1
|
Zhou L, Zheng S, Rosas Bringas FR, Bakker B, Simon JE, Bakker PL, Kazemier HG, Schubert M, Roorda M, van Vugt MATM, Chang M, Foijer F. A synthetic lethal screen identifies HDAC4 as a potential target in MELK overexpressing cancers. G3 (BETHESDA, MD.) 2021; 11:jkab335. [PMID: 34550356 PMCID: PMC8664443 DOI: 10.1093/g3journal/jkab335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is frequently overexpressed in cancer, but the role of MELK in cancer is still poorly understood. MELK was shown to have roles in many cancer-associated processes including tumor growth, chemotherapy resistance, and tumor recurrence. To determine whether the frequent overexpression of MELK can be exploited in therapy, we performed a high-throughput screen using a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential when MELK is overexpressed. We identified two such genes: LAG2 and HDA3. LAG2 encodes an inhibitor of the Skp, Cullin, F-box containing (SCF) ubiquitin-ligase complex, while HDA3 encodes a subunit of the HDA1 histone deacetylase complex. We find that one of these synthetic lethal interactions is conserved in mammalian cells, as inhibition of a human homolog of HDA3 (Histone Deacetylase 4, HDAC4) is synthetically toxic in MELK overexpression cells. Altogether, our work identified a novel potential drug target for tumors that overexpress MELK.
Collapse
Affiliation(s)
- Lin Zhou
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Siqi Zheng
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Fernando R Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Judith E Simon
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Petra L Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Hinke G Kazemier
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Michael Schubert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Maurits Roorda
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| |
Collapse
|
2
|
Xie Y, Liu YK, Guo ZP, Guan H, Liu XD, Xie DF, Jiang YG, Ma T, Zhou PK. RBX1 prompts degradation of EXO1 to limit the homologous recombination pathway of DNA double-strand break repair in G1 phase. Cell Death Differ 2019; 27:1383-1397. [PMID: 31562368 PMCID: PMC7205894 DOI: 10.1038/s41418-019-0424-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 01/12/2023] Open
Abstract
End resection of DNA double-strand breaks (DSBs) to form 3′ single-strand DNA (ssDNA) is critical to initiate the homologous recombination (HR) pathway of DSB repair. HR pathway is strictly limited in the G1-phase cells because of lack of homologous DNA as the templates. Exonuclease 1 (EXO1) is the key molecule responsible for 3′ ssDNA formation of DSB end resection. We revealed that EXO1 is inactivated in G1-phase cells via ubiquitination-mediated degradation, resulting from an elevated expression level of RING-box protein 1 (RBX1) in G1 phase. The increased RBX1 significantly prompted the neddylation of Cullin1 and contributed to the G1 phase-specific degradation of EXO1. Knockdown of RBX1 remarkedly attenuated the degradation of EXO1 and increased the end resection and HR activity in γ-irradiated G1-phase cells, as demonstrated by the increased formation of RPA32, BrdU, and RAD51 foci. And EXO1 depletion mitigated DNA repair defects due to RBX1 reduction. Moreover, increased autophosphorylation of DNA-PKcs at S2056 was found to be responsible for the higher expression level of the RBX1 in the G1 phase. Inactivation of DNA-PKcs decreased RBX1 expression, and simultaneously increased EXO1 expression and DSB end resection in G1-phase cells. This study demonstrates a new mechanism for restraining the HR pathway of DNA DSB repair in G1 phase via RBX1-prompted inactivation of EXO1.
Collapse
Affiliation(s)
- Ying Xie
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410013, Changsha, China
| | - Yi-Ke Liu
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zong-Pei Guo
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Da-Fei Xie
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yi-Guo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Teng Ma
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China. .,Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149, Beijing, China.
