. We describe what is known about its composition and how DNA replication is coupled with SCC establishment. We also discuss current models for the role of cohesin in chromatin loop extrusion and delineate unanswered questions about the activity of this important, conserved complex.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
23
|
A DNA Replication Fork-centric View of the Budding Yeast DNA Damage Response. DNA Repair (Amst) 2022; 119:103393. [DOI: 10.1016/j.dnarep.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
|
24
|
McQuaid ME, Ahmed K, Tran S, Rousseau J, Shaheen R, Kernohan KD, Yuki KE, Grover P, Dreseris ES, Ahmed S, Dupuis L, Stimec J, Shago M, Al-Hassnan ZN, Tremblay R, Maass PG, Wilson MD, Grunebaum E, Boycott KM, Boisvert FM, Maddirevula S, Faqeih EA, Almanjomi F, Khan ZU, Alkuraya FS, Campeau PM, Kannu P, Campos EI, Wurtele H. Hypomorphic GINS3 variants alter DNA replication and cause Meier-Gorlin syndrome. JCI Insight 2022; 7:155648. [PMID: 35603789 PMCID: PMC9215265 DOI: 10.1172/jci.insight.155648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic CDC45/MCM2-7/GINS (CMG) helicase unwinds the DNA double helix during DNA replication. The GINS subcomplex is required for helicase activity and is, therefore, essential for DNA replication and cell viability. Here, we report the identification of 7 individuals from 5 unrelated families presenting with a Meier-Gorlin syndrome–like (MGS-like) phenotype associated with hypomorphic variants of GINS3, a gene not previously associated with this syndrome. We found that MGS-associated GINS3 variants affecting aspartic acid 24 (D24) compromised cell proliferation and caused accumulation of cells in S phase. These variants shortened the protein half-life, altered key protein interactions at the replisome, and negatively influenced DNA replication fork progression. Yeast expressing MGS-associated variants of PSF3 (the yeast GINS3 ortholog) also displayed impaired growth, S phase progression defects, and decreased Psf3 protein stability. We further showed that mouse embryos homozygous for a D24 variant presented intrauterine growth retardation and did not survive to birth, and that fibroblasts derived from these embryos displayed accelerated cellular senescence. Taken together, our findings implicate GINS3 in the pathogenesis of MGS and support the notion that hypomorphic variants identified in this gene impaired cell and organismal growth by compromising DNA replication.
Collapse
Affiliation(s)
- Mary E. McQuaid
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Kashif Ahmed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephanie Tran
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ranad Shaheen
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kristin D. Kernohan
- CHEO Research Institute, Ottawa, Ontario, Canada
- Newborn Screening Ontario, CHEO, Ottawa, Ontario, Canada
| | - Kyoko E. Yuki
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prerna Grover
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ema S. Dreseris
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sameen Ahmed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Stimec
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary Shago
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zuhair N. Al-Hassnan
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Roch Tremblay
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Philipp G. Maass
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Wilson
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa A. Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, and
| | - Fahad Almanjomi
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Zaheer Ullah Khan
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Peter Kannu
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Eric I. Campos
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Dolce V, Dusi S, Giannattasio M, Joseph CR, Fumasoni M, Branzei D. Parental histone deposition on the replicated strands promotes error-free DNA damage tolerance and regulates drug resistance. Genes Dev 2022; 36:167-179. [PMID: 35115379 PMCID: PMC8887126 DOI: 10.1101/gad.349207.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
In this study, Dolce et al. investigated connections between Ctf4-mediated processes involved in drug resistance, and conducted a suppressor screen of ctf4Δ sensitivity to the methylating agent MMS. Their findings demonstrate a chromatin-based drug resistance mechanism in which defects in parental histone transfer after replication fork passage impair error-free recombination bypass and lead to up-regulation of TLS-mediated mutagenesis and drug resistance. Ctf4 is a conserved replisome component with multiple roles in DNA metabolism. To investigate connections between Ctf4-mediated processes involved in drug resistance, we conducted a suppressor screen of ctf4Δ sensitivity to the methylating agent MMS. We uncovered that mutations in Dpb3 and Dpb4 components of polymerase ε result in the development of drug resistance in ctf4Δ via their histone-binding function. Alleviated sensitivity to MMS of the double mutants was not associated with rescue of ctf4Δ defects in sister chromatid cohesion, replication fork architecture, or template switching, which ensures error-free replication in the presence of genotoxic stress. Strikingly, the improved viability depended on translesion synthesis (TLS) polymerase-mediated mutagenesis, which was drastically increased in ctf4 dpb3 double mutants. Importantly, mutations in Mcm2–Ctf4–Polα and Dpb3–Dpb4 axes of parental (H3–H4)2 deposition on lagging and leading strands invariably resulted in reduced error-free DNA damage tolerance through gap filling by template switch recombination. Overall, we uncovered a chromatin-based drug resistance mechanism in which defects in parental histone transfer after replication fork passage impair error-free recombination bypass and lead to up-regulation of TLS-mediated mutagenesis and drug resistance.
