1
|
Wirshing ACE, Goode BL. Improved tools for live imaging of F-actin structures in yeast. Mol Biol Cell 2024; 35:mr7. [PMID: 39024291 PMCID: PMC11449393 DOI: 10.1091/mbc.e24-05-0212-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
For over 20 years, the most effective probe for live imaging of yeast actin cables has been Abp140-GFP. Here, we report that endogenously-tagged Abp140-GFP poorly decorates actin patches and cables in the bud compartment of yeast cells, while robustly decorating these structures in the mother cell. Using mutagenesis, we found that asymmetric decoration by Abp140 requires F-actin binding. By expressing integrated Bni1-Bnr1 and Bnr1-Bni1 chimeras, we demonstrate that asymmetric cable decoration by Abp140 also does not depend on which formin assembles the cables in each compartment. In contrast, the short actin-binding fragment of Abp140 (known as "Lifeact"), fused to 1x or 3xmNeonGreen and expressed from the endogenous ABP140 promoter, uniformly decorates patches and cables in both compartments. Further, this probe dramatically improves live imaging detection of cables (and patches) without altering their in vivo dynamics or cell growth. Improved detection allows us to visualize cables growing inward from the cell cortex and dynamically interacting with the vacuole. This probe also robustly decorates the cytokinetic actomyosin ring. Because Lifeact-3xmNeon expressed at relatively low levels provides intense labeling of cellular F-actin structures, this tool may improve live imaging in other organisms where higher levels of Lifeact expression are detrimental.
Collapse
Affiliation(s)
- Alison C. E. Wirshing
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
2
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Höpfler M, Hegde RS. Control of mRNA fate by its encoded nascent polypeptide. Mol Cell 2023; 83:2840-2855. [PMID: 37595554 PMCID: PMC10501990 DOI: 10.1016/j.molcel.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.
Collapse
|
4
|
Höpfler M, Absmeier E, Peak-Chew SY, Vartholomaiou E, Passmore LA, Gasic I, Hegde RS. Mechanism of ribosome-associated mRNA degradation during tubulin autoregulation. Mol Cell 2023; 83:2290-2302.e13. [PMID: 37295431 PMCID: PMC10403363 DOI: 10.1016/j.molcel.2023.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Microtubules play crucial roles in cellular architecture, intracellular transport, and mitosis. The availability of free tubulin subunits affects polymerization dynamics and microtubule function. When cells sense excess free tubulin, they trigger degradation of the encoding mRNAs, which requires recognition of the nascent polypeptide by the tubulin-specific ribosome-binding factor TTC5. How TTC5 initiates the decay of tubulin mRNAs is unknown. Here, our biochemical and structural analysis reveals that TTC5 recruits the poorly studied protein SCAPER to the ribosome. SCAPER, in turn, engages the CCR4-NOT deadenylase complex through its CNOT11 subunit to trigger tubulin mRNA decay. SCAPER mutants that cause intellectual disability and retinitis pigmentosa in humans are impaired in CCR4-NOT recruitment, tubulin mRNA degradation, and microtubule-dependent chromosome segregation. Our findings demonstrate how recognition of a nascent polypeptide on the ribosome is physically linked to mRNA decay factors via a relay of protein-protein interactions, providing a paradigm for specificity in cytoplasmic gene regulation.