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China. .,Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
3
|
Schwechheimer C. NEDD8-its role in the regulation of Cullin-RING ligases. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:112-119. [PMID: 29909289 DOI: 10.1016/j.pbi.2018.05.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 05/10/2023]
Abstract
The ubiquitin-related protein NEDD8 is conjugated and deconjugated to and from proteins in processes related to ubiquitin conjugation and deconjugation. Neddylation is a well-studied posttranslational modification of Cullin-RING E3 ligases (CRLs). Biochemical and structural studies aiming at understanding the role of NEDD8 in CRL function have now resulted in a convincing model of how neddylation and deneddylation antagonistically regulate CRL stability, conformation, activity as well as degradation substrate receptor exchange. Studies of the Arabidopsis thaliana deneddylation-deficient den1 mutant led to the identification of many low abundant, non-Cullin NEDD8 conjugates. Examination of neddylated AUXIN RESISTANT1 (AXR1), a prominent neddylated protein in den1, suggests, however, that AXR1 neddylation may be an auto-catalytic side-reaction of Cullin-targeted neddylation and that DEN1 may serve to antagonize non-productive, auto-neddylation from substrates to provide free NEDD8 for CRL regulation.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Plant Systems Biology, Emil-Ramann-Strasse 8, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
4
|
Lin S, Shang Z, Li S, Gao P, Zhang Y, Hou S, Qin P, Dong Z, Hu T, Chen P. Neddylation inhibitor MLN4924 induces G 2 cell cycle arrest, DNA damage and sensitizes esophageal squamous cell carcinoma cells to cisplatin. Oncol Lett 2017; 15:2583-2589. [PMID: 29434977 DOI: 10.3892/ol.2017.7616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
Inhibiting the protein neddylation pathway using the NEDD8-activating enzyme inhibitor MLN4924 represents an attractive anticancer strategy having been demonstrated to exhibit promising anticancer efficacy and with tolerable levels of toxicity; however, the mechanism by which MLN4924 inhibits cell proliferation in human esophageal squamous cell carcinoma (ESCC) cells requires further investigation. The present study revealed that MLN4924 treatment led to G2 cell cycle arrest and enhanced the protein stability of Wee1-like protein kinase and cyclin dependent protein kinase inhibitor 1A and B and p27. Furthermore, MLN4924 induced DNA damage and sensitized esophageal cancer cells to cisplatin by enhancing apoptosis. These findings extend the understanding of the function and mechanism of MLN4924 in ESCC and provide further evidence for the future development of neddylation inhibitors in clinical trials of esophageal cancer therapy, either alone or in combination.
Collapse
Affiliation(s)
- Shan Lin
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - Zhaoyang Shang
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - Shuo Li
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - Peng Gao
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - Yi Zhang
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - Shuaiheng Hou
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - Peng Qin
- Department of Immunotherapy, Henan Cancer Hospital and Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Ziming Dong
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - Tao Hu
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - Ping Chen
- Department of Basic Science of Oncology, College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
5
|
Cullin 3-Based Ubiquitin Ligases as Master Regulators of Mammalian Cell Differentiation. Trends Biochem Sci 2017; 43:95-107. [PMID: 29249570 DOI: 10.1016/j.tibs.2017.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 01/09/2023]
Abstract
Specificity of the ubiquitin proteasome system is controlled by ubiquitin E3 ligases, including their major representatives, the multisubunit cullin-RING ubiquitin (Ub) ligases (CRLs). More than 200 different CRLs are divided into seven families according to their cullin scaffolding proteins (CUL1-7) around which they are assembled. Research over two decades has revealed that different CRL families are specialized to fulfill specific cellular functions. Whereas many CUL1-based CRLs (CRL1s) ubiquitylate cell cycle regulators, CRL4 complexes often associate with chromatin to control DNA metabolism. Based on studies about differentiation programs of mesenchymal stem cells (MSCs), including myogenesis, neurogenesis, chondrogenesis, osteogenesis and adipogenesis, we propose here that CRL3 complexes evolved to fulfill a pivotal role in mammalian cell differentiation.