Collapse
Affiliation(s)
- Valeria Dolce
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sabrina Dusi
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Michele Giannattasio
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milan, Italy
| | - Chinnu Rose Joseph
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Marco Fumasoni
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Dana Branzei
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy
| |
Collapse
|
26
|
Ivanova A, Atemin A, Uzunova S, Danovski G, Aleksandrov R, Stoynov S, Nedelcheva-Veleva M. The Effect of Dia2 Protein Deficiency on the Cell Cycle, Cell Size, and Recruitment of Ctf4 Protein in Saccharomyces cerevisiae. Molecules 2021; 27:97. [PMID: 35011329 PMCID: PMC8746418 DOI: 10.3390/molecules27010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/13/2023] Open
Abstract
Cells have evolved elaborate mechanisms to regulate DNA replication machinery and cell cycles in response to DNA damage and replication stress in order to prevent genomic instability and cancer. The E3 ubiquitin ligase SCFDia2 in S. cerevisiae is involved in the DNA replication and DNA damage stress response, but its effect on cell growth is still unclear. Here, we demonstrate that the absence of Dia2 prolongs the cell cycle by extending both S- and G2/M-phases while, at the same time, activating the S-phase checkpoint. In these conditions, Ctf4-an essential DNA replication protein and substrate of Dia2-prolongs its binding to the chromatin during the extended S- and G2/M-phases. Notably, the prolonged cell cycle when Dia2 is absent is accompanied by a marked increase in cell size. We found that while both DNA replication inhibition and an absence of Dia2 exerts effects on cell cycle duration and cell size, Dia2 deficiency leads to a much more profound increase in cell size and a substantially lesser effect on cell cycle duration compared to DNA replication inhibition. Our results suggest that the increased cell size in dia2∆ involves a complex mechanism in which the prolonged cell cycle is one of the driving forces.
Collapse
Affiliation(s)
| | | | | | | | | | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G., Bonchev Str. Bl.21, 1113 Sofia, Bulgaria; (A.I.); (A.A.); (S.U.); (G.D.); (R.A.)
| | - Marina Nedelcheva-Veleva
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G., Bonchev Str. Bl.21, 1113 Sofia, Bulgaria; (A.I.); (A.A.); (S.U.); (G.D.); (R.A.)
| |
Collapse
|
27
|
Li J, Zhang Y, Sun J, Chen L, Gou W, Chen C, Zhou Y, Li Z, Chan DW, Huang R, Pei H, Zheng W, Li Y, Xia M, Zhu W. Discovery and characterization of potent And-1 inhibitors for cancer treatment. Clin Transl Med 2021; 11:e627. [PMID: 34923765 PMCID: PMC8684776 DOI: 10.1002/ctm2.627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic nucleoplasmic DNA-binding protein 1 (And-1), an important factor for deoxyribonucleic acid (DNA) replication and repair, is overexpressed in many types of cancer but not in normal tissues. Although multiple independent studies have elucidated And-1 as a promising target gene for cancer therapy, an And-1 inhibitor has yet to be identified. Using an And-1 luciferase reporter assay to screen the Library of Pharmacologically Active Compounds (LOPAC) in a high throughput screening (HTS) platform, and then further screen the compound analog collection, we identified two potent And-1 inhibitors, bazedoxifene acetate (BZA) and an uncharacterized compound [(E)-5-(3,4-dichlorostyryl)benzo[c][1,2]oxaborol-1(3H)-ol] (CH3), which specifically inhibit And-1 by promoting its degradation. Specifically, through direct interaction with And-1 WD40 domain, CH3 interrupts the polymerization of And-1. Depolymerization of And-1 promotes its interaction with E3 ligase Cullin 4B (CUL4B), resulting in its ubiquitination and subsequent degradation. Furthermore, CH3 suppresses the growth of a broad range of cancers. Moreover, And-1 inhibitors re-sensitize platinum-resistant ovarian cancer cells to platinum drugs in vitro and in vivo. Since BZA is an FDA approved drug, we expect a clinical trial of BZA-mediated cancer therapy in the near future. Taken together, our findings suggest that targeting And-1 by its inhibitors is a potential broad-spectrum anti-cancer chemotherapy regimen.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yi Zhang