Collapse
Affiliation(s)
- Markus Höpfler
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Eva Absmeier
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Sew-Yeu Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ivana Gasic
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
Moreno-Velásquez SD, Pérez JC. Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans. mSphere 2021; 6:e0041121. [PMID: 34232078 PMCID: PMC8386430 DOI: 10.1128/msphere.00411-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
The study of gene expression in fungi has typically relied on measuring transcripts in populations of cells. A major disadvantage of this approach is that the transcripts' spatial distribution and stochastic variation among individual cells within a clonal population is lost. Traditional fluorescence in situ hybridization techniques have been of limited use in fungi due to poor specificity and high background signal. Here, we report that in situ hybridization chain reaction (HCR), a method that employs split-initiator probes to trigger signal amplification upon mRNA-probe hybridization, is ideally suited for the imaging and quantification of low-abundance transcripts at single-cell resolution in the fungus Candida albicans. We show that HCR allows the absolute quantification of transcripts within a cell by microscopy as well as their relative quantification by flow cytometry. mRNA imaging also revealed the subcellular localization of specific transcripts. Furthermore, we establish that HCR is amenable to multiplexing by visualizing different transcripts in the same cell. Finally, we combine HCR with immunostaining to image specific mRNAs and proteins simultaneously within a single C. albicans cell. The fungus is a major pathogen in humans where it can colonize and invade mucosal surfaces and most internal organs. The technical development that we introduce, therefore, paves the way to study the patterns of expression of pathogenesis-associated C. albicans genes in infected organs at single-cell resolution. IMPORTANCE Tools to visualize and quantify transcripts at single-cell resolution have enabled the dissection of spatiotemporal patterns of gene expression in animal cells and tissues. Yet the accurate quantification of transcripts at single-cell resolution remains challenging for the much smaller microbial cells. Widespread phenomena such as stochastic variation in transcript levels among cells-even within a clonal population-seem to play important roles in the biology of many microorganisms. Investigating this process requires microbial cell-optimized procedures to image and measure mRNAs at single-molecule resolution. In this report, we adapt and expand in situ hybridization chain reaction (HCR) combined with split-initiator probes to visualize transcripts in the human-pathogenic fungus Candida albicans at high resolution.
Collapse
Affiliation(s)
- Sergio D. Moreno-Velásquez
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
| | - J. Christian Pérez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Pradhan AK, Kandasamy G, Chatterjee U, Bharadwaj A, Mathew SJ, Dohmen RJ, Palanimurugan R. Ribosome-associated quality control mediates degradation of the premature translation termination product Orf1p of ODC antizyme mRNA. FEBS Lett 2021; 595:2015-2033. [PMID: 34109626 DOI: 10.1002/1873-3468.14147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022]
Abstract
Decoding of OAZ1 (Ornithine decarboxylase AntiZyme 1) mRNA, which harbours two open reading frames (ORF1 and ORF2) interrupted by a naturally occurring Premature Termination Codon (PTC), produces an 8 kDa truncated polypeptide termed Orf1p, unless the PTC is bypassed by +1 ribosomal frameshifting. In this study, we identified Orf1p as an endogenous ubiquitin-dependent substrate of the 26S proteasome both in yeast and mammalian cells. Surprisingly, we found that the ribosome-associated quality control factor Rqc1 and the ubiquitin ligase Ltn1 are critical for Orf1p degradation. In addition, the cytosolic protein quality control chaperone system Hsp70/Hsp90 and their corresponding co-chaperones Sse1, Fes1, Sti1 and Cpr7 are also required for Orf1p proteolysis. Our study finds that Orf1p, which is naturally synthesized as a result of a premature translation termination event, requires the coordinated role of both ribosome-associated and cytosolic protein quality control factors for its degradation.
Collapse
Affiliation(s)
| | | | | | - Anushree Bharadwaj
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sam J Mathew
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - R Jürgen Dohmen
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, Center of Molecular Biosciences, University of Cologne, Germany
| | - R Palanimurugan
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, India
| |
Collapse
|
7
|
A Dual Protein-mRNA Localization Screen Reveals Compartmentalized Translation and Widespread Co-translational RNA Targeting. Dev Cell 2020; 54:773-791.e5. [PMID: 32783880 DOI: 10.1016/j.devcel.2020.07.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Local translation allows spatial control of gene expression. Here, we performed a dual protein-mRNA localization screen, using smFISH on 523 human cell lines expressing GFP-tagged genes. 32 mRNAs displayed specific cytoplasmic localizations with local translation at unexpected locations, including cytoplasmic protrusions, cell edges, endosomes, Golgi, the nuclear envelope, and centrosomes, the latter being cell-cycle-dependent. Automated classification of mRNA localization patterns revealed a high degree of intercellular heterogeneity. Surprisingly, mRNA localization frequently required ongoing translation, indicating widespread co-translational RNA targeting. Interestingly, while P-body accumulation was frequent (15 mRNAs), four mRNAs accumulated in foci that were distinct structures. These foci lacked the mature protein, but nascent polypeptide imaging showed that they were specialized translation factories. For β-catenin, foci formation was regulated by Wnt, relied on APC-dependent polysome aggregation, and led to nascent protein degradation. Thus, translation factories uniquely regulate nascent protein metabolism and create a fine granular compartmentalization of translation.