Collapse
|
6
|
Trade-off and flexibility in the dynamic regulation of the cullin-RING ubiquitin ligase repertoire. PLoS Comput Biol 2017; 13:e1005869. [PMID: 29149173 PMCID: PMC5711038 DOI: 10.1371/journal.pcbi.1005869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 12/01/2017] [Accepted: 11/02/2017] [Indexed: 11/19/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) catalyze the ubiquitylation of substrates many of which are degraded by the 26S proteasome. Their modular architecture enables recognition of numerous substrates via exchangeable substrate receptors that competitively bind to a cullin scaffold with high affinity. Due to the plasticity of these interactions there is ongoing uncertainty how cells maintain a flexible CRL repertoire in view of changing substrate loads. Based on a series of in vivo and in vitro studies, different groups proposed that the exchange of substrate receptors is mediated by a protein exchange factor named Cand1. Here, we have performed mathematical modeling to provide a quantitative underpinning of this hypothesis. First we show that the exchange activity of Cand1 necessarily leads to a trade-off between high ligase activity and fast receptor exchange. Supported by measurements we argue that this trade-off yields an optimal Cand1 concentration in cells where the time scale for substrate degradation becomes minimal. In a second step we show through simulations that (i) substrates bias the CRL repertoire leading to preferential assembly of ligases for which substrates are available and (ii) differences in binding affinities or substrate receptor abundances create a temporal hierarchy for the degradation of substrates. Finally, we compare the Cand1-mediated exchange cycle with an alternative architecture lacking Cand1 which indicates superiority of a system with exchange factor if substrate receptors bind substrates and the cullin scaffold in a random order. Together, our results provide general constraints for the operating regimes of molecular exchange systems and suggest that Cand1 endows the CRL network with the properties of an “on demand” system allowing cells to dynamically adjust their CRL repertoire to fluctuating substrate abundances. Cullin-RING ubiquitin ligases (CRLs) are multisubunit protein complexes where exchangeable substrate receptors (SRs) assemble on a cullin scaffold to mediate ubiquitylation and subsequent degradation of a large variety of substrates. In humans there are hundreds of different CRLs having potentially thousands of substrates. Due to the high affinity of cullin-SR interactions, it has long been a mystery how cells would maintain flexibility to sample the entire SR repertoire in order to match fluctuating substrate loads. Recent experiments indicate that the exchange of different SRs is mediated by a novel protein exchange factor (Cand1). However, the proposed biochemical function of Cand1 as a promoter of CRL activity remained difficult to reconcile with previous reports of Cand1 acting as an inhibitor of CRL activity in vitro. Here we show that these two findings are not contradictory, but that the exchange activity of Cand1 necessarily leads to a trade-off between high ligase activity and fast receptor exchange which leads us to predict an optimal Cand1 concentration and a temporal hierarchy for substrate degradation. Our results support the view that Cand1 endows the CRL network with the flexibility of an “on demand” system where relative CRL abundances are dictated by substrate availability.
Collapse
|
7
|
Meister C, Gulko MK, Köhler AM, Braus GH. The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome. Curr Genet 2016; 62:129-36. [PMID: 26497135 DOI: 10.1007/s00294-015-0525-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/29/2023]
Abstract
The COP9 signalosome (CSN) and the proteasomal LID are conserved macromolecular complexes composed of at least eight subunits with molecular weights of approximately 350 kDa. CSN and LID are part of the ubiquitin–proteasome pathway and cleave isopeptide linkages of lysine side chains on target proteins. CSN cleaves the isopeptide bond of ubiquitin-like protein Nedd8 from cullins, whereas the LID cleaves ubiquitin from target proteins sentenced for degradation. CSN and LID are structurally and functionally similar but the order of the assembly pathway seems to be different. The assembly differs in at least the last subunit joining the pre-assembled subcomplex. This review addresses the similarities and differences in structure, function and assembly of CSN and LID.
Collapse
|
8
|
Mathur R, Yen JL, Kaiser P. Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis. PLoS Genet 2015; 11:e1005727. [PMID: 26656496 PMCID: PMC4675558 DOI: 10.1371/journal.pgen.1005727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/14/2015] [Indexed: 11/24/2022] Open
Abstract
Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1. Protein ubiquitylation is the covalent attachment of the small protein ubiquitin onto other proteins and is a key regulatory pathway for most biological processes. The central components of the ubiquitylation process are the E3 ligases, which recognize substrate proteins. The best-studied E3 complexes are the SCF ligases, which are composed of 3 core components—Cdc53, Skp1, Rbx1—that assemble to the functional ligase complex by binding to one of the multiple substrate adaptors—the F-box proteins. Maintaining a balanced repertoire of diverse SCF complexes that represent the entire cellular panel of substrate adapters is challenging. Depending on the cell type, hundreds of different F-box proteins can compete for the single binding site on the common SCF core complex. Rapid degradation of F-box proteins helps in maintaining a critical level of unoccupied Cdc53/Skp1/Rbx1 core, complexes and alterations in levels of F-box proteins has been linked to diseases including cancer. Studying the yeast F-box protein Met30 as a model, we have uncovered a novel mechanism for degradation of F-box proteins. This pathway targets free F-box proteins and requires part of the SCF core. These findings add an additional layer to our understanding of regulation of multisubunit E3 ligase.