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jing Sun
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Chi‐Wei Chen
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yuan Zhou
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Zhuqing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - David W. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of MedicineThe University of Hong KongHong, China
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Huadong Pei
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Wenge Zhu
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
28
|
Fumasoni M, Murray AW. Ploidy and recombination proficiency shape the evolutionary adaptation to constitutive DNA replication stress. PLoS Genet 2021; 17:e1009875. [PMID: 34752451 PMCID: PMC8604288 DOI: 10.1371/journal.pgen.1009875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/19/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
In haploid budding yeast, evolutionary adaptation to constitutive DNA replication stress alters three genome maintenance modules: DNA replication, the DNA damage checkpoint, and sister chromatid cohesion. We asked how these trajectories depend on genomic features by comparing the adaptation in three strains: haploids, diploids, and recombination deficient haploids. In all three, adaptation happens within 1000 generations at rates that are correlated with the initial fitness defect of the ancestors. Mutations in individual genes are selected at different frequencies in populations with different genomic features, but the benefits these mutations confer are similar in the three strains, and combinations of these mutations reproduce the fitness gains of evolved populations. Despite the differences in the selected mutations, adaptation targets the same three functional modules in strains with different genomic features, revealing a common evolutionary response to constitutive DNA replication stress.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
29
|
Aricthota S, Haldar D. DDK/Hsk1 phosphorylates and targets fission yeast histone deacetylase Hst4 for degradation to stabilize stalled DNA replication forks. eLife 2021; 10:70787. [PMID: 34608864 PMCID: PMC8565929 DOI: 10.7554/elife.70787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
In eukaryotes, paused replication forks are prone to collapse, which leads to genomic instability, a hallmark of cancer. Dbf4-dependent kinase (DDK)/Hsk1Cdc7 is a conserved replication initiator kinase with conflicting roles in replication stress response. Here, we show that fission yeast DDK/Hsk1 phosphorylates sirtuin, Hst4 upon replication stress at C-terminal serine residues. Phosphorylation of Hst4 by DDK marks it for degradation via the ubiquitin ligase SCFpof3. Phosphorylation-defective hst4 mutant (4SA-hst4) displays defective recovery from replication stress, faulty fork restart, slow S-phase progression and decreased viability. The highly conserved fork protection complex (FPC) stabilizes stalled replication forks. We found that the recruitment of FPC components, Swi1 and Mcl1 to the chromatin is compromised in the 4SA-hst4 mutant, although whole cell levels increased. These defects are dependent upon H3K56ac and independent of intra S-phase checkpoint activation. Finally, we show conservation of H3K56ac-dependent regulation of Timeless, Tipin, and And-1 in human cells. We propose that degradation of Hst4 via DDK increases H3K56ac, changing the chromatin state in the vicinity of stalled forks facilitating recruitment and function of FPC. Overall, this study identified a crucial role of DDK and FPC in the regulation of replication stress response with implications in cancer therapeutics.