Collapse
|
8
|
Specific Anchoring and Local Translation of Poxviral ATI mRNA at Cytoplasmic Inclusion Bodies. J Virol 2020; 94:JVI.01671-19. [PMID: 31776279 DOI: 10.1128/jvi.01671-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
On-site translation of mRNAs provides an efficient means of subcellular protein localization. In eukaryotic cells, the transport of cellular mRNAs to membraneless sites usually occurs prior to translation and involves specific sequences known as zipcodes that interact with RNA binding and motor proteins. Poxviruses replicate in specialized cytoplasmic factory regions where DNA synthesis, transcription, translation, and virion assembly occur. Some poxviruses embed infectious virus particles outside of factories in membraneless protein bodies with liquid gel-like properties known as A-type inclusions (ATIs) that are comprised of numerous copies of the viral 150-kDa ATI protein. Here, we demonstrate by fluorescent in situ hybridization that these inclusions are decorated with ATI mRNA. On-site translation is supported by the localization of a translation initiation factor eIF4E and by ribosome-bound nascent chain ribopuromycylation. Nascent peptide-mediated anchoring of ribosome-mRNA translation complexes to the inclusions is suggested by release of the mRNA by puromycin, a peptide chain terminator. Following puromycin washout, relocalization of ATI mRNA at inclusions depends on RNA and protein synthesis but requires neither microtubules nor actin polymerization. Further studies show that the ATI mRNAs remain near the sites of transcription in the factory regions when stop codons are introduced near the N terminus of the ATI or large truncations are made at the N or C termini. Instead of using a zipcode, we propose that ATI mRNA localization is mediated by ribosome-bound nascent ATI polypeptides that interact with ATI protein in inclusions and thereby anchor the complex for multiple rounds of mRNA translation.IMPORTANCE Poxvirus genome replication, transcription, translation, and virion assembly occur at sites within the cytoplasm known as factories. Some poxviruses sequester infectious virions outside of the factories in inclusion bodies comprised of numerous copies of the 150-kDa ATI protein, which can provide stability and protection in the environment. We provide evidence that ATI mRNA is anchored by nascent peptides and translated at the inclusion sites rather than in virus factories. Association of ATI mRNA with inclusion bodies allows multiple rounds of local translation and prevents premature ATI protein aggregation and trapping of virions within the factory.
Collapse
|
9
|
Manzano-López J, Matellán L, Álvarez-Llamas A, Blanco-Mira JC, Monje-Casas F. Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan. Nat Cell Biol 2019; 21:952-965. [DOI: 10.1038/s41556-019-0364-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
|
10
|
Stahl T, Hümmer S, Ehrenfeuchter N, Mittal N, Fucile G, Spang A. Asymmetric distribution of glucose transporter mRNA provides a growth advantage in yeast. EMBO J 2019; 38:e100373. [PMID: 30910878 PMCID: PMC6517814 DOI: 10.15252/embj.2018100373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 01/09/2023] Open
Abstract
Asymmetric localization of mRNA is important for cell fate decisions in eukaryotes and provides the means for localized protein synthesis in a variety of cell types. Here, we show that hexose transporter mRNAs are retained in the mother cell of S. cerevisiae until metaphase-anaphase transition (MAT) and then are released into the bud. The retained mRNA was translationally less active but bound to ribosomes before MAT Importantly, when cells were shifted from starvation to glucose-rich conditions, HXT2 mRNA, but none of the other HXT mRNAs, was enriched in the bud after MAT This enrichment was dependent on the Ras/cAMP/PKA pathway, the APC ortholog Kar9, and nuclear segregation into the bud. Competition experiments between strains that only expressed one hexose transporter at a time revealed that HXT2 only cells grow faster than their counterparts when released from starvation. Therefore, asymmetric distribution of HXT2 mRNA provides a growth advantage for daughters, who are better prepared for nutritional changes in the environment. Our data provide evidence that asymmetric mRNA localization is an important factor in determining cellular fitness.