Collapse
Affiliation(s)
- Radhika Mathur
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
| | - James L. Yen
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Peter Kaiser
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
10
|
Abstract
Attachment of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins regulates numerous cellular processes including transcription, the cell cycle, stress responses, DNA repair, apoptosis, immune responses, and autophagy, to name a few. The mechanistically parallel but functionally distinct conjugation pathways typically require the concerted activities of three types of protein: E1 Ubl-activating enzymes, E2 Ubl carrier proteins, and E3 Ubl ligases. E1 enzymes initiate pathway specificity for each cascade by recognizing and activating cognate Ubls, followed by catalyzing Ubl transfer to cognate E2 protein(s). Under certain circumstances, the E2 Ubl complex can direct ligation to the target protein, but most often requires the cooperative activity of E3 ligases. Reviewed here are recent structural and functional studies that improve our mechanistic understanding of E1-, E2-, and E3-mediated Ubl conjugation.
Collapse
|
11
|
Mergner J, Schwechheimer C. The NEDD8 modification pathway in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:103. [PMID: 24711811 PMCID: PMC3968751 DOI: 10.3389/fpls.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/03/2014] [Indexed: 05/19/2023]
Abstract
NEDD8, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB), is an evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin, NEDD8 can be conjugated to and deconjugated from target proteins, but unlike ubiquitin, NEDD8 has not been reported to form chains similar to the different polymeric ubiquitin chains that have a role in a diverse set of cellular processes. NEDD8-modification is best known as a post-translational modification of the cullin subunits of cullin-RING E3 ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces a conformation change of the cullin that brings the ubiquitylation substrates into proximity of the interacting E2 conjugating enzyme. In turn, NEDD8 deconjugation destabilizes the cullin RING ligase complex allowing for the exchange of substrate recognition subunits via the exchange factor CAND1. In plants, components of the neddylation and deneddylation pathway were identified based on mutants with defects in auxin and light responses and the characterization of these mutants has been instrumental for the elucidation of the neddylation pathway. More recently, there has been evidence from animal and plant systems that NEDD8 conjugation may also regulate the behavior or fate of non-cullin substrates in a number of ways. Here, the current knowledge on NEDD8 processing, conjugation and deconjugation is presented, where applicable, in the context of specific signaling pathways from plants.
Collapse
Affiliation(s)
| | - Claus Schwechheimer
- *Correspondence: Claus Schwechheimer, Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 4, 85354 Freising, Germany e-mail:
| |
Collapse
|
12
|
Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 2013; 4:1641. [PMID: 23535662 DOI: 10.1038/ncomms2628] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 01/10/2023] Open
Abstract
Cullin-RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1-Cdc53-F-box) Cullin-RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation-deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange.
Collapse
Affiliation(s)
- Aleksandra Zemla
- Scottish Institute for Cell Signalling, Protein Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Wu S, Zhu W, Nhan T, Toth JI, Petroski MD, Wolf DA. CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun 2013; 4:1642. [PMID: 23535663 PMCID: PMC3637025 DOI: 10.1038/ncomms2636] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 02/06/2023] Open
Abstract
The combinatorial architecture of cullin 1-RING ubiquitin ligases (CRL1s), in which multiple F-box containing substrate receptors (FBPs) compete for access to CUL1, poses special challenges to assembling CRL1 complexes through high affinity protein interactions while maintaining the flexibility to dynamically sample the entire FBP repertoire. Here, using highly quantitative mass spectrometry, we demonstrate that this problem is addressed by CAND1, a factor that controls the dynamics of the global CRL1 network by promoting the assembly of newly synthesized FBPs with CUL1-RBX1 core complexes. Our studies of in vivo CRL1 dynamics and in vitro biochemical findings showing that CAND1 can displace FBPs from Cul1p suggest that CAND1 functions in a cycle that serves to exchange FBPs on CUL1 cores. We propose that this cycle assures comprehensive sampling of the entire FBP repertoire in order to maintain the CRL1 landscape, a function that we show to be critical for substrate degradation and normal physiology.
Collapse
Affiliation(s)
- Shuangding Wu
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RLJ, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 2013; 153:206-15. [PMID: 23453757 DOI: 10.1016/j.cell.2013.02.024] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
Abstract
The modular SCF (Skp1, cullin, and F box) ubiquitin ligases feature a large family of F box protein substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCF(Fbxw7) is extraordinarily stable, but, in the Nedd8-deconjugated state, the cullin-binding protein Cand1 augments its dissociation by one-million-fold. Binding and ubiquitylation assays show that Cand1 is a protein exchange factor that accelerates the rate at which Cul1-Rbx1 equilibrates with multiple F box protein-Skp1 modules. Depletion of Cand1 from cells impedes recruitment of new F box proteins to pre-existing Cul1 and profoundly alters the cellular landscape of SCF complexes. We suggest that catalyzed protein exchange may be a general feature of dynamic macromolecular machines and propose a hypothesis for how substrates, Nedd8, and Cand1 collaborate to regulate the cellular repertoire of SCF complexes.
Collapse
Affiliation(s)
- Nathan W Pierce
- Division of Biology, MC 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Enchev RI, Scott DC, da Fonseca PCA, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP. Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep 2012; 2:616-27. [PMID: 22959436 PMCID: PMC3703508 DOI: 10.1016/j.celrep.2012.08.019] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022] Open
Abstract
Skp1-Cul1-Fbox (SCF) E3 ligases are activated by ligation to the ubiquitin-like protein Nedd8, which is reversed by the deneddylating Cop9 signalosome (CSN). However, CSN also promotes SCF substrate turnover through unknown mechanisms. Through biochemical and electron microscopy analyses, we determined molecular models of CSN complexes with SCF(Skp2/Cks1) and SCF(Fbw7) and found that CSN occludes both SCF functional sites-the catalytic Rbx1-Cul1 C-terminal domain and the substrate receptor. Indeed, CSN binding prevents SCF interactions with E2 enzymes and a ubiquitination substrate, and it inhibits SCF-catalyzed ubiquitin chain formation independent of deneddylation. Importantly, CSN prevents neddylation of the bound cullin, unless binding of a ubiquitination substrate triggers SCF dissociation and neddylation. Taken together, the results provide a model for how reciprocal regulation sensitizes CSN to the SCF assembly state and inhibits a catalytically competent SCF until a ubiquitination substrate drives its own degradation by displacing CSN, thereby promoting cullin neddylation and substrate ubiquitination.
Collapse
Affiliation(s)
- Radoslav I. Enchev
- ETH-Zurich, Institute of Biochemistry, Department of Biology, Schafmattstr. 18, CH-8093 Zurich, Switzerland
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Daniel C. Scott
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Paula C. A. da Fonseca
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Anne Schreiber
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Julie K. Monda
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brenda A. Schulman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matthias Peter
- ETH-Zurich, Institute of Biochemistry, Department of Biology, Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | - Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
16
|
Girdwood D, Robertson M, Gordon C. Constitutively active Cullin-RING-Ligases fail to rescue loss of NEDD8 conjugation in Schizosaccharomyces pombe. FEBS Lett 2012; 586:1522-8. [PMID: 22673520 DOI: 10.1016/j.febslet.2012.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/08/2012] [Accepted: 04/11/2012] [Indexed: 11/30/2022]
Abstract
In fission yeast, the only known essential function of Ned8p is the modification of the cullin, Pcu1p, and subsequent Cullin-RING-Ligase (CRL) activation and substrate ubiquitination. We show here that a functional Pcu1p mutant, deleted for its C-terminal autoinhibitory domain, which negates the requirement of neddylation for ligase activity, is unable to rescue the loss of neddylation. These findings suggest that the neddylation of non-cullin substrate(s) are required for Schizosaccharomyces pombe viability.