Collapse
Affiliation(s)
- Shalini Aricthota
- Laboratory of Chromatin Biology and Epigenetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Devyani Haldar
- Laboratory of Chromatin Biology and Epigenetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
30
|
Ciardo D, Haccard O, Narassimprakash H, Cornu D, Guerrera IC, Goldar A, Marheineke K. Polo-like kinase 1 (Plk1) regulates DNA replication origin firing and interacts with Rif1 in Xenopus. Nucleic Acids Res 2021; 49:9851-9869. [PMID: 34469577 PMCID: PMC8464078 DOI: 10.1093/nar/gkab756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of eukaryotic DNA replication origins needs to be strictly controlled at multiple steps in order to faithfully duplicate the genome and to maintain its stability. How the checkpoint recovery and adaptation protein Polo-like kinase 1 (Plk1) regulates the firing of replication origins during non-challenged S phase remained an open question. Using DNA fiber analysis, we show that immunodepletion of Plk1 in the Xenopus in vitro system decreases replication fork density and initiation frequency. Numerical analyses suggest that Plk1 reduces the overall probability and synchrony of origin firing. We used quantitative chromatin proteomics and co-immunoprecipitations to demonstrate that Plk1 interacts with firing factors MTBP/Treslin/TopBP1 as well as with Rif1, a known regulator of replication timing. Phosphopeptide analysis by LC/MS/MS shows that the C-terminal domain of Rif1, which is necessary for its repressive action on origins through protein phosphatase 1 (PP1), can be phosphorylated in vitro by Plk1 on S2058 in its PP1 binding site. The phosphomimetic S2058D mutant interrupts the Rif1-PP1 interaction and modulates DNA replication. Collectively, our study provides molecular insights into how Plk1 regulates the spatio-temporal replication program and suggests that Plk1 controls origin activation at the level of large chromatin domains in vertebrates.
Collapse
Affiliation(s)
- Diletta Ciardo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Hemalatha Narassimprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ida Chiara Guerrera
- Proteomics platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
31
|
Corda Y, Maestroni L, Luciano P, Najem MY, Géli V. Genome stability is guarded by yeast Rtt105 through multiple mechanisms. Genetics 2021; 217:6126811. [PMID: 33724421 DOI: 10.1093/genetics/iyaa035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Ty1 mobile DNA element is the most abundant and mutagenic retrotransposon present in the genome of the budding yeast Saccharomyces cerevisiae. Protein regulator of Ty1 transposition 105 (Rtt105) associates with large subunit of RPA and facilitates its loading onto a single-stranded DNA at replication forks. Here, we dissect the role of RTT105 in the maintenance of genome stability under normal conditions and upon various replication stresses through multiple genetic analyses. RTT105 is essential for viability in cells experiencing replication problems and in cells lacking functional S-phase checkpoints and DNA repair pathways involving homologous recombination. Our genetic analyses also indicate that RTT105 is crucial when cohesion is affected and is required for the establishment of normal heterochromatic structures. Moreover, RTT105 plays a role in telomere maintenance as its function is important for the telomere elongation phenotype resulting from the Est1 tethering to telomeres. Genetic analyses indicate that rtt105Δ affects the growth of several rfa1 mutants but does not aggravate their telomere length defects. Analysis of the phenotypes of rtt105Δ cells expressing NLS-Rfa1 fusion protein reveals that RTT105 safeguards genome stability through its role in RPA nuclear import but also by directly affecting RPA function in genome stability maintenance during replication.
Collapse
Affiliation(s)
- Yves Corda
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Laetitia Maestroni
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Pierre Luciano
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Maria Y Najem
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Vincent Géli
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
32
|
Le TT, Ainsworth J, Polo Rivera C, Macartney T, Labib KP. Reconstitution of human CMG helicase ubiquitylation by CUL2LRR1 and multiple E2 enzymes. Biochem J 2021; 478:2825-2842. [PMID: 34195792 PMCID: PMC8331092 DOI: 10.1042/bcj20210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Cullin ubiquitin ligases drive replisome disassembly during DNA replication termination. In worm, frog and mouse cells, CUL2LRR1 is required to ubiquitylate the MCM7 subunit of the CMG helicase. Here, we show that cullin ligases also drive CMG-MCM7 ubiquitylation in human cells, thereby making the helicase into a substrate for the p97 unfoldase. Using purified human proteins, including a panel of E2 ubiquitin-conjugating enzymes, we have reconstituted CMG helicase ubiquitylation, dependent upon neddylated CUL2LRR1. The reaction is highly specific to CMG-MCM7 and requires the LRR1 substrate targeting subunit, since replacement of LRR1 with the alternative CUL2 adaptor VHL switches ubiquitylation from CMG-MCM7 to HIF1. CUL2LRR1 firstly drives monoubiquitylation of CMG-MCM7 by the UBE2D class of E2 enzymes. Subsequently, CUL2LRR1 activates UBE2R1/R2 or UBE2G1/G2 to extend a single K48-linked ubiquitin chain on CMG-MCM7. Thereby, CUL2LRR1 converts CMG into a substrate for p97, which disassembles the ubiquitylated helicase during DNA replication termination.
