1
|
Meissner J, Eysmont K, Matylla-Kulińska K, Konarska MM. Characterization of Cwc2, U6 snRNA, and Prp8 interactions destabilized by Prp16 ATPase at the transition between the first and second steps of splicing. RNA (NEW YORK, N.Y.) 2024; 30:1199-1212. [PMID: 38876504 PMCID: PMC11331412 DOI: 10.1261/rna.079886.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.
Collapse
Affiliation(s)
- Jadwiga Meissner
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| | | | | | - Maria M Konarska
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| |
Collapse
|
2
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
3
|
Liu X, Pan X, Chen D, Yin C, Peng J, Shi W, Qi L, Wang R, Zhao W, Zhang Z, Yang J, Peng YL. Prp19-associated splicing factor Cwf15 regulates fungal virulence and development in the rice blast fungus. Environ Microbiol 2021; 23:5901-5916. [PMID: 34056823 DOI: 10.1111/1462-2920.15616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
The splicing factor Cwf15 is an essential component of the Prp19-associated component of the spliceosome and regulates intron splicing in several model species, including yeasts and human cells. However, the roles of Cwf15 remain unexplored in plant pathogenic fungi. Here, we report that MoCWF15 in the rice blast fungus Magnaporthe oryzae is non-essential to viability and important to fungal virulence, growth and conidiation. MoCwf15 contains a putative nuclear localization signal (NLS) and is localized into the nucleus. The NLS sequence but not the predicted phosphorylation site or two sumoylation sites was essential for the biological functions of MoCwf15. Importantly, MoCwf15 physically interacted with the Prp19-associated splicing factors MoCwf4, MoSsa1 and MoCyp1, and negatively regulated protein accumulations of MoCyp1 and MoCwf4. Furthermore, with the deletion of MoCWF15, aberrant intron splicing occurred in near 400 genes, 20 of which were important to the fungal development and virulence. Taken together, MoCWF15 regulates fungal growth and infection-related development by modulating the intron splicing efficiency of a subset of genes in the rice blast fungus.
Collapse
Affiliation(s)
- Xinsen Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao Pan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Deng Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Changfa Yin
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Junbo Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Shi
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Linlu Qi
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ruijin Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Ciavarella J, Perea W, Greenbaum NL. Topology of the U12-U6 atac snRNA Complex of the Minor Spliceosome and Binding by NTC-Related Protein RBM22. ACS OMEGA 2020; 5:23549-23558. [PMID: 32984674 PMCID: PMC7512442 DOI: 10.1021/acsomega.0c01674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/04/2020] [Indexed: 06/02/2023]
Abstract
Splicing of precursor messenger RNA is catalyzed by the spliceosome, a dynamic ribonucleoprotein assembly including five small nuclear (sn)RNAs and >100 proteins. RNA components catalyze the two transesterification reactions, but proteins perform critical roles in assembly and rearrangement. The catalytic core comprises a paired complex of U2 and U6 snRNAs for the major form of the spliceosome and U12 and U6atac snRNAs for the minor variant (∼0.3% of all spliceosomes in higher eukaryotes); the latter shares key catalytic sequence elements and performs identical chemistry. Here we use solution NMR techniques to show that the U12-U6atac snRNA complex of both human and Arabidopsis maintain base-pairing patterns similar to those in the three-helix model of the U2-U6 snRNA complex that position key elements to form the spliceosome's active site. However, in place of the stacked base pairs at the base of the U6 snRNA intramolecular stem loop and the central junction of the U2-U6 snRNA complex, we see altered geometry in the single-stranded hinge region opposing termini of the snRNAs to enable interaction between the key elements. We then use electrophoretic mobility shift assays and fluorescence assays to show that the protein RBM22, implicated in remodeling the human U2-U6 snRNA complex prior to catalysis, also binds the U12-U6atac snRNA complexes specifically and with similar affinity as to U2-U6 snRNA (a mean K d for the two methods = 3.4 and 8.0 μM for U2-U6 and U12-U6atac snRNA complexes, respectively), suggesting that RBM22 performs the same role in both spliceosomes.