Collapse
Affiliation(s)
- David Girdwood
- Medical Research Council Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
17
|
Neddylation and CAND1 independently stimulate SCF ubiquitin ligase activity in Candida albicans. EUKARYOTIC CELL 2011; 11:42-52. [PMID: 22080453 DOI: 10.1128/ec.05250-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SCF (Skp1-cullin/Cdc53-F-box protein) ubiquitin ligases bind substrates via the variable F-box protein and, in conjunction with the RING domain protein Rbx1 and the ubiquitin-conjugating enzyme Ubc3/Cdc34, catalyze substrate ubiquitination. The cullin subunit can be modified covalently by conjugation of the ubiquitin-like protein Rub1/NEDD8 (neddylation) or bound noncovalently by the protein CAND1 (cullin-associated, neddylation-dissociated). Expression of the Candida albicans CAND1 gene homolog CaTIP120 in Saccharomyces cerevisiae is toxic only in the presence of CaCdc53, consistent with a specific interaction between CaTip120 and CaCdc53. To genetically analyze this system in C. albicans, we deleted the homologs of RUB1/NEDD8, TIP120/CAND1, and the deneddylase gene JAB1, and we also generated a temperature-sensitive allele of the essential CaCDC53 gene by knock-in site-directed mutagenesis. Deletion of CaRUB1 and CaTIP120 caused morphological, growth, and protein degradation phenotypes consistent with a reduction in SCF ubiquitin ligase activity. Furthermore, the double Carub1(-/-) Catip120(-/-) mutant was more defective in SCF activity than either individual deletion mutant. These results indicate that CAND1 stimulates SCF ubiquitin ligase activity and that it does so independently of neddylation. Our data do not support a role for CAND1 in the protection of either the F-box protein or cullin from degradation but are consistent with the suggested role of CAND1 in SCF complex remodeling.
Collapse
|
18
|
Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 2011; 334:674-8. [PMID: 21940857 PMCID: PMC3214010 DOI: 10.1126/science.1209307] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.
Collapse
Affiliation(s)
- Daniel C Scott
- Structural Biology Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
19
|
Rabut G, Le Dez G, Verma R, Makhnevych T, Knebel A, Kurz T, Boone C, Deshaies RJ, Peter M. The TFIIH subunit Tfb3 regulates cullin neddylation. Mol Cell 2011; 43:488-95. [PMID: 21816351 PMCID: PMC3186349 DOI: 10.1016/j.molcel.2011.05.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/04/2011] [Accepted: 05/16/2011] [Indexed: 10/17/2022]
Abstract
Cullin proteins are scaffolds for the assembly of multisubunit ubiquitin ligases, which ubiquitylate a large number of proteins involved in widely varying cellular functions. Multiple mechanisms cooperate to regulate cullin activity, including neddylation of their C-terminal domain. Interestingly, we found that the yeast Cul4-type cullin Rtt101 is not only neddylated but also ubiquitylated, and both modifications promote Rtt101 function in vivo. Surprisingly, proper modification of Rtt101 neither correlated with catalytic activity of the RING domain of Hrt1 nor required the Nedd8 ligase Dcn1. Instead, ubiquitylation of Rtt101 was dependent on the ubiquitin-conjugating enzyme Ubc4, while efficient neddylation involves the RING domain protein Tfb3, a subunit of the transcription factor TFIIH. Tfb3 also controls Cul3 neddylation and activity in vivo, and physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 and the Hrt1/Rtt101 complex. Together, these results suggest that the conserved RING domain protein Tfb3 controls activation of a subset of cullins.
Collapse
Affiliation(s)
- Gwenaël Rabut
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Girdwood D, Xirodimas DP, Gordon C. The essential functions of NEDD8 are mediated via distinct surface regions, and not by polyneddylation in Schizosaccharomyces pombe. PLoS One 2011; 6:e20089. [PMID: 21655279 PMCID: PMC3105002 DOI: 10.1371/journal.pone.0020089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/15/2011] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-like protein NEDD8 is highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. NEDD8 conjugation to cullin proteins is a prerequisite for cullin based E3 ubiquitin ligase activity, and essential for S. pombe viability. Here, we have performed alanine scanning mutagenesis of all conserved surface residues and show that the majority of essential residues were located around the hydrophobic patch and the C-terminus. However, we further identified essential residues not previously reported to be involved in ubiquitin ligase regulation that importantly do not prevent Ned8p conjugation. We also find that mutation of all conserved lysine residues in Ned8p, did not affect yeast viability, suggesting that mono-neddylation is sufficient for yeast viability under most conditions.