Collapse
Affiliation(s)
- Thanh Thi Le
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Johanna Ainsworth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Cristian Polo Rivera
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Thomas Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Karim P.M. Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
33
|
Guilliam TA. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Front Mol Biosci 2021; 8:712971. [PMID: 34295925 PMCID: PMC8290200 DOI: 10.3389/fmolb.2021.712971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.
Collapse
Affiliation(s)
- Thomas A. Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
34
|
Zhang P, Zhu C, Geng Y, Wang Y, Yang Y, Liu Q, Guo W, Chachar S, Riaz A, Yan S, Yang L, Yi K, Wu C, Gu X. Rice and Arabidopsis homologs of yeast CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4 commonly interact with Polycomb complexes but exert divergent regulatory functions. THE PLANT CELL 2021; 33:1417-1429. [PMID: 33647940 PMCID: PMC8254485 DOI: 10.1093/plcell/koab047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 05/02/2023]
Abstract
Both genetic and epigenetic information must be transferred from mother to daughter cells during cell division. The mechanisms through which information about chromatin states and epigenetic marks like histone 3 lysine 27 trimethylation (H3K27me3) are transferred have been characterized in animals; these processes are less well understood in plants. Here, based on characterization of a dwarf rice (Oryza sativa) mutant (dwarf-related wd40 protein 1, drw1) deficient for yeast CTF4 (CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4), we discovered that CTF4 orthologs in plants use common cellular machinery yet accomplish divergent functional outcomes. Specifically, drw1 exhibited no flowering-related phenotypes (as in the putatively orthologous Arabidopsis thaliana eol1 mutant), but displayed cell cycle arrest and DNA damage responses. Mechanistically, we demonstrate that DRW1 sustains normal cell cycle progression by modulating the expression of cell cycle inhibitors KIP-RELATED PROTEIN 1 (KRP1) and KRP5, and show that these effects are mediated by DRW1 binding their promoters and increasing H3K27me3 levels. Thus, although CTF4 orthologs ENHANCER OF LHP1 1 (EOL1) in Arabidopsis and DRW1 in rice are both expressed uniquely in dividing cells, commonly interact with several Polycomb complex subunits, and promote H3K27me3 deposition, we now know that their regulatory functions diverged substantially during plant evolution. Moreover, our work experimentally illustrates specific targets of CTF4/EOL1/DRW1, their protein-proteininteraction partners, and their chromatin/epigenetic effects in plants.
Collapse
Affiliation(s)
- Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuke Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sadaruddin Chachar
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| |
Collapse
|
35
|
Willhoft O, Costa A. A structural framework for DNA replication and transcription through chromatin. Curr Opin Struct Biol 2021; 71:51-58. [PMID: 34218162 DOI: 10.1016/j.sbi.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
In eukaryotic cells, DNA replication and transcription machineries uncoil nucleosomes along the double helix, to achieve the exposure of the single-stranded DNA template for nucleic acid synthesis. The replisome and RNA polymerases then redeposit histones onto DNA behind the advancing molecular motor, in a process that is crucial for epigenetic inheritance and homeostasis, respectively. Here, we compare and contrast the mechanisms by which these molecular machines advance through nucleosome arrays and discuss how chromatin remodellers can facilitate DNA replication and transcription.
Collapse
Affiliation(s)
- Oliver Willhoft
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
36
|
Henrikus SS, Costa A. Towards a Structural Mechanism for Sister Chromatid Cohesion Establishment at the Eukaryotic Replication Fork. BIOLOGY 2021; 10:466. [PMID: 34073213 PMCID: PMC8229022 DOI: 10.3390/biology10060466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Cohesion between replicated chromosomes is essential for chromatin dynamics and equal segregation of duplicated genetic material. In the G1 phase, the ring-shaped cohesin complex is loaded onto duplex DNA, enriching at replication start sites, or "origins". During the same phase of the cell cycle, and also at the origin sites, two MCM helicases are loaded as symmetric double hexamers around duplex DNA. During the S phase, and through the action of replication factors, cohesin switches from encircling one parental duplex DNA to topologically enclosing the two duplicated DNA filaments, which are known as sister chromatids. Despite its vital importance, the structural mechanism leading to sister chromatid cohesion establishment at the replication fork is mostly elusive. Here we review the current understanding of the molecular interactions between the replication machinery and cohesin, which support sister chromatid cohesion establishment and cohesin function. In particular, we discuss how cryo-EM is shedding light on the mechanisms of DNA replication and cohesin loading processes. We further expound how frontier cryo-EM approaches, combined with biochemistry and single-molecule fluorescence assays, can lead to understanding the molecular basis of sister chromatid cohesion establishment at the replication fork.