Collapse
Affiliation(s)
- Joanna Ciavarella
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
| | - William Perea
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
| | - Nancy L. Greenbaum
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
| |
Collapse
|
5
|
Chu H, Perea W, Greenbaum NL. Role of the central junction in folding topology of the protein-free human U2-U6 snRNA complex. RNA (NEW YORK, N.Y.) 2020; 26:836-850. [PMID: 32220895 PMCID: PMC7297123 DOI: 10.1261/rna.073379.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 06/02/2023]
Abstract
U2 and U6 small nuclear (sn)RNAs are the only snRNAs directly implicated in catalyzing the splicing of pre-mRNA, but assembly and rearrangement steps prior to catalysis require numerous proteins. Previous studies have shown that the protein-free U2-U6 snRNA complex adopts two conformations in equilibrium, characterized by four and three helices surrounding a central junction. The four-helix conformer is strongly favored in the in vitro protein-free state, but the three-helix conformer predominates in spliceosomes. To analyze the role of the central junction in positioning elements forming the active site, we derived three-dimensional models of the two conformations from distances measured between fluorophores at selected locations in constructs representing the protein-free human U2-U6 snRNA complex by time-resolved fluorescence resonance energy transfer. Data describing four angles in the four-helix conformer suggest tetrahedral geometry; addition of Mg2+ results in shortening of the distances between neighboring helices, indicating compaction of the complex around the junction. In contrast, the three-helix conformer shows a closer approach between helices bearing critical elements, but the addition of Mg2+ widens the distance between them; thus in neither conformer are the critical helices positioned to favor the proposed triplex interaction. The presence of Mg2+ also enhances the fraction of the three-helix conformer, as does incubation with the Prp19-related protein RBM22, which has been implicated in the remodeling of the U2-U6 snRNA complex to render it catalytically active. These data suggest that although the central junction assumes a significant role in orienting helices, spliceosomal proteins and Mg2+ facilitate formation of the catalytically active conformer.
Collapse
Affiliation(s)
- Huong Chu
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - William Perea
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, USA
| | - Nancy L Greenbaum
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
6
|
Scheres SH, Nagai K. CryoEM structures of spliceosomal complexes reveal the molecular mechanism of pre-mRNA splicing. Curr Opin Struct Biol 2017; 46:130-139. [PMID: 28888105 DOI: 10.1016/j.sbi.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
Abstract
The spliceosome is an intricate molecular machine which catalyses the removal of introns from eukaryotic mRNA precursors by two trans-esterification reactions (branching and exon ligation) to produce mature mRNA with uninterrupted protein coding sequences. The structures of the spliceosome in several key states determined by electron cryo-microscopy have greatly advanced our understanding of its molecular mechanism. The catalytic RNA core is formed during the activation of the fully assembled B to Bact complex and remains largely unchanged throughout the splicing cycle. RNA helicases and step specific factors regulate docking and undocking of the substrates (branch site and 3' splice site) to the single RNA-based active site to catalyse the two trans-esterification reactions.
Collapse
Affiliation(s)
- Sjors Hw Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
7
|
Structural and functional analyses of the spliceosome requires a multi-disciplinary approach. Methods 2017; 125:1-2. [PMID: 28780959 DOI: 10.1016/j.ymeth.2017.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Curr Opin Struct Biol 2016; 36:48-57. [PMID: 26803803 PMCID: PMC4830896 DOI: 10.1016/j.sbi.2015.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Recent advances in cryoEM are revolutionizing our understanding of how molecular machines function. The structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP has been revealed. The structure of Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex has been revealed. These structures greatly advanced our understanding of the mechanism of pre-mRNA splicing.
The spliceosome is formed on pre-mRNA substrates from five small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and U5 snRNPs), and numerous non-snRNP factors. Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5 snRNA, U4/U6 snRNA duplex and approximately 30 proteins and represents a substantial part of the spliceosome before activation. Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex is a post-catalytic intron lariat spliceosome containing U2 and U5 snRNPs, NTC (nineteen complex), NTC-related proteins (NTR), U6 snRNA, and an RNA intron lariat. Two recent papers describe near-complete atomic structures of these complexes based on cryoEM single-particle analysis. The U4/U6.U5 tri-snRNP structure provides crucial insight into the activation mechanism of the spliceosome. The U2.U6.U5 complex reveals the striking architecture of NTC and NTR and important features of the group II intron-like catalytic RNA core remaining after spliced mRNA is released. These two structures greatly advance our understanding of the mechanism of pre-mRNA splicing.
