1
|
Riedl J, Fieseler C, Zimmer M. Tyraminergic corollary discharge filters reafferent perception in a chemosensory neuron. Curr Biol 2022; 32:3048-3058.e6. [PMID: 35690069 DOI: 10.1016/j.cub.2022.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022]
Abstract
Interpreting sensory information requires its integration with the current behavior of the animal. However, how motor-related circuits influence sensory information processing is incompletely understood. Here, we report that current locomotor state directly modulates the activity of BAG CO2 sensory neurons in Caenorhabditis elegans. By recording neuronal activity in animals freely navigating CO2 landscapes, we found that during reverse crawling states, BAG activity is suppressed by tyraminergic corollary discharge signaling. We provide genetic evidence that tyramine released from the RIM reversal interneurons extrasynaptically activates the inhibitory chloride channel LGC-55 in BAG. Disrupting this pathway genetically leads to excessive behavioral responses to CO2 stimuli. Moreover, we find that LGC-55 signaling cancels out perception of self-produced CO2 and O2 stimuli when animals reverse into their own gas plume in ethologically relevant aqueous environments. Our results show that sensorimotor integration involves corollary discharge signals directly modulating chemosensory neurons.
Collapse
Affiliation(s)
- Julia Riedl
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Charles Fieseler
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
2
|
Dixit A, Bhattacharya B. Sensory perception of environmental cues as a modulator of aging and neurodegeneration: Insights from Caenorhabditis elegans. J Neurosci Res 2021; 99:2416-2426. [PMID: 34232538 DOI: 10.1002/jnr.24910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022]
Abstract
Environmental stimuli such as temperature, food, and smell significantly influence the physiology and behavior of animals. Animals are differentially adapted to maintain their internal body functions in response to varied environmental conditions. These external cues are sensed by specialized neurons which are a part of the chemosensory and thermosensory systems. The inability to respond correctly to varied environmental conditions may result in compromised bodily functions and reduced longevity. For example, the ability to sense food is derived from the integrated action of olfactory and gustatory systems. The damage to the olfactory system will affect our decision of palatable food items which in turn can affect the response of the gustatory system, ultimately causing abnormal feeding habits. Recent studies have provided evidence that aging is regulated by sensory perception of environment. Aging is one of the most common causes of various neurodegenerative diseases and the perception of environmental cues is also found to regulate the development of neurodegenerative phenotype in several animal models. However, specific molecular signaling pathways involved in the process are not completely understood. The research conducted on one of the best-studied animal models of aging, Caenorhabditis elegans, has demonstrated multiple examples of gene-environment interaction at the neuronal level which affects life span. The findings may be useful to identify the key neuronal regulators of aging and age-related diseases in humans owing to conserved core metabolic and aging pathways from worms to humans.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India
| | - Bidisha Bhattacharya
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India
| |
Collapse
|
3
|
Wang X, Zhang C, Chen Q, Ma Z, Liu H, Huang J. Guanylate cyclases link serotoninergic signaling to modulate ethanol-induced food intake in C. elegans. Biochem Biophys Res Commun 2021; 567:29-34. [PMID: 34133999 DOI: 10.1016/j.bbrc.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
Ethanol affects the nervous system of animals to cause a boost of feeding, sexual, verbal, and locomotor behaviors. To understand the neural mechanisms of these ethanol-induced behaviors, we investigated a neural pathway of ethanol-induced feeding behavior by guanylate cyclases and serotonin signals in C. elegans. We recorded the intracellular calcium signaling of seven sensory neurons in response to ethanol, and only found a significant increase of calcium signaling in BAG among the seven sensor neurons. And both guanylate cyclases GCY-31 and GCY-33 were crucial signaling protein of calcium response in BAG neurons. In addition, serotonin, released from NSM motor neurons, promoted feeding behavior under ethanol stimulation. And the rescue experiment of double mutant indicated the guanylate cyclases and serotonin in the same signaling pathway. So BAG neurons respond to alcohol through the promotion of intracellular calcium signaling, and then the downstream motor neurons NSM release serotonin to regulate the feeding behavior in C. elegans. These findings revealed a neural circuit to understand how the nervous system responds to ethanol and generates corresponding behavior.
Collapse
Affiliation(s)
- Xin Wang
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Chunlong Zhang
- Laboratory for Neuroscience, The Central Hospital of Tujia&Miao Autonomous Prefecture, Enshi, Hubei, 435000, PR China
| | - Qirui Chen
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Zhaowu Ma
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Hui Liu
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China.
| | - Jiangrong Huang
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China.
| |
Collapse
|
4
|
Abstract
Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic and free-living nematodes. Many nematodes show context-dependent, experience-dependent and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also show a wide range of physiological responses to CO2. Here, we review the diverse responses of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive context-dependent and experience-dependent responses of nematodes to CO2.
Collapse
|
5
|
Chisnell P, Kenyon C. Silencing the ASI gustatory neuron pair extends lifespan. MICROPUBLICATION BIOLOGY 2018; 2018:10.17912/ft9e-7e37. [PMID: 32550392 PMCID: PMC7282516 DOI: 10.17912/ft9e-7e37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Chisnell
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143-2200, USA,
Correspondence to: Peter Chisnell ()
| | - Cynthia Kenyon
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143-2200, USA
| |
Collapse
|
6
|
Lin CT, He CW, Huang TT, Pan CL. Longevity control by the nervous system: Sensory perception, stress response and beyond. TRANSLATIONAL MEDICINE OF AGING 2017. [DOI: 10.1016/j.tma.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
An Aversive Response to Osmotic Upshift in Caenorhabditis elegans. eNeuro 2017; 4:eN-NWR-0282-16. [PMID: 28451641 PMCID: PMC5399755 DOI: 10.1523/eneuro.0282-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity.
Collapse
|
8
|
Abergel R, Livshits L, Shaked M, Chatterjee AK, Gross E. Synergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans. Aging Cell 2017; 16:401-413. [PMID: 28054425 PMCID: PMC5334569 DOI: 10.1111/acel.12569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
Oxygen (O2) homeostasis is important for all aerobic animals. However, the manner by which O2 sensing and homeostasis contribute to lifespan regulation is poorly understood. Here, we use the nematode Caenorhabditis elegans to address this question. We demonstrate that a loss‐of‐function mutation in the neuropeptide receptor gene npr‐1 and a deletion mutation in the atypical soluble guanylate cyclase gcy‐35 O2 sensor interact synergistically to extend worm lifespan. The function of npr‐1 and gcy‐35 in the O2‐sensing neurons AQR, PQR, and URX shortens the lifespan of the worm. By contrast, the activity of the atypical soluble guanylate cyclase O2 sensor gcy‐33 in these neurons is crucial for lifespan extension. In addition to AQR, PQR, and URX, we show that the O2‐sensing neuron BAG and the interneuron RIA are also important for the lifespan lengthening. Neuropeptide processing by the proprotein convertase EGL‐3 is essential for lifespan extension, suggesting that the synergistic effect of joint loss of function of gcy‐35 and npr‐1 is mediated through neuropeptide signal transduction. The extended lifespan is regulated by hypoxia and insulin signaling pathways, mediated by the transcription factors HIF‐1 and DAF‐16. Moreover, reactive oxygen species (ROS) appear to play an important function in lifespan lengthening. As HIF‐1 and DAF‐16 activities are modulated by ROS, we speculate that joint loss of function of gcy‐35 and npr‐1 extends lifespan through ROS signaling.
Collapse
Affiliation(s)
- Rachel Abergel
- Department of Biochemistry and Molecular Biology; IMRIC; Faculty of Medicine; The Hebrew University of Jerusalem; Ein Kerem. P.O. Box 12271 Jerusalem 9112102 Israel
| | - Leonid Livshits
- Department of Biochemistry and Molecular Biology; IMRIC; Faculty of Medicine; The Hebrew University of Jerusalem; Ein Kerem. P.O. Box 12271 Jerusalem 9112102 Israel
| | - Maayan Shaked
- Department of Biochemistry and Molecular Biology; IMRIC; Faculty of Medicine; The Hebrew University of Jerusalem; Ein Kerem. P.O. Box 12271 Jerusalem 9112102 Israel
| | - Arijit Kumar Chatterjee
- Department of Biochemistry and Molecular Biology; IMRIC; Faculty of Medicine; The Hebrew University of Jerusalem; Ein Kerem. P.O. Box 12271 Jerusalem 9112102 Israel
| | - Einav Gross
- Department of Biochemistry and Molecular Biology; IMRIC; Faculty of Medicine; The Hebrew University of Jerusalem; Ein Kerem. P.O. Box 12271 Jerusalem 9112102 Israel
| |
Collapse
|
9
|
Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans. Sci Rep 2017; 7:38734. [PMID: 28139692 PMCID: PMC5282578 DOI: 10.1038/srep38734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. elegans, CO2 sensing is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. elegans to avoid high CO2. Here we show that cGMP regulation by GCY-9 and the PDE-1 phosphodiesterase controls BAG expression of a FMRFamide-related neuropeptide FLP-19 reporter (flp-19::GFP). This regulation is specific for CO2-sensing function of the BAG neurons, as loss of oxygen sensing function does not affect flp-19::GFP expression. We also found that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability to sense changes in carbon dioxide and CREB transcription factor. Such regulation may be required in particular environmental conditions to enable sophisticated behavioral decisions to be performed.
Collapse
|
10
|
Abstract
Animals must decide when to consume precious fat stores in order to sustain life. In this issue of Cell Reports, Witham et al. report how oxygen-sensing neurons ensure this decision is made under environmental conditions that favor metabolic efficiency.
Collapse
|
11
|
Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis 2016; 2:16010. [PMID: 28721266 PMCID: PMC5514992 DOI: 10.1038/npjamd.2016.10] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 01/20/2023] Open
Abstract
The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans.
Collapse
|
12
|
Witham E, Comunian C, Ratanpal H, Skora S, Zimmer M, Srinivasan S. C. elegans Body Cavity Neurons Are Homeostatic Sensors that Integrate Fluctuations in Oxygen Availability and Internal Nutrient Reserves. Cell Rep 2016; 14:1641-1654. [PMID: 26876168 DOI: 10.1016/j.celrep.2016.01.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 12/28/2022] Open
Abstract
It is known that internal physiological state, or interoception, influences CNS function and behavior. However, the neurons and mechanisms that integrate sensory information with internal physiological state remain largely unknown. Here, we identify C. elegans body cavity neurons called URX(L/R) as central homeostatic sensors that integrate fluctuations in oxygen availability with internal metabolic state. We show that depletion of internal body fat reserves increases the tonic activity of URX neurons, which influences the magnitude of the evoked sensory response to oxygen. These responses are integrated via intracellular cGMP and Ca(2+). The extent of neuronal activity thus reflects the balance between the perception of oxygen and available fat reserves. The URX homeostatic sensor ensures that neural signals that stimulate fat loss are only deployed when there are sufficient fat reserves to do so. Our results uncover an interoceptive neuroendocrine axis that relays internal state information to the nervous system.
Collapse
Affiliation(s)
- Emily Witham
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Claudio Comunian
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Harkaranveer Ratanpal
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Susanne Skora
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Supriya Srinivasan
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Laurent P, Soltesz Z, Nelson GM, Chen C, Arellano-Carbajal F, Levy E, de Bono M. Decoding a neural circuit controlling global animal state in C. elegans. eLife 2015; 4. [PMID: 25760081 PMCID: PMC4440410 DOI: 10.7554/elife.04241] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/10/2015] [Indexed: 02/05/2023] Open
Abstract
Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed. DOI:http://dx.doi.org/10.7554/eLife.04241.001 From humans to worms, animals must respond appropriately to environmental challenges to survive. Starving animals must conserve energy while they seek food; animals that encounter a predator must fight or flee. These responses involve the animals re-programming their bodies and behavior, and, in humans, are thought to coincide with feelings or emotions such as ‘hunger’ and ‘fear’. Understanding these states in humans is difficult, but studies of simpler animals may provide some insights. The microscopic worm Caenorhabditis elegans offers a unique advantage to these studies because it has the most precisely described nervous system of any animal. The worm lives in rotting fruit, but it avoids the fruit's surface, perhaps because there is an increased risk of it drying out or being eaten by predators. Microbes that grow within the rotting fruit reduce the oxygen level below the 21% oxygen found in the surrounding air, and so one strategy that C. elegans uses to avoid surface exposure is to continuously monitor the oxygen concentration. If the worm senses that the oxygen level is approaching 21%, which suggests it is nearing the surface, it reverses and turns around. If it cannot find a lower-oxygen environment, the worm switches to continuous rapid movement until it locates such an environment, and adapts its body for surface exposure. Laurent, Soltesz et al. sought to understand the circuit of neurons that controls this switch. Monitoring gene expression in the worms revealed that specific oxygen-sensing neurons help generate the widespread changes that occur in the worm's body. These neurons also control the switch in the worm's behavior. Sensory neurons relay signals to downstream neurons that act on muscles to alter behavior. Neurons typically communicate with other neurons via specific connections; but neurons can also release signaling molecules, which act like ‘wireless’ signals and can affect many other cells. Laurent, Soltesz et al. showed that both kinds of signaling are needed to change the worm's behavior, and suggest that the release of signaling molecules may explain the widespread effects of 21% oxygen on the worm. Laurent, Soltesz et al. then monitored the activity of neurons in freely moving worms, and found that some neurons appear to encode and relay specific sensory information. Other neurons encode the behavior the animal is performing, and yet others can encode both kinds of information. To confirm which neurons control particular behavioral responses, Laurent, Soltesz et al. measured changes in the worm’s behavior after destroying or altering specific cells, or while they used light-based techniques to artificially excite or inhibit specific neurons. At a simple level the worm's response to 21% oxygen resembles the response of a mammal to a dangerous environment: both become more aroused, change how they respond to other sensory cues, and adapt both their bodies and behavior. As such, C. elegans provides a great model to explore at a small and accessible scale how changes in animals' states are generated. DOI:http://dx.doi.org/10.7554/eLife.04241.002
Collapse
Affiliation(s)
| | - Zoltan Soltesz
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Geoffrey M Nelson
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Changchun Chen
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Emmanuel Levy
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mario de Bono
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
14
|
Tang Y, Purkayastha S, Cai D. Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends Neurosci 2014; 38:36-44. [PMID: 25458920 DOI: 10.1016/j.tins.2014.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022]
Abstract
Chronic microinflammation is a hallmark of many aging-related neurodegenerative diseases as well as metabolic syndrome-driven diseases. Recent research indicates that chronic caloric excess can lead to hypothalamic microinflammation, which in turn participates in the development and progression of metabolic syndrome disorders such as obesity, glucose intolerance, and hypertension. Additionally, it was recently shown that increasing age after young adulthood can cause hypothalamic microinflammation independently of nutritional status, mediating a central mechanism of systemic aging. Taken together, these findings suggest that the hypothalamus has a fundamental role, via hypothalamic microinflammation, in translating overnutrition and aging into complex outcomes. Here we summarize recent work and suggest a conceptual model in which hypothalamic microinflammation is a common mediator of metabolic syndrome and aging.