Collapse
Affiliation(s)
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| |
Collapse
|
37
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
38
|
Abstract
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Collapse
Affiliation(s)
- Ilan Attali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
39
|
Villa F, Fujisawa R, Ainsworth J, Nishimura K, Lie‐A‐Ling M, Lacaud G, Labib KPM. CUL2 LRR1 , TRAIP and p97 control CMG helicase disassembly in the mammalian cell cycle. EMBO Rep 2021; 22:e52164. [PMID: 33590678 PMCID: PMC7926238 DOI: 10.15252/embr.202052164] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
The eukaryotic replisome is disassembled in each cell cycle, dependent upon ubiquitylation of the CMG helicase. Studies of Saccharomyces cerevisiae, Caenorhabditis elegans and Xenopus laevis have revealed surprising evolutionary diversity in the ubiquitin ligases that control CMG ubiquitylation, but regulated disassembly of the mammalian replisome has yet to be explored. Here, we describe a model system for studying the ubiquitylation and chromatin extraction of the mammalian CMG replisome, based on mouse embryonic stem cells. We show that the ubiquitin ligase CUL2LRR1 is required for ubiquitylation of the CMG-MCM7 subunit during S-phase, leading to disassembly by the p97 ATPase. Moreover, a second pathway of CMG disassembly is activated during mitosis, dependent upon the TRAIP ubiquitin ligase that is mutated in primordial dwarfism and mis-regulated in various cancers. These findings indicate that replisome disassembly in diverse metazoa is regulated by a conserved pair of ubiquitin ligases, distinct from those present in other eukaryotes.
Collapse
Affiliation(s)
- Fabrizio Villa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Johanna Ainsworth
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kohei Nishimura
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Michael Lie‐A‐Ling
- Cancer Research U.K. Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Georges Lacaud
- Cancer Research U.K. Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Karim PM Labib
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
40
|
The Amazing Acrobat: Yeast's Histone H3K56 Juggles Several Important Roles While Maintaining Perfect Balance. Genes (Basel) 2021; 12:genes12030342. [PMID: 33668997 PMCID: PMC7996553 DOI: 10.3390/genes12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.
Collapse
|
41
|
Caught in the act: structural dynamics of replication origin activation and fork progression. Biochem Soc Trans 2021; 48:1057-1066. [PMID: 32369549 PMCID: PMC7329347 DOI: 10.1042/bst20190998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023]
Abstract
This review discusses recent advances in single-particle cryo-EM and single-molecule approaches used to visualise eukaryotic DNA replication reactions reconstituted in vitro. We comment on the new challenges facing structural biologists, as they turn to describing the dynamic cascade of events that lead to replication origin activation and fork progression.
Collapse
|
42
|
Abstract
In all cell types, a multi-protein machinery is required to accurately duplicate the large duplex DNA genome. This central life process requires five core replisome factors in all cellular life forms studied thus far. Unexpectedly, three of the five core replisome factors have no common ancestor between bacteria and eukaryotes. Accordingly, the replisome machines of bacteria and eukaryotes have important distinctions in the way that they are organized and function. This chapter outlines the major replication proteins that perform DNA duplication at replication forks, with particular attention to differences and similarities in the strategies used by eukaryotes and bacteria.
Collapse
Affiliation(s)
- Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, USA, 10065
| | - Michael E O'Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, USA, 10065. .,Howard Hughes Medical Institute, The Rockefeller University, New York, USA, 10065.
| |
Collapse
|
43
|
Anatomy of a twin DNA replication factory. Biochem Soc Trans 2020; 48:2769-2778. [PMID: 33300972 PMCID: PMC7752080 DOI: 10.1042/bst20200640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.
Collapse
|
44
|
Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020; 477:3499-3525. [PMID: 32970141 PMCID: PMC7574821 DOI: 10.1042/bcj20200065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| |
Collapse
|
45
|
Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger JM, Botchan MR, Yardimci H, Costa A. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. Cell Rep 2020; 28:2673-2688.e8. [PMID: 31484077 PMCID: PMC6737378 DOI: 10.1016/j.celrep.2019.07.104] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding. Vertical DNA movement through the MCM ring requires rotation inside the pore Structural asymmetries in MCM-DNA are captured during ATPase-powered translocation Asymmetric rotation explains selective ATPase site requirements for translocation The fork-stabilization complex strengthens parental-DNA engagement by the MCM
Collapse
Affiliation(s)
- Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Fabrizio Martino
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tatjana Petojevic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Nele Tamberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
46
|
Liu L, Zhang Y, Zhang J, Wang JH, Cao Q, Li Z, Campbell JL, Dong MQ, Lou H. Characterization of the dimeric CMG/pre-initiation complex and its transition into DNA replication forks. Cell Mol Life Sci 2020; 77:3041-3058. [PMID: 31728581 PMCID: PMC11104849 DOI: 10.1007/s00018-019-03333-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
The pre-initiation complex (pre-IC) has been proposed for two decades as an intermediate right before the maturation of the eukaryotic DNA replication fork. However, its existence and biochemical nature remain enigmatic. Here, through combining several enrichment strategies, we are able to isolate an endogenous dimeric CMG-containing complex (designated as d-CMG) distinct from traditional single CMG (s-CMG) and in vitro reconstituted dimeric CMG. D-CMG is assembled upon entry into the S phase and shortly matures into s-CMG/replisome, leading to the fact that only ~ 5% of the total CMG-containing complexes can be detected as d-CMG in vivo. Mass spectra reveal that RPA and DNA Pol α/primase co-purify with s-CMG, but not with d-CMG. Consistently, the former fraction is able to catalyze DNA unwinding and de novo synthesis, while the latter catalyzes neither. The two CMGs in d-CMG display flexibly orientated conformations under an electronic microscope. When DNA Pol α-primase is inactivated, d-CMG % rose up to 29%, indicating an incomplete pre-IC/fork transition. These findings reveal biochemical properties of the d-CMG/pre-IC and provide in vivo evidence to support the pre-IC/fork transition as a bona fide step in replication initiation.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences China Agricultural University, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences China Agricultural University, Beijing, China
| | - Jingjing Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences China Agricultural University, Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences China Agricultural University, Beijing, China
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, 91125, CA, USA
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences China Agricultural University, Beijing, China.
| |
Collapse
|
47
|
Li Z, Hua X, Serra-Cardona A, Xu X, Gan S, Zhou H, Yang WS, Chen CL, Xu RM, Zhang Z. DNA polymerase α interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands. SCIENCE ADVANCES 2020; 6:eabb5820. [PMID: 32923642 PMCID: PMC7449674 DOI: 10.1126/sciadv.abb5820] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
How parental histones, the carriers of epigenetic modifications, are deposited onto replicating DNA remains poorly understood. Here, we describe the eSPAN method (enrichment and sequencing of protein-associated nascent DNA) in mouse embryonic stem (ES) cells and use it to detect histone deposition onto replicating DNA strands with a relatively small number of cells. We show that DNA polymerase α (Pol α), which synthesizes short primers for DNA synthesis, binds histone H3-H4 preferentially. A Pol α mutant defective in histone binding in vitro impairs the transfer of parental H3-H4 to lagging strands in both yeast and mouse ES cells. Last, dysregulation of both coding genes and noncoding endogenous retroviruses is detected in mutant ES cells defective in parental histone transfer. Together, we report an efficient eSPAN method for analysis of DNA replication-linked processes in mouse ES cells and reveal the mechanism of Pol α in parental histone transfer.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Albert Serra-Cardona
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Songlin Gan
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhou
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-long Chen
- Curie Institute, PSL Research University, CNRS UMR 3244, F-75005, Paris, France
- Sorbonne University, F-75005 Paris, France
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
48
|
Porcella SY, Koussa NC, Tang CP, Kramer DN, Srivastava P, Smith DJ. Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation. PLoS Genet 2020; 16:e1008755. [PMID: 32379761 PMCID: PMC7237047 DOI: 10.1371/journal.pgen.1008755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 05/19/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023] Open
Abstract
During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting. Half of each eukaryotic genome is replicated continuously as the leading strand, while the other half is synthesized discontinuously as Okazaki fragments on the lagging strand. The bulk of DNA replication is completed by DNA polymerases ε and δ on the leading and lagging strand respectively, while synthesis on each strand is initiated by DNA polymerase α-primase (Pol α). Using the model eukaryote S. cerevisiae, we modulate cellular levels of Pol α and interrogate the impact of this perturbation on both replication initiation on DNA synthesis and cellular viability. We observe that Pol α can associate dynamically at the replication fork for initiation on both strands. Although the initiation of both strands is widely thought to be mechanistically similar, we determine that Ctf4, a hub that connects proteins to the replication fork, stimulates lagging-strand priming to a greater extent than leading-strand initiation. We also find that decreased leading-strand initiation results in a checkpoint response that is necessary for viability when Pol α is limiting. Because the DNA replication machinery is highly conserved from budding yeast to humans, this research provides insights into how DNA replication is accomplished throughout eukaryotes.