Collapse
Affiliation(s)
- Timo Stahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Geoffrey Fucile
- SIB Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
O'Donnell AF, Schmidt MC. Helping daughters succeed: asymmetric distribution of glucose transporter mRNA. EMBO J 2019; 38:embj.2019102063. [PMID: 31036552 DOI: 10.15252/embj.2019102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rapidly proliferating cells growing by glucose fermentation must first transport glucose into the cell. Both budding yeast and human tumor cells utilize members of a conserved family of glucose transporters. In this issue of The EMBO Journal, Stahl et al (2019) reveal that budding yeast cells confer a growth advantage to their daughters using a novel mechanism, the asymmetric distribution to the daughter cell of the mRNA for a specific glucose transporter.
Collapse
Affiliation(s)
- Allyson F O'Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
The ABD on the nascent polypeptide and PH domain are required for the precise Anillin localization in Drosophila syncytial blastoderm. Sci Rep 2018; 8:12910. [PMID: 30150713 PMCID: PMC6110771 DOI: 10.1038/s41598-018-31106-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/03/2018] [Indexed: 01/19/2023] Open
Abstract
Targeting proteins to regions where they are required is essential for proper development of organisms. For achievement of this, subcellular mRNA localization is one of the critical mechanisms. Subcellular mRNA localization is an evolutionarily conserved phenomenon from E. coli to human and contributes to limiting the regions at which its products function and efficiently supplies substrates for protein translation. During early Drosophila embryogenesis, while 71% of the 3370 mRNAs analyzed have shown prominent subcellular localization, the underlying molecular mechanisms have not been elucidated. Here, we reveal that anillin mRNA, one of the localized mRNAs in early Drosophila embryo, localizes to the tip of the pseudo-cleavage furrow in the Drosophila syncytial blastoderm using in situ hybridization combined with immunohistochemistry. Localization analyses with transgenic fly lines carrying a series of deletion mRNAs indicate that this localization is dependent on its own nascent polypeptides including the actin binding domain (ABD). In addition to the mRNA localization, it is revealed that the pleckstrin homology (PH) domain of Anillin protein is also required for its proper localization. Thus, we indicate that the precise localization of Anillin protein is tightly regulated by the ABD on the nascent polypeptide and PH domain in the Drosophila syncytial blastoderm.