Collapse
Affiliation(s)
- David Girdwood
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
21
|
Liu Y, Nakatsukasa K, Kotera M, Kanada A, Nishimura T, Kishi T, Mimura S, Kamura T. Non-SCF-type F-box protein Roy1/Ymr258c interacts with a Rab5-like GTPase Ypt52 and inhibits Ypt52 function. Mol Biol Cell 2011; 22:1575-84. [PMID: 21389113 PMCID: PMC3084679 DOI: 10.1091/mbc.e10-08-0716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Skp1/Cul1/F-box (SCF)-type F-box proteins are a component of the Cullin-RING SCF ubiquitin E3 ligase, which is involved in numerous cellular processes. However, the function of non-SCF-type F-box proteins remains largely unknown. The Rab5-like small guanosine 5'-triphosphatase Vps21/Ypt51 is a key regulator of intracellular transportation; however, deletion of its isoforms, Ypt52 and Ypt53, results in only a modest inhibition of intracellular trafficking. The function of these proteins therefore remains largely elusive. Here we analyze the role of a previously uncharacterized non-SCF-type F-box protein, Roy1/Ymr258c, in cell growth and intracellular transport in Saccharomyces cerevisiae. Roy1 binds to Ypt52 under physiological conditions, and Skp1 is indispensable for the association of Roy1 with Ypt52. The vps21Δ yeast cells exhibit severe deficiencies in cell growth and intracellular trafficking, whereas simultaneous deletion of roy1 alleviates the defects caused by deletion of vps21. However, additional disruption of ypt52 in roy1Δvps21Δ cells largely suppresses the cell growth and trafficking observed in roy1Δvps21Δ cells. We demonstrate that Roy1 interacts with guanosine 5'-diphosphate-bound and nucleotide-free Ypt52 and thereby inhibits the formation of guanosine 5'-triphosphate-bound, active Ypt52. These results thus indicate that Roy1 negatively modulates cell viability and intracellular transport by suppressing Ypt52.
Collapse
Affiliation(s)
- Yuan Liu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bennett EJ, Rush J, Gygi SP, Harper JW. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 2011; 143:951-65. [PMID: 21145461 DOI: 10.1016/j.cell.2010.11.017] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/21/2010] [Accepted: 10/29/2010] [Indexed: 11/28/2022]
Abstract
Dynamic reorganization of signaling systems frequently accompanies pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex absolute quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules, whereas only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization.
Collapse
Affiliation(s)
- Eric J Bennett
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
23
|
New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1. Genetics 2010; 187:701-15. [PMID: 21196523 DOI: 10.1534/genetics.110.125302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cdc34 ubiquitin-conjugating enzyme plays a central role in progression of the cell cycle. Through analysis of the phenotype of a mutant missing a highly conserved sequence motif within the catalytic domain of Cdc34, we discovered previously unrecognized levels of regulation of the Ace2 transcription factor and the cyclin-dependent protein kinase inhibitor Sic1. In cells carrying the Cdc34(tm) mutation, which alters the conserved sequence, the cyclin-dependent protein kinase inhibitor Sic1, an SCF(Cdc4) substrate, has a shorter half-life, while the cyclin Cln1, an SCF(Grr1) substrate, has a longer half-life than in wild-type cells. Expression of the SIC1 gene cluster, which is regulated by Swi5 and Ace2 transcription factors, is induced in CDC34(tm) cells. Levels of Swi5, Ace2, and the SCF(Grr1) targets Cln1 and Cln2 are elevated in Cdc34(tm) cells, and loss of Grr1 causes an increase in Ace2 levels. Sic1 levels are similar in CDC34(tm) ace2Δ and wild-type cells, explaining a paradoxical increase in the steady-state level of Sic1 protein despite its reduced half-life. A screen for mutations that interact with CDC34(tm) uncovered novel regulators of Sic1, including genes encoding the polyubiquitin chain receptors Rad23 and Rpn10.