Collapse
Affiliation(s)
- Yizhe Tang
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Sudarshana Purkayastha
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
15
|
Flibotte JJ, Jablonski AM, Kalb RG. Oxygen sensing neurons and neuropeptides regulate survival after anoxia in developing C. elegans. PLoS One 2014; 9:e101102. [PMID: 24967811 PMCID: PMC4072718 DOI: 10.1371/journal.pone.0101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
Hypoxic brain injury remains a major source of neurodevelopmental impairment for both term and preterm infants. The perinatal period is a time of rapid transition in oxygen environments and developmental resetting of oxygen sensing. The relationship between neural oxygen sensing ability and hypoxic injury has not been studied. The oxygen sensing circuitry in the model organism C. elegans is well understood. We leveraged this information to investigate the effects of impairments in oxygen sensing on survival after anoxia. There was a significant survival advantage in developing worms specifically unable to sense oxygen shifts below their preferred physiologic range via genetic ablation of BAG neurons, which appear important for conferring sensitivity to anoxia. Oxygen sensing that is mediated through guanylate cyclases (gcy-31, 33, 35) is unlikely to be involved in conferring this sensitivity. Additionally, animals unable to process or elaborate neuropeptides displayed a survival advantage after anoxia. Based on these data, we hypothesized that elaboration of neuropeptides by BAG neurons sensitized animals to anoxia, but further experiments indicate that this is unlikely to be true. Instead, it seems that neuropeptides and signaling from oxygen sensing neurons operate through independent mechanisms, each conferring sensitivity to anoxia in wild type animals.
Collapse
Affiliation(s)
- John J. Flibotte
- Department of Pediatrics, Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Angela M. Jablonski
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert G. Kalb
- Department of Pediatrics, Division of Neurology, Research Institute, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements.
Collapse
|
17
|
Kodama-Namba E, Fenk LA, Bretscher AJ, Gross E, Busch KE, de Bono M. Cross-modulation of homeostatic responses to temperature, oxygen and carbon dioxide in C. elegans. PLoS Genet 2013; 9:e1004011. [PMID: 24385919 PMCID: PMC3868554 DOI: 10.1371/journal.pgen.1004011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/24/2013] [Indexed: 11/19/2022] Open
Abstract
Different interoceptive systems must be integrated to ensure that multiple homeostatic insults evoke appropriate behavioral and physiological responses. Little is known about how this is achieved. Using C. elegans, we dissect cross-modulation between systems that monitor temperature, O₂ and CO₂. CO₂ is less aversive to animals acclimated to 15°C than those grown at 22°C. This difference requires the AFD neurons, which respond to both temperature and CO₂ changes. CO₂ evokes distinct AFD Ca²⁺ responses in animals acclimated at 15°C or 22°C. Mutants defective in synaptic transmission can reprogram AFD CO₂ responses according to temperature experience, suggesting reprogramming occurs cell autonomously. AFD is exquisitely sensitive to CO₂. Surprisingly, gradients of 0.01% CO₂/second evoke very different Ca²⁺ responses from gradients of 0.04% CO₂/second. Ambient O₂ provides further contextual modulation of CO₂ avoidance. At 21% O₂ tonic signalling from the O₂-sensing neuron URX inhibits CO₂ avoidance. This inhibition can be graded according to O₂ levels. In a natural wild isolate, a switch from 21% to 19% O₂ is sufficient to convert CO₂ from a neutral to an aversive cue. This sharp tuning is conferred partly by the neuroglobin GLB-5. The modulatory effects of O₂ on CO₂ avoidance involve the RIA interneurons, which are post-synaptic to URX and exhibit CO₂-evoked Ca²⁺ responses. Ambient O₂ and acclimation temperature act combinatorially to modulate CO₂ responsiveness. Our work highlights the integrated architecture of homeostatic responses in C. elegans.
Collapse
Affiliation(s)
| | - Lorenz A. Fenk
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Einav Gross
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Mario de Bono
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Skora S, Zimmer M. Life(span) in balance: oxygen fuels a sophisticated neural network for lifespan homeostasis in C. elegans. EMBO J 2013; 32:1499-501. [PMID: 23632858 DOI: 10.1038/emboj.2013.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Susanne Skora
- Research Institute of Molecular Pathology, Vienna, Austria
| | | |
Collapse
|