Collapse
|
9
|
Wu Z, Zhu D, Lin X, Miao J, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X, Tsuge T, Dean C, Aoyama T, Gu H, Qu LJ. RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis. THE PLANT CELL 2016; 28:55-73. [PMID: 26721863 PMCID: PMC4746689 DOI: 10.1105/tpc.15.00949] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 05/19/2023]
Abstract
Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.
Collapse
Affiliation(s)
- Zhe Wu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Danling Zhu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoya Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jin Miao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lianfeng Gu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Kangtai Sun
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China National Plant Gene Research Center, Beijing 100101, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China National Plant Gene Research Center, Beijing 100101, China
| |
Collapse
|
10
|
Zaman U, Richter FM, Hofele R, Kramer K, Sachsenberg T, Kohlbacher O, Lenz C, Urlaub H. Dithiothreitol (DTT) Acts as a Specific, UV-inducible Cross-linker in Elucidation of Protein-RNA Interactions. Mol Cell Proteomics 2015; 14:3196-210. [PMID: 26450613 DOI: 10.1074/mcp.m115.052795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
Protein-RNA cross-linking by UV irradiation at 254 nm wavelength has been established as an unbiased method to identify proteins in direct contact with RNA, and has been successfully applied to investigate the spatial arrangement of protein and RNA in large macromolecular assemblies, e.g. ribonucleoprotein-complex particles (RNPs). The mass spectrometric analysis of such peptide-RNA cross-links provides high resolution structural data to the point of mapping protein-RNA interactions to specific peptides or even amino acids. However, the approach suffers from the low yield of cross-linking products, which can be addressed by improving enrichment and analysis methods. In the present article, we introduce dithiothreitol (DTT) as a potent protein-RNA cross-linker. In order to evaluate the efficiency and specificity of DTT, we used two systems, a small synthetic peptide from smB protein incubated with U1 snRNA oligonucleotide and native ribonucleoprotein complexes from S. cerevisiae. Our results unambiguously show that DTT covalently participates in cysteine-uracil crosslinks, which is observable as a mass increment of 151.9966 Da (C(4)H(8)S(2)O(2)) upon mass spectrometric analysis. DTT presents advantages for cross-linking of cysteine containing regions of proteins. This is evidenced by comparison to experiments where (tris(2-carboxyethyl)phosphine) is used as reducing agent, and significantly less cross-links encompassing cysteine residues are found. We further propose insertion of DTT between the cysteine and uracil reactive sites as the most probable structure of the cross-linking products.
Collapse
Affiliation(s)
- Uzma Zaman
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Florian M Richter
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Romina Hofele
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Katharina Kramer
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Timo Sachsenberg
- ¶Center for Bioinformatics, ‖Department of Computer Science, University of Tübingen, Sand 14, D-72076 Tübingen, Germany
| | - Oliver Kohlbacher
- ¶Center for Bioinformatics, ‖Department of Computer Science, University of Tübingen, Sand 14, D-72076 Tübingen, Germany; ¶¶Biomolecular Interactions, Max Planck Institute for Developmental Biology, Spemannstraße 35, D-72076 Tübingen, Germany
| | - Christof Lenz
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Henning Urlaub
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany;
| |
Collapse
|
11
|
Abstract
The pre-mRNA splicing reaction of eukaryotic cells has to be carried out extremely accurately, as failure to recognize the splice sites correctly causes serious disease. The small subunit of the U2AF heterodimer is essential for the determination of 3' splice sites in pre-mRNA splicing, and several single-residue mutations of the U2AF small subunit cause severe disorders such as myelodysplastic syndromes. However, the mechanism of RNA recognition is poorly understood. Here we solved the crystal structure of the U2AF small subunit (U2AF23) from fission yeast, consisting of an RNA recognition motif (RRM) domain flanked by two conserved CCCH-type zinc fingers (ZFs). The two ZFs are positioned side by side on the β sheet of the RRM domain. Further mutational analysis revealed that the ZFs bind cooperatively to the target RNA sequence, but the RRM domain acts simply as a scaffold to organize the ZFs and does not itself contact the RNA directly. This completely novel and unexpected mode of RNA-binding mechanism by the U2AF small subunit sheds light on splicing errors caused by mutations of this highly conserved protein.
Collapse
|
12
|
Sharma K, Hrle A, Kramer K, Sachsenberg T, Staals RHJ, Randau L, Marchfelder A, van der Oost J, Kohlbacher O, Conti E, Urlaub H. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry. Methods 2015; 89:138-48. [PMID: 26071038 DOI: 10.1016/j.ymeth.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022] Open
Abstract
Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins.
Collapse
Affiliation(s)
- Kundan Sharma
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ajla Hrle
- Structural Cell Biology Department, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Katharina Kramer
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Timo Sachsenberg
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany; Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Raymond H J Staals
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lennart Randau
- Prokaryotic Small RNA Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany; Department of Computer Science, University of Tübingen, Tübingen, Germany; Quantitative Biology Center, University of Tübingen, Tübingen, Germany; Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| |
Collapse
|
13
|
Collier SE, Voehler M, Peng D, Ohi R, Gould KL, Reiter NJ, Ohi MD. Structural and functional insights into the N-terminus of Schizosaccharomyces pombe Cdc5. Biochemistry 2014; 53:6439-51. [PMID: 25263959 PMCID: PMC4204884 DOI: 10.1021/bi5008639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The
spliceosome is a dynamic macromolecular machine composed of
five small nuclear ribonucleoparticles (snRNPs), the NineTeen Complex
(NTC), and other proteins that catalyze the removal of introns mature
to form the mature message. The NTC, named after its founding member Saccharomyces cerevisiae Prp19, is a conserved spliceosome
subcomplex composed of at least nine proteins. During spliceosome
assembly, the transition to an active spliceosome correlates with
stable binding of the NTC, although the mechanism of NTC function
is not understood. Schizosaccharomyces pombe Cdc5, a core subunit of the NTC, is an essential protein required
for pre-mRNA splicing. The highly conserved Cdc5 N-terminus contains
two canonical Myb (myeloblastosis) repeats (R1 and R2) and a third
domain (D3) that was previously classified as a Myb-like repeat. Although
the N-terminus of Cdc5 is required for its function, how R1, R2, and
D3 each contribute to functionality is unclear. Using a combination
of yeast genetics, structural approaches, and RNA binding assays,
we show that R1, R2, and D3 are all required for the function of Cdc5
in cells. We also show that the N-terminus of Cdc5 binds RNA in vitro. Structural and functional analyses of Cdc5-D3
show that, while this domain does not adopt a Myb fold, Cdc5-D3 preferentially
binds double-stranded RNA. Our data suggest that the Cdc5 N-terminus
interacts with RNA structures proposed to be near the catalytic core
of the spliceosome.
Collapse
Affiliation(s)
- Scott E Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Kramer K, Sachsenberg T, Beckmann BM, Qamar S, Boon KL, Hentze MW, Kohlbacher O, Urlaub H. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat Methods 2014; 11:1064-70. [PMID: 25173706 PMCID: PMC6485471 DOI: 10.1038/nmeth.3092] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
Abstract
RNA–protein complexes play pivotal roles in many central biological processes. While methods based on next-generation sequencing have profoundly advanced our ability to identify the specific RNAs bound by a particular protein, there is a dire need for precise and systematic ways to identify RNA interaction sites on proteins. We have developed an integrated experimental and computational workflow combining photo-induced cross-linking, high-resolution mass spectrometry, and automated analysis of the resulting mass spectra for the identification of cross-linked peptides and exact amino acids with their cross-linked RNA oligonucleotide moiety of such RNA-binding proteins. The generic workflow can be applied to any RNA–protein complex of interest. Application to human and yeast mRNA–protein complexes in vitro and in vivo demonstrates the powerful utility of the approach by identification of 257 cross-linking sites on 124 distinct RNA-binding proteins. The software pipeline developed for this purpose is available as open-source software as part of the OpenMS project.