Collapse
|
13
|
Sahoo PK, Smith DS, Perrone-Bizzozero N, Twiss JL. Axonal mRNA transport and translation at a glance. J Cell Sci 2018; 131:jcs196808. [PMID: 29654160 PMCID: PMC6518334 DOI: 10.1242/jcs.196808] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Localization and translation of mRNAs within different subcellular domains provides an important mechanism to spatially and temporally introduce new proteins in polarized cells. Neurons make use of this localized protein synthesis during initial growth, regeneration and functional maintenance of their axons. Although the first evidence for protein synthesis in axons dates back to 1960s, improved methodologies, including the ability to isolate axons to purity, highly sensitive RNA detection methods and imaging approaches, have shed new light on the complexity of the transcriptome of the axon and how it is regulated. Moreover, these efforts are now uncovering new roles for locally synthesized proteins in neurological diseases and injury responses. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of how axonal mRNA transport and translation are regulated, and discuss their emerging links to neurological disorders and neural repair.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| | - Deanna S Smith
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, MSC08 4740, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| |
Collapse
|
14
|
Abstract
3'-untranslated regions (3'-UTRs) are the noncoding parts of mRNAs. Compared to yeast, in humans, median 3'-UTR length has expanded approximately tenfold alongside an increased generation of alternative 3'-UTR isoforms. In contrast, the number of coding genes, as well as coding region length, has remained similar. This suggests an important role for 3'-UTRs in the biology of higher organisms. 3'-UTRs are best known to regulate diverse fates of mRNAs, including degradation, translation, and localization, but they can also function like long noncoding or small RNAs, as has been shown for whole 3'-UTRs as well as for cleaved fragments. Furthermore, 3'-UTRs determine the fate of proteins through the regulation of protein-protein interactions. They facilitate cotranslational protein complex formation, which establishes a role for 3'-UTRs as evolved eukaryotic operons. Whereas bacterial operons promote the interaction of two subunits, 3'-UTRs enable the formation of protein complexes with diverse compositions. All of these 3'-UTR functions are accomplished by effector proteins that are recruited by RNA-binding proteins that bind to 3'-UTR cis-elements. In summary, 3'-UTRs seem to be major players in gene regulation that enable local functions, compartmentalization, and cooperativity, which makes them important tools for the regulation of phenotypic diversity of higher organisms.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
15
|
Urbanek MO, Michalak M, Krzyzosiak WJ. 2D and 3D FISH of expanded repeat RNAs in human lymphoblasts. Methods 2017; 120:49-57. [PMID: 28404480 DOI: 10.1016/j.ymeth.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
The first methods for visualizing RNAs within cells were designed for simple imaging of specific transcripts in cells or tissues and since then significant technical advances have been made in this field. Today, high-resolution images can be obtained, enabling visualization of single transcript molecules, quantitative analyses of images, and precise localization of RNAs within cells as well as co-localization of transcripts with specific proteins or other molecules. In addition, tracking of RNA dynamics within single cell has become possible. RNA imaging techniques have been utilized for investigating the role of mutant RNAs in a number of human disorders caused by simple microsatellite expansions. These diseases include myotonic dystrophy type 1 and 2, amyotrophic lateral sclerosis/frontotemporal dementia, fragile X-associated tremor/ataxia syndrome, and Huntington's disease. Mutant RNAs with expanded repeats tend to aggregate predominantly within cell nuclei, forming structures called RNA foci. In this study, we demonstrate methods for fluorescent visualization of RNAs in both fixed and living cells using the example of RNAs containing various expanded repeat tracts (CUG, CCUG, GGGGCC, CGG, and CAG) from experiment design to image analysis. We describe in detail 2D and 3D fluorescence in situ hybridization (FISH) protocols for imaging expanded repeats RNAs, and we review briefly live imaging techniques used to characterize RNA foci formed by mutant RNAs. These methods could be used to image the entire cellular pathway of RNAs, from transcription to degradation.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Michal Michalak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
16
|
Eliscovich C, Singer RH. RNP transport in cell biology: the long and winding road. Curr Opin Cell Biol 2017; 45:38-46. [PMID: 28258033 DOI: 10.1016/j.ceb.2017.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 01/08/2023]
Abstract
Regulation of gene expression is key determinant to cell structure and function. RNA localization, where specific mRNAs are transported to subcellular regions and then translated, is highly conserved in eukaryotes ranging from yeast to extremely specialized and polarized cells such as neurons. Messenger RNA and associated proteins (mRNP) move from the site of transcription in the nucleus to their final destination in the cytoplasm both passively through diffusion and actively via directed transport. Dysfunction of RNA localization, transport and translation machinery can lead to pathology. Single-molecule live-cell imaging techniques have revealed unique features of this journey with unprecedented resolution. In this review, we highlight key recent findings that have been made using these approaches and possible implications for spatial control of gene function.
Collapse
Affiliation(s)
- Carolina Eliscovich
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States; Current address: Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States; Janelia Research Campus of the HHMI, Ashburn, VA, 20147, United States.
| |
Collapse
|
17
|
Heinrich S, Sidler CL, Azzalin CM, Weis K. Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing. RNA (NEW YORK, N.Y.) 2017; 23:134-141. [PMID: 28096443 PMCID: PMC5238788 DOI: 10.1261/rna.057786.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/03/2016] [Indexed: 05/17/2023]
Abstract
The binding of sequence-specific RNA-interacting proteins, such as the bacteriophage MS2 or PP7 coat proteins, to their corresponding target sequences has been extremely useful and widely used to visualize single mRNAs in vivo. However, introduction of MS2 stem-loops into yeast mRNAs has recently been shown to lead to the accumulation of RNA fragments, suggesting that the loops impair mRNA decay. This result was questioned, because fragment occurrence was mainly assessed using ensemble methods, and their cellular localization and its implications had not been addressed on a single transcript level. Here, we demonstrate that the introduction of either MS2 stem-loops (MS2SL) or PP7 stem-loops (PP7SL) can affect the processing and subcellular localization of mRNA. We use single-molecule fluorescence in situ hybridization (smFISH) to determine the localization of three independent mRNAs tagged with the stem-loop labeling systems in glucose-rich and glucose starvation conditions. Transcripts containing MS2SL or PP7SL display aberrant localization in both the nucleus and the cytoplasm. These defects are most prominent in glucose starvation conditions, with nuclear mRNA processing being altered and stem-loop fragments abnormally enriching in processing bodies (PBs). The mislocalization of SL-containing RNAs is independent of the presence of the MS2 or PP7 coat protein (MCP or PCP).
Collapse
Affiliation(s)
| | | | - Claus M Azzalin
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Karsten Weis
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Haimovich G, Zabezhinsky D, Haas B, Slobodin B, Purushothaman P, Fan L, Levin JZ, Nusbaum C, Gerst JE. Use of the MS2 aptamer and coat protein for RNA localization in yeast: A response to "MS2 coat proteins bound to yeast mRNAs block 5' to 3' degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system". RNA (NEW YORK, N.Y.) 2016; 22:660-6. [PMID: 26968626 PMCID: PMC4836641 DOI: 10.1261/rna.055095.115] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 05/17/2023]
Abstract
The MS2 system has been extensively used to visualize single mRNA molecules in live cells and follow their localization and behavior. In their Letter to the Editor recently published, Garcia and Parker suggest that use of the MS2 system may yield erroneous mRNA localization results due to the accumulation of 3' decay products. Here we cite published works and provide new data which demonstrate that this is not a phenomenon general to endogenously expressed MS2-tagged transcripts, and that some of the results obtained in their study could have arisen from artifacts of gene expression.
Collapse
Affiliation(s)
- Gal Haimovich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dmitry Zabezhinsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Brian Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Boris Slobodin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Lin Fan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Joshua Z Levin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
20
|
Abstract
Mitochondria are the powerhouse of cells as they produce the bulk of ATP which is consumed by the cell. They form a highly interconnected network that is governed by fission and fusion processes. In addition, mitochondria and the endoplasmic reticulum (ER) are found in close proximity to each other and it is thought that they maintain contact sites to exchange molecules. The regulation and the function of these contact sites need to be further explored. The small GTPase Arf1 (ADP-ribosylation factor 1), which is best known for its essential role in the generation of coatomer protein I (COPI)-coated vesicles at the Golgi complex appears to be also essential for the dynamics and maintenance of mitochondrial function, presumably at ER-mitochondrial contact sites.
Collapse
|
21
|
Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ. RNA imaging in living cells - methods and applications. RNA Biol 2015; 11:1083-95. [PMID: 25483044 PMCID: PMC4615301 DOI: 10.4161/rna.35506] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numerous types of transcripts perform multiple functions in cells, and these functions are mainly facilitated by the interactions of the RNA with various proteins and other RNAs. Insight into the dynamics of RNA biosynthesis, processing and cellular activities is highly desirable because this knowledge will deepen our understanding of cell physiology and help explain the mechanisms of RNA-mediated pathologies. In this review, we discuss the live RNA imaging systems that have been developed to date. We highlight information on the design of these systems, briefly discuss their advantages and limitations and provide examples of their numerous applications in various organisms and cell types. We present a detailed examination of one application of RNA imaging systems: this application aims to explain the role of mutant transcripts in human disease pathogenesis caused by triplet repeat expansions. Thus, this review introduces live RNA imaging systems and provides a glimpse into their various applications.
Collapse
Affiliation(s)
- Martyna O Urbanek
- a Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences ; Poznan , Poland
| | | | | | | |
Collapse
|
22
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
23
|
In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 2014; 16:95-109. [PMID: 25549890 DOI: 10.1038/nrm3918] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization.
Collapse
|
24
|
Singer-Krüger B, Jansen RP. Here, there, everywhere. mRNA localization in budding yeast. RNA Biol 2014; 11:1031-9. [PMID: 25482891 DOI: 10.4161/rna.29945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
mRNA localization and localized translation is a common mechanism that contributes to cell polarity and cellular asymmetry. In metazoan, mRNA transport participates in embryonic axis determination and neuronal plasticity. Since the mRNA localization process and its molecular machinery are rather complex in higher eukaryotes, the unicellular yeast Saccharomyces cerevisiae has become an attractive model to study mRNA localization. Although the focus has so far been on the mechanism of ASH1 mRNA transport, it has become evident that mRNA localization also assists in protein sorting to organelles, as well as in polarity establishment and maintenance. A diversity of different pathways has been identified that targets mRNA to their destination site, ranging from motor protein-dependent trafficking of translationally silenced mRNAs to co-translational targeting, in which mRNAs hitch-hike to organelles on ribosomes during nascent polypeptide chain elongation. The presence of these diverse pathways in yeast allows a systemic analysis of the contribution of mRNA localization to the physiology of a cell.
Collapse
Affiliation(s)
- Birgit Singer-Krüger
- a Interfaculty Institute of Biochemistry ; University of Tübingen ; Tübingen , Germany
| | | |
Collapse
|
25
|
Caballero-Lima D, Hautbergue GM, Wilson SA, Sudbery PE. In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles. Mol Microbiol 2014; 94:828-42. [PMID: 25231350 PMCID: PMC4278529 DOI: 10.1111/mmi.12799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 01/05/2023]
Abstract
Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p. GTP bound Sec4p is required for the transit of secretory vesicles from the trans-Golgi to sites of polarized growth. We previously showed that phosphorylation of Sec2p at residue S584 was necessary for Sec2p to support hyphal, but not yeast growth. Here we show that on secretory vesicles SEC2 mRNA is physically associated with Sec2p. Moreover, we show that the phosphorylation of S584 allows SEC2 mRNA to dissociate from Sec2p and we speculate that this is necessary for Sec2p function and/or translation. During hyphal extension, the growing tip may be separated from the nucleus by up to 15 μm. Transport of SEC2 mRNA on secretory vesicles to the tip localizes SEC2 translation to tip allowing a sufficient accumulation of this key protein at the site of polarized growth.
Collapse
Affiliation(s)
- David Caballero-Lima
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
26
|
mRNA transport meets membrane traffic. Trends Genet 2014; 30:408-17. [DOI: 10.1016/j.tig.2014.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023]
|
27
|
Jung H, Gkogkas CG, Sonenberg N, Holt CE. Remote control of gene function by local translation. Cell 2014; 157:26-40. [PMID: 24679524 PMCID: PMC3988848 DOI: 10.1016/j.cell.2014.03.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022]
Abstract
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Christos G Gkogkas
- Patrick Wild Centre, Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Anatomy Building, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
28
|
Gomes C, Merianda TT, Lee SJ, Yoo S, Twiss JL. Molecular determinants of the axonal mRNA transcriptome. Dev Neurobiol 2014; 74:218-32. [PMID: 23959706 PMCID: PMC3933445 DOI: 10.1002/dneu.22123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra-axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome.