Collapse
|
24
|
Helmstaedt K, Schwier EU, Christmann M, Nahlik K, Westermann M, Harting R, Grond S, Busch S, Braus GH. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Mol Biol Cell 2010; 22:153-64. [PMID: 21119001 PMCID: PMC3016973 DOI: 10.1091/mbc.e10-08-0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left.
Collapse
Affiliation(s)
- Kerstin Helmstaedt
- Institute of Microbiology and Genetics, Georg-August-Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nie L, Zhao Y, Wu W, Yang YZ, Wang HC, Sun XH. Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res 2010; 21:754-69. [PMID: 21119685 DOI: 10.1038/cr.2010.165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Notch signaling controls multiple developmental processes, thus demanding versatile functions. We have previously shown that this may be partly achieved by accelerating ubiquitin-mediated degradation of important regulators of differentiation. However, the underlying mechanism was unknown. We now find that Notch signaling transcriptionally activates the gene encoding ankyrin-repeat SOCS box-containing protein 2 (Asb2). Asb2 promotes the ubiquitination of Notch targets such as E2A and Janus kinase (Jak) 2, and a dominant-negative (DN) mutant of Asb2 blocks Notch-induced degradation of these proteins. Asb2 likely binds Jak2 directly but associates with E2A through Skp2. We next provide evidence to suggest that Asb2 bridges the formation of non-canonical cullin-based complexes through interaction with not only ElonginB/C and Cullin (Cul) 5, but also the F-box-containing protein, Skp2, which is known to associate with Skp1 and Cul1. Consistently, ablating the function of Cul1 or Cul5 using DN mutants or siRNAs protected both E2A and Jak2 from Asb2-mediated or Notch-induced degradation. By shifting monomeric E3 ligase complexes to dimeric forms through activation of Asb2 transcription, Notch could effectively control the turnover of a variety of substrates and it exerts diverse effects on cell proliferation and differentiation.
Collapse
Affiliation(s)
- Lei Nie
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Braus GH, Irniger S, Bayram O. Fungal development and the COP9 signalosome. Curr Opin Microbiol 2010; 13:672-6. [PMID: 20934903 DOI: 10.1016/j.mib.2010.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022]
Abstract
The conserved COP9 signalosome (CSN) multiprotein complex is located at the interface between cellular signaling, protein modification, life span and the development of multicellular organisms. CSN is required for light-controlled responses in filamentous fungi. This includes the circadian rhythm of Neurospora crassa or the repression of sexual development by light in Aspergillus nidulans. In contrast to plants and animals, CSN is not essential for fungal viability. Therefore fungi are suitable models to study CSN composition, activity and cellular functions and its role in light controlled development.
Collapse
Affiliation(s)
- Gerhard H Braus
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
27
|
Scott DC, Monda JK, Grace CRR, Duda DM, Kriwacki RW, Kurz T, Schulman BA. A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell 2010; 39:784-96. [PMID: 20832729 DOI: 10.1016/j.molcel.2010.08.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/29/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
In ubiquitin-like protein (UBL) cascades, a thioester-linked E2∼UBL complex typically interacts with an E3 enzyme for UBL transfer to the target. Here we demonstrate a variant mechanism, whereby the E2 Ubc12 functions with two E3s, Hrt1 and Dcn1, for ligation of the UBL Rub1 to Cdc53's WHB subdomain. Hrt1 functions like a conventional RING E3, with its N terminus recruiting Cdc53 and C-terminal RING activating Ubc12∼Rub1. Dcn1's "potentiating neddylation" domain (Dcn1(P)) acts as an additional E3, reducing nonspecific Hrt1-mediated Ubc12∼Rub1 discharge and directing Ubc12's active site to Cdc53. Crystal structures of Dcn1(P)-Cdc53(WHB) and Ubc12 allow modeling of a catalytic complex, supported by mutational data. We propose that Dcn1's interactions with both Cdc53 and Ubc12 would restrict the otherwise flexible Hrt1 RING-bound Ubc12∼Rub1 to a catalytically competent orientation. Our data reveal mechanisms by which two E3s function synergistically to promote UBL transfer from one E2 to a target.
Collapse
Affiliation(s)
- Daniel C Scott
- Howard Hughes Medical Institute, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|