Collapse
Affiliation(s)
- Sarina Y. Porcella
- Department of Biology, New York University, New York, NY, United States of America
| | - Natasha C. Koussa
- Department of Biology, New York University, New York, NY, United States of America
| | - Colin P. Tang
- Department of Biology, New York University, New York, NY, United States of America
| | - Daphne N. Kramer
- Department of Biology, New York University, New York, NY, United States of America
| | - Priyanka Srivastava
- Department of Biology, New York University, New York, NY, United States of America
| | - Duncan J. Smith
- Department of Biology, New York University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
49
|
Reed DR, Alexandrow MG. Myc and the Replicative CMG Helicase: The Creation and Destruction of Cancer: Myc Over-Activation of CMG Helicases Drives Tumorigenesis and Creates a Vulnerability in CMGs for Therapeutic Intervention. Bioessays 2020; 42:e1900218. [PMID: 32080866 PMCID: PMC8223603 DOI: 10.1002/bies.201900218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replicative Cdc45-MCM-GINS (CMG) helicases. Excessive stimulation of CMG helicases by Myc mismanages CMG function by diminishing the number of reserve CMGs necessary for fidelity of DNA replication and recovery from replicative stresses. One potential outcome of these events is the creation of DNA damage that alters genomic structure/function, thereby acting as a driver for tumorigenesis and tumor heterogeneity. Intriguingly, another potential outcome of this Myc-induced CMG helicase over-activation is the creation of a vulnerability in cancer whereby tumor cells specifically lack enough unused reserve CMG helicases to recover from fork-stalling drugs commonly used in chemotherapy. This review provides molecular and clinical support for this provocative hypothesis that excessive activation of CMG helicases by Myc may not only drive tumorigenesis, but also confer an exploitable "reserve CMG helicase vulnerability" that supports developing innovative CMG-focused therapeutic approaches for cancer management.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
50
|
Appanah R, Lones EC, Aiello U, Libri D, De Piccoli G. Sen1 Is Recruited to Replication Forks via Ctf4 and Mrc1 and Promotes Genome Stability. Cell Rep 2020; 30:2094-2105.e9. [PMID: 32075754 PMCID: PMC7034062 DOI: 10.1016/j.celrep.2020.01.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/06/2019] [Accepted: 01/24/2020] [Indexed: 01/21/2023] Open
Abstract
DNA replication and RNA transcription compete for the same substrate during S phase. Cells have evolved several mechanisms to minimize such conflicts. Here, we identify the mechanism by which the transcription termination helicase Sen1 associates with replisomes. We show that the N terminus of Sen1 is both sufficient and necessary for replisome association and that it binds to the replisome via the components Ctf4 and Mrc1. We generated a separation of function mutant, sen1-3, which abolishes replisome binding without affecting transcription termination. We observe that the sen1-3 mutants show increased genome instability and recombination levels. Moreover, sen1-3 is synthetically defective with mutations in genes involved in RNA metabolism and the S phase checkpoint. RNH1 overexpression suppresses defects in the former, but not the latter. These findings illustrate how Sen1 plays a key function at replication forks during DNA replication to promote fork progression and chromosome stability.
Collapse
Affiliation(s)
- Rowin Appanah
- Warwick Medical School, University of Warwick, CV4 7AL Coventry, UK
| | | | - Umberto Aiello
- Institut Jacques Monod, CNRS, UMR7592, Université Paris Diderot, Paris Sorbonne Cité, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS, UMR7592, Université Paris Diderot, Paris Sorbonne Cité, Paris, France
| | | |
Collapse
|