Collapse
Affiliation(s)
- Cynthia Gomes
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Tanuja T. Merianda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Seung Joon Lee
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 USA
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29201
| |
Collapse
|
29
|
Hermesh O, Genz C, Yofe I, Sinzel M, Rapaport D, Schuldiner M, Jansen RP. Yeast phospholipid biosynthesis is linked to mRNA localization. J Cell Sci 2014; 127:3373-81. [DOI: 10.1242/jcs.149799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Localization of mRNAs and local translation are universal features in eukaryotes and contribute to cellular asymmetry and differentiation. In Saccharomyces cerevisiae, localization of mRNAs that encode membrane proteins requires the She protein machinery including the RNA-binding protein She2p as well as movement of the cortical endoplasmic reticulum (cER) to the yeast bud. In a screen for ER-specific proteins necessary for directional transport of WSC2 and EAR1 mRNAs, we have identified enzymes of the phospholipid metabolism. Loss of the phospholipid methyltransferase Cho2p, which showed the strongest impact on mRNA localization, disturbs mRNA localization as well as ER morphology and segregation due to an increase in cellular phosphatidylethanolamine (PE). Mislocalized mRNPs containing She2p co-localize with aggregated cER structures suggesting entrapment of mRNA and She2p by the elevated PE level, which is confirmed by elevated binding of She2p to PE-containing liposomes. These findings underscore the importance of ER membrane integrity in mRNA transport.
Collapse
|
30
|
Yasuda K, Kotani T, Yamashita M. A cis-acting element in the coding region of cyclin B1 mRNA couples subcellular localization to translational timing. Dev Biol 2013; 382:517-29. [DOI: 10.1016/j.ydbio.2013.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/20/2022]
|
31
|
Xing L, Bassell GJ. mRNA localization: an orchestration of assembly, traffic and synthesis. Traffic 2012; 14:2-14. [PMID: 22913533 DOI: 10.1111/tra.12004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Asymmetrical mRNA localization and subsequent local translation provide efficient mechanisms for protein sorting in polarized cells. Defects in mRNA localization have been linked to developmental abnormalities and neurological diseases. Thus, it is critical to understand the machineries mediating and mechanisms underlying the asymmetrical distribution of mRNA and its regulation. The goal of this review is to summarize recent advances in the understanding of mRNA transport and localization, including the assembly and sorting of transport messenger ribonucleic protein (mRNP) granules, molecular mechanisms of active mRNP transport, cytoskeletal interactions and regulation of these events by extracellular signals.
Collapse
Affiliation(s)
- Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
32
|
Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of RNA and proteins in prokaryotes. Trends Genet 2012; 28:314-22. [DOI: 10.1016/j.tig.2012.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
33
|
Jung H, Yoon BC, Holt CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 2012; 13:308-24. [PMID: 22498899 PMCID: PMC3682205 DOI: 10.1038/nrn3210] [Citation(s) in RCA: 344] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNAs can be targeted to specific neuronal subcellular domains, which enables rapid changes in the local proteome through local translation. This mRNA-based mechanism links extrinsic signals to spatially restricted cellular responses and can mediate stimulus-driven adaptive responses such as dendritic plasticity. Local mRNA translation also occurs in growing axons where it can mediate directional responses to guidance signals. Recent profiling studies have revealed that both growing and mature axons possess surprisingly complex and dynamic transcriptomes, thereby suggesting that axonal mRNA localization is highly regulated and has a role in a broad range of processes, a view that is increasingly being supported by new experimental evidence. Here, we review current knowledge on the roles and regulatory mechanisms of axonal mRNA translation and discuss emerging links to axon guidance, survival, regeneration and neurological disorders.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
34
|
|