Collapse
Affiliation(s)
- Katharina Kramer
- 1] Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2]
| | - Timo Sachsenberg
- 1] Center for Bioinformatics, University of Tübingen, Tübingen, Germany. [2] Department of Computer Science, University of Tübingen, Tübingen, Germany. [3]
| | | | - Saadia Qamar
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kum-Loong Boon
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Oliver Kohlbacher
- 1] Center for Bioinformatics, University of Tübingen, Tübingen, Germany. [2] Department of Computer Science, University of Tübingen, Tübingen, Germany. [3] Quantitative Biology Center, University of Tübingen, Tübingen, Germany. [4] Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Henning Urlaub
- 1] Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2] Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| |
Collapse
|
15
|
Basak A, Query CC. A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast. Cell Rep 2014; 8:966-73. [PMID: 25127136 DOI: 10.1016/j.celrep.2014.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/30/2014] [Accepted: 07/02/2014] [Indexed: 11/20/2022] Open
Abstract
Although pseudouridine nucleobases are abundant in tRNAs, rRNAs, and small nuclear RNAs (snRNAs), they are not known to have physiologic roles in cell differentiation. We have identified a pseudouridine residue (Ψ28) on spliceosomal U6 snRNA that is induced during filamentous growth of Saccharomyces cerevisiae. Pus1p catalyzes this modification and is upregulated during filamentation. Several U6 snRNA mutants are strongly pseudouridylated at Ψ28. Remarkably, these U6 mutants activate pseudohyphal growth, dependent upon Pus1p, arguing that U6-Ψ28 per se can initiate at least part of the filamentous growth program. We confirmed this by using a designer small nucleolar RNA (snoRNA) targeting U6-U28 pseudouridylation. Conversely, mutants that block U6-U28 pseudouridylation inhibit pseudohyphal growth. U6-U28 pseudouridylation changes the splicing efficiency of suboptimal introns; thus, Pus1p-dependent pseudouridylation of U6 snRNA contributes to the filamentation growth program.
Collapse
Affiliation(s)
- Anindita Basak
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
16
|
Hogg R, de Almeida RA, Ruckshanthi JPD, O'Keefe RT. Remodeling of U2-U6 snRNA helix I during pre-mRNA splicing by Prp16 and the NineTeen Complex protein Cwc2. Nucleic Acids Res 2014; 42:8008-23. [PMID: 24848011 PMCID: PMC4081067 DOI: 10.1093/nar/gku431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Removal of intron regions from pre-messenger RNA (pre-mRNA) requires spliceosome assembly with pre-mRNA, then subsequent spliceosome remodeling to allow activation for the two steps of intron removal. Spliceosome remodeling is carried out through the action of DExD/H-box ATPases that modulate RNA-RNA and protein-RNA interactions. The ATPase Prp16 remodels the spliceosome between the first and second steps of splicing by catalyzing release of first step factors Yju2 and Cwc25 as well as destabilizing U2-U6 snRNA helix I. How Prp16 destabilizes U2-U6 helix I is not clear. We show that the NineTeen Complex (NTC) protein Cwc2 displays genetic interactions with the U6 ACAGAGA, the U6 internal stem loop (ISL) and the U2-U6 helix I, all RNA elements that form the spliceosome active site. We find that one function of Cwc2 is to stabilize U2-U6 snRNA helix I during splicing. Cwc2 also functionally cooperates with the NTC protein Isy1/NTC30. Mutation in Cwc2 can suppress the cold sensitive phenotype of the prp16-302 mutation indicating a functional link between Cwc2 and Prp16. Specifically the prp16-302 mutation in Prp16 stabilizes Cwc2 interactions with U6 snRNA and destabilizes Cwc2 interactions with pre-mRNA, indicating antagonistic functions of Cwc2 and Prp16. We propose that Cwc2 is a target for Prp16-mediated spliceosome remodeling during pre-mRNA splicing.
Collapse
Affiliation(s)
- Rebecca Hogg
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT
| | | | | | - Raymond T O'Keefe
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT
| |
Collapse
|
17
|
Wlodaver AM, Staley JP. The DExD/H-box ATPase Prp2p destabilizes and proofreads the catalytic RNA core of the spliceosome. RNA (NEW YORK, N.Y.) 2014; 20:282-94. [PMID: 24442613 PMCID: PMC3923124 DOI: 10.1261/rna.042598.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/30/2013] [Indexed: 05/25/2023]
Abstract
After undergoing massive RNA and protein rearrangements during assembly, the spliceosome undergoes a final, more subtle, ATP-dependent rearrangement that is essential for catalysis. This rearrangement requires the DEAH-box protein Prp2p, an RNA-dependent ATPase. Prp2p has been implicated in destabilizing interactions between the spliceosome and the protein complexes SF3 and RES, but a role for Prp2p in destabilizing RNA-RNA interactions has not been explored. Using directed molecular genetics in budding yeast, we have found that a cold-sensitive prp2 mutation is suppressed not only by mutations in SF3 and RES components but also by a range of mutations that disrupt the spliceosomal catalytic core element U2/U6 helix I, which is implicated in juxtaposing the 5' splice site and branch site and in positioning metal ions for catalysis within the context of a putative catalytic triplex; indeed, mutations in this putative catalytic triplex also suppressed a prp2 mutation. Remarkably, we also found that prp2 mutations rescue lethal mutations in U2/U6 helix I. These data provide evidence that RNA elements that comprise the catalytic core are already formed at the Prp2p stage and that Prp2p destabilizes these elements, directly or indirectly, both to proofread spliceosome activation and to promote reconfiguration of the spliceosome to a fully competent, catalytic conformation.
Collapse
|
18
|
Galej WP, Nguyen THD, Newman AJ, Nagai K. Structural studies of the spliceosome: zooming into the heart of the machine. Curr Opin Struct Biol 2014; 25:57-66. [PMID: 24480332 PMCID: PMC4045393 DOI: 10.1016/j.sbi.2013.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
Spliceosomes are large, dynamic ribonucleoprotein complexes that catalyse the removal of introns from messenger RNA precursors via a two-step splicing reaction. The recent crystal structure of Prp8 has revealed Reverse Transcriptase-like, Linker and Endonuclease-like domains. The intron branch-point cross-link with the Linker domain of Prp8 in active spliceosomes and together with suppressors of 5' and 3' splice site mutations this unambiguously locates the active site cavity. Structural and mechanistic similarities with group II self-splicing introns have encouraged the notion that the spliceosome is at heart a ribozyme, and recently the ligands for two catalytic magnesium ions were identified within U6 snRNA. They position catalytic divalent metal ions in the same way as Domain V of group II intron RNA, suggesting that the spliceosome and group II intron use the same catalytic mechanisms.
Collapse
Affiliation(s)
- Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Thi Hoang Duong Nguyen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
19
|
Christian H, Hofele RV, Urlaub H, Ficner R. Insights into the activation of the helicase Prp43 by biochemical studies and structural mass spectrometry. Nucleic Acids Res 2013; 42:1162-79. [PMID: 24165877 PMCID: PMC3902948 DOI: 10.1093/nar/gkt985] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Splicing of precursor messenger RNA is a hallmark of eukaryotic cells, which is carried out by the spliceosome, a multi-megadalton ribonucleoprotein machinery. The splicing reaction removes non-coding regions (introns) and ligates coding regions (exons). The spliceosome is a highly dynamic ribonucleoprotein complex that undergoes dramatic structural changes during its assembly, the catalysis and its disassembly. The transitions between the different steps during the splicing cycle are promoted by eight conserved DExD/H box ATPases. The DEAH-box protein Prp43 is responsible for the disassembly of the intron-lariat spliceosome and its helicase activity is activated by the G-patch protein Ntr1. Here, we investigate the activation of Prp43 by Ntr1 in the presence and absence of RNA substrate by functional assays and structural proteomics. Residues 51–110 of Ntr1 were identified to be the minimal fragment that induces full activation. We found protein–protein cross-links that indicate that Prp43 interacts with the G-patch motif of Ntr1 through its C-terminal domains. Additionally, we report on functionally important RNA binding residues in both proteins and propose a model for the activation of the helicase.
Collapse
Affiliation(s)
- Henning Christian
- Department for Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, D-37077 Göttingen, Germany, Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, D-37077 Göttingen, Germany and Bioanalytics, Department of Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | | | | | | |
Collapse
|
20
|
Anokhina M, Bessonov S, Miao Z, Westhof E, Hartmuth K, Lührmann R. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J 2013; 32:2804-18. [PMID: 24002212 DOI: 10.1038/emboj.2013.198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/24/2013] [Indexed: 11/09/2022] Open
Abstract
Although U snRNAs play essential roles in splicing, little is known about the 3D arrangement of U2, U6, and U5 snRNAs and the pre-mRNA in active spliceosomes. To elucidate their relative spatial organization and dynamic rearrangement, we examined the RNA structure of affinity-purified, human spliceosomes before and after catalytic step 1 by chemical RNA structure probing. We found a stable 3-way junction of the U2/U6 snRNA duplex in active spliceosomes that persists minimally through step 1. Moreover, the formation of alternating, mutually exclusive, U2 snRNA conformations, as observed in yeast, was not detected in different assembly stages of human spliceosomal complexes (that is, B, B(act), or C complexes). Psoralen crosslinking revealed an interaction during/after step 1 between internal loop 1 of the U5 snRNA, and intron nucleotides immediately downstream of the branchpoint. Using the experimentally derived structural constraints, we generated a model of the RNA network of the step 1 spliceosome, based on the crystal structure of a group II intron through homology modelling. The model is topologically consistent with current genetic, biochemical, and structural data.
Collapse
Affiliation(s)
- Maria Anokhina
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Mozaffari-Jovin S, Santos KF, Hsiao HH, Will CL, Urlaub H, Wahl MC, Lührmann R. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 2013; 26:2422-34. [PMID: 23124066 DOI: 10.1101/gad.200949.112] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The spliceosomal RNA helicase Brr2 catalyzes unwinding of the U4/U6 snRNA duplex, an essential step for spliceosome catalytic activation. Brr2 is regulated in part by the spliceosomal Prp8 protein by an unknown mechanism. We demonstrate that the RNase H (RH) domain of yeast Prp8 binds U4/U6 small nuclear RNA (snRNA) with the single-stranded regions of U4 and U6 preceding U4/U6 stem I, contributing to its binding. Via cross-linking coupled with mass spectrometry, we identify RH domain residues that contact the U4/U6 snRNA. We further demonstrate that the same single-stranded region of U4 preceding U4/U6 stem I is recognized by Brr2, indicating that it translocates along U4 and first unwinds stem I of the U4/U6 duplex. Finally, we show that the RH domain of Prp8 interferes with U4/U6 unwinding by blocking Brr2's interaction with the U4 snRNA. Our data reveal a novel mechanism whereby Prp8 negatively regulates Brr2 and potentially prevents premature U4/U6 unwinding during splicing. They also support the idea that the RH domain acts as a platform for the exchange of U6 snRNA for U1 at the 5' splice site. Our results provide insights into the mechanism whereby Brr2 unwinds U4/U6 and show how this activity is potentially regulated prior to spliceosome activation.
Collapse
Affiliation(s)
- Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Schmitzová J, Pena V. Emerging views about the molecular structure of the spliceosomal catalytic center. RNA Biol 2012; 9:1311-8. [PMID: 23064115 DOI: 10.4161/rna.22359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA splicing occurs in two chemical steps that are catalyzed by a large, dynamic RNA-protein complex called the spliceosome. Initially assembled in a catalytically inactive form, the spliceosome undergoes massive compositional and conformational remodeling, through which disparate RNA elements are re-configured and juxtaposed into a functional catalytic center. The intricate construction of the catalytic center requires the assistance of spliceosomal proteins. Recent structure-function analyses have demonstrated that the yeast-splicing factor Cwc2 is a main player that contacts and shapes the catalytic center of the spliceosome into a functional conformation. With this advance, corroborated by the atomic structure of the evolutionarily related group IIC introns, our understanding of the organization and formation of the spliceosomal catalytic center has progressed to a new level.
Collapse
Affiliation(s)
- Jana Schmitzová
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical, Macromolecular Crystallography Group, Göttingen, Germany
| | | |
Collapse
|
23
|
Bendak K, Loughlin FE, Cheung V, O'Connell MR, Crossley M, Mackay JP. A rapid method for assessing the RNA-binding potential of a protein. Nucleic Acids Res 2012; 40:e105. [PMID: 22492509 PMCID: PMC3413103 DOI: 10.1093/nar/gks285] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, evidence has emerged for the existence of many diverse types of RNA, which play roles in a wide range of biological processes in all kingdoms of life. These molecules generally do not, however, act in isolation, and identifying which proteins partner with RNA is a major challenge. Many methods, in vivo and in vitro, have been used to address this question, including combinatorial or high-throughput approaches, such as systematic evolution of ligands, cross-linking and immunoprecipitation and RNA immunoprecipitation combined with deep sequencing. However, most of these methods are not trivial to pursue and often require substantial optimization before results can be achieved. Here, we demonstrate a simple technique that allows one to screen proteins for RNA-binding properties in a gel-shift experiment and can be easily implemented in any laboratory. This assay should be a useful first-pass tool for assessing whether a protein has RNA- or DNA-binding properties, prior to committing resources to more complex procedures.
Collapse
Affiliation(s)
- K Bendak
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|