1
|
Liu J, Zhu YM, Guo Y, Lin L, Wang ZX, Gu F, Dong XY, Zhou M, Wang YF, Zhang HL. Inhibition of GSK3β and RIP1K Attenuates Glial Scar Formation Induced by Ischemic Stroke via Reduction of Inflammatory Cytokine Production. Front Pharmacol 2020; 11:812. [PMID: 32595496 PMCID: PMC7303311 DOI: 10.3389/fphar.2020.00812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 05/18/2020] [Indexed: 01/05/2023] Open
Abstract
In the chronic phase following ischemic stroke, glial scars can prevent axonal regeneration and the intensification of inflammation. The protective effect of inhibition of glycogen synthase kinase-3β (GSK3β) or receptor-interacting protein 1 kinase (RIP1K) on ischemic stroke has been previously reported. The current study examined the effects of RIP1K and GSK3β on ischemic stroke-induced glial scar formation. To investigate this, we used an in vivo model of ischemic stroke based on middle cerebral artery occlusion for 90 min followed by reperfusion for 7 d, and an in vitro model in primary cultured astrocytes involving oxygen and glucose deprivation for 6 h followed by reoxygenation for 24 h. Both in vivo and in vitro, we found that SB216763, a GSK3β inhibitor, and necrostatin-1 (Nec-1), a RIP1K inhibitor, decreased levels of glial scar markers, including glial fibrillary acidic protein (GFAP), neurocan, and phosphacan. SB216763 and Nec-1 also decreased levels of inflammatory related cytokines, including interleukin-6 (IL-6), interleukin-1 β (IL-1β), and tumor necrosis factor-α (TNF-α). However, only Nec-1 increased the level of interleukin-1 receptor antagonist. Concurrent neutralization of TNF-α, IL-1β, and IL-6 with their antibodies provided better reduction in oxygen and glucose deprivation-induced increases in scar markers than obtained with separate use of each antibody. Further investigations showed that SB216763 reduced the levels of necroptosis-related proteins, including RIP1K, p-RIP1K, RIP3K, p-RIP3K, mixed lineage kinase domain-like protein (MLKL), and p-MLKL, while Nec-1 decreased the expression of p-GSK3β. Compared with Nec-1 (10 μM) and SB216763 (1 μM) alone, Nec-1 and SB216763 in combination reduced levels of GFAP, neurocan, and inflammatory-related cytokines. In conclusion, inhibition of GSK3β or RIP1K reduced glial scar formation induced by ischemic stroke. The underlying mechanisms might be at least, partially related to reducing levels of inflammatory-related cytokines and to blocking an interaction between GSK3β- and RIP1K-mediated pathways.
Collapse
Affiliation(s)
- Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Liang Lin
- Department of Anesthesiology, Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhan-Xiang Wang
- Department of Anesthesiology, Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Feng Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Xin-Yi Dong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Ming Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yi-Fan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Tan W, Gu Z, Shen B, Jiang J, Meng Y, Da Z, Liu H, Tao T, Cheng C. PTEN/Akt-p27kip1Signaling Promote the BM-MSCs Senescence and Apoptosis in SLE Patients. J Cell Biochem 2015; 116:1583-94. [PMID: 25649549 DOI: 10.1002/jcb.25112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 01/23/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Tan
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
- Department of Emergency; The Yangzhou First People's Hospital; Yangzhou 225001 China
| | - Zhifeng Gu
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Biyu Shen
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Jinxia Jiang
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Yan Meng
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Zhanyun Da
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Hong Liu
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
| | - Tao Tao
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
| | - Chun Cheng
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Medical College; Nantong University; Nantong 226001 China
| |
Collapse
|
3
|
Chen W, Wang Q, Bai L, Chen W, Wang X, Tellez CS, Leng S, Padilla MT, Nyunoya T, Belinsky SA, Lin Y. RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1α-mediated mitochondrial oxidative phosphorylation and glycolysis. Cell Death Differ 2014; 21:1061-70. [PMID: 24583643 DOI: 10.1038/cdd.2014.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023] Open
Abstract
Aerobic glycolysis or the Warburg effect contributes to cancer cell proliferation; however, how this glucose metabolism pathway is precisely regulated remains elusive. Here we show that receptor-interacting protein 1 (RIP1), a cell death and survival signaling factor, regulates mitochondrial oxidative phosphorylation and aerobic glycolysis. Loss of RIP1 in lung cancer cells suppressed peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression, impairing mitochondrial oxidative phosphorylation and accelerating glycolysis, resulting in spontaneous DNA damage and p53-mediated cell proliferation inhibition. Thus, although aerobic glycolysis within a certain range favors cancer cell proliferation, excessive glycolysis causes cytostasis. Our data suggest that maintenance of glycolysis by RIP1 is pivotal to cancer cell energy homeostasis and DNA integrity and may be exploited for use in anticancer therapy.
Collapse
Affiliation(s)
- W Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| | - Q Wang
- 1] Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA [2] Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education at Sichuan University, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - L Bai
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| | - W Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| | - X Wang
- 1] Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA [2] Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education at Sichuan University, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - C S Tellez
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| | - S Leng
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| | - M T Padilla
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| | - T Nyunoya
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| | - S A Belinsky
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| | - Y Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, USA
| |
Collapse
|
4
|
Chae YS, Kim JG, Sohn SK, Lee SJ, Kang BW, Moon JH, Park JY, Jeon SW, Bae HI, Choi GS, Jun SH. RIPK1 and CASP7 polymorphism as prognostic markers for survival in patients with colorectal cancer after complete resection. J Cancer Res Clin Oncol 2011; 137:705-13. [PMID: 20567846 DOI: 10.1007/s00432-010-0929-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 06/08/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND Since apoptosis plays a key role in cancer progression, the present study analyzed the polymorphisms of apoptosis-related genes and their impact on survival after curative resection in patients with colorectal cancer. MATERIALS AND METHODS Three hundred and seventy-seven patients were enrolled in the present study. The genomic DNA was extracted from fresh colorectal mucosal tissue, and 15 SNPs of 12 apoptosis-related genes were determined using a Sequenom MassARRAY system. RESULTS During the median follow-up of 41.8 (range, 1.1-85.5) months patients alive at last follow-up, 65 relapses and 57 deaths occurred. Among the target polymorphisms, the RIPK1 rs2272990 in a dominant model and the CASP7 rs2227310 in a recessive model of the minor allele were associated with survival in a log-rank test. Moreover, the GA+AA genotype of the RIPK1 rs2272990 and the GG genotype of the CASP7 rs2227310 were significantly correlated with a worse disease-free (hazard ratio [HR] = 2.093; P = 0.007 and HR = 2.641; 0.002, respectively) and disease-specific survival (HR = 2.222; P = 0.013 and HR = 2.247; P = 0.031, respectively) in a multivariate survival analysis. CONCLUSION The RIPK1 and CASP7 polymorphisms can be considered as possible prognostic markers for survival after curative resection in patients with colorectal cancer.
Collapse
Affiliation(s)
- Yee Soo Chae
- Department of Oncology/Hematology, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu 700-721, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lee JG, Kay EP. PI 3-kinase/Rac1 and ERK1/2 regulate FGF-2-mediated cell proliferation through phosphorylation of p27 at Ser10 by KIS and at Thr187 by Cdc25A/Cdk2. Invest Ophthalmol Vis Sci 2011; 52:417-26. [PMID: 20811053 DOI: 10.1167/iovs.10-6140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the mechanism of p27 phosphorylation through common and differential pathways triggered by FGF-2 in corneal endothelial cells (CECs). METHODS A GTP pull-down assay was performed to identify Rac1-GTP. Expression and activation of protein were analyzed by immunoblotting. Cell proliferation was measured by an MTT assay. Transfection of CECs with kinase-interacting stathmin (KIS) siRNA was performed. RESULTS FGF-2 activated Rac1 through Akt, and Rac1 inhibitor greatly inhibited the FGF-2-stimulated cell proliferation. Rac1 inhibitor reduced p27 phosphorylation at both serine 10 (Ser10) and threonine 187 (Thr187). ERK1/2 was also involved in FGF-2-stimulated CEC proliferation and phosphorylation of p27 at Ser10 and Thr187 in parallel to phosphatidylinositol (PI) 3-kinase. In both PI 3-kinase/Rac1 and ERK1/2 pathways, Ser10 of p27 is phosphorylated by KIS, confirmed by siRNA to KIS, which subsequently hampered the FGF-2-stimulated cell proliferation, while Thr187 of p27 was phosphorylated through Cdk2 activated by Cdc25A. Cdc25A inhibitor blocked activation of Cdk2, phosphorylation of p27 at Thr187, and cell proliferation. FGF-2 induced both KIS and Cdc25A during the G1 phase; the maximum KIS expression was observed 4 hours after FGF-2 stimulation, while the maximum Cdc25A expression was observed at 12 hours. Blockade of ERK1/2 and Rac1 greatly reduced KIS and Cdc25A expression. CONCLUSIONS Results suggest that FGF-2 uses both PI 3-kinase/Rac1 and ERK pathways for cell proliferation; two signals employ common pathways for phosphorylating p27 according to the sites (KIS for Ser10 and Cdc25A/Cdk2 for Thr187) with their characteristic kinetics (early G1 for Ser10 and late G1 for Thr187).
Collapse
Affiliation(s)
- Jeong Goo Lee
- Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
6
|
Yu M, Lam J, Rada B, Leto TL, Levine SJ. Double-stranded RNA induces shedding of the 34-kDa soluble TNFR1 from human airway epithelial cells via TLR3-TRIF-RIP1-dependent signaling: roles for dual oxidase 2- and caspase-dependent pathways. THE JOURNAL OF IMMUNOLOGY 2010; 186:1180-8. [PMID: 21148036 DOI: 10.4049/jimmunol.1001499] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TNF, an important mediator of inflammatory and innate immune responses, can be regulated by binding to soluble TNF receptors. The 55-kDa type 1 TNFR (TNFR1), the key receptor for TNF signaling, is released to the extracellular space by two mechanisms, the inducible cleavage and shedding of 34-kDa soluble TNFR1 (sTNFR1) ectodomains and the constitutive release of full-length 55-kDa TNFR1 within exosome-like vesicles. The aim of this study was to identify and characterize TLR signaling pathways that mediate TNFR1 release to the extracellular space. To our knowledge, we demonstrate for the first time that polyinosinic-polycytidylic acid [poly (I:C)], a synthetic dsRNA analogue that signals via TLR3, induces sTNFR1 shedding from human airway epithelial (NCI-H292) cells, whereas ligands for other microbial pattern recognition receptors, including TLR4, TLR7, and nucleotide-binding oligomerization domain containing 2, do not. Furthermore, poly (I:C) selectively induces the cleavage of 34-kDa sTNFR1 ectodomains but does not enhance the release of full-length 55-kDa TNFR1 within exosome-like vesicles. RNA interference experiments demonstrated that poly (I:C)-induced sTNFR1 shedding is mediated via activation of TLR3-TRIF-RIP1 signaling, with subsequent activation of two downstream pathways. One pathway involves the dual oxidase 2-mediated generation of reactive oxygen species, and the other pathway is via the caspase-mediated activation of apoptosis. Thus, the ability of dsRNA to induce the cleavage and shedding of the 34-kDa sTNFR1 from human bronchial epithelial cells represents a novel mechanism by which innate immune responses to viral infections are modulated.
Collapse
Affiliation(s)
- Man Yu
- Pulmonary and Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
7
|
Kremer R, Best LA, Savulescu D, Gavish M, Nagler RM. Pleural fluid analysis of lung cancer vs benign inflammatory disease patients. Br J Cancer 2010; 102:1180-4. [PMID: 20216542 PMCID: PMC2853096 DOI: 10.1038/sj.bjc.6605607] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Correct diagnosis of pleural effusion (PE) as either benign or malignant is crucial, although conventional cytological evaluation is of limited diagnostic accuracy, with relatively low sensitivity rates. METHODS We identified biological markers accurately detected in a simple PE examination. We analysed data from 19 patients diagnosed with lung cancer (nine adeno-Ca, five non-small-cell Ca (not specified), four squamous-cell Ca, one large-cell Ca) and 22 patients with benign inflammatory pathologies: secondary to trauma, pneumonia or TB. RESULTS Pleural effusion concentrations of seven analysed biological markers were significantly lower in lung cancer patients than in benign inflammatory patients, especially in matrix metalloproteinase (MMP)-9, MMP-3 and CycD1 (lower by 65% (P<0.000003), 40% (P<0.0007) and 34% (P<0.0001), respectively), and in Ki67, ImAnOx, carbonyls and p27. High rates of sensitivity and specificity values were found for MMP-9, MMP-3 and CycD1: 80 and 100%; 87 and 73%; and 87 and 82%, respectively. CONCLUSION Although our results are of significant merit in both the clinical and pathogenetic aspects of lung cancer, further research aimed at defining the best combination for marker analysis is warranted. The relative simplicity in analysing these markers in any routine hospital laboratory may result in its acceptance as a new diagnostic tool.
Collapse
Affiliation(s)
- R Kremer
- Department of General Thoracic Surgery, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | |
Collapse
|
8
|
Chauncey SS, Boothman DA, Habib AA. The receptor interacting protein 1 mediates a link between NFkappaB and PI3-kinase signaling. Cell Cycle 2009; 8:2671-2. [PMID: 19690459 DOI: 10.4161/cc.8.17.9337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
9
|
Park S, Hatanpaa KJ, Xie Y, Mickey BE, Madden CJ, Raisanen JM, Ramnarain DB, Xiao G, Saha D, Boothman DA, Zhao D, Bachoo RM, Pieper RO, Habib AA. The receptor interacting protein 1 inhibits p53 induction through NF-kappaB activation and confers a worse prognosis in glioblastoma. Cancer Res 2009; 69:2809-16. [PMID: 19339267 DOI: 10.1158/0008-5472.can-08-4079] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) activation may play an important role in the pathogenesis of cancer and also in resistance to treatment. Inactivation of the p53 tumor suppressor is a key component of the multistep evolution of most cancers. Links between the NF-kappaB and p53 pathways are under intense investigation. In this study, we show that the receptor interacting protein 1 (RIP1), a central component of the NF-kappaB signaling network, negatively regulates p53 tumor suppressor signaling. Loss of RIP1 from cells results in augmented induction of p53 in response to DNA damage, whereas increased RIP1 level leads to a complete shutdown of DNA damage-induced p53 induction by enhancing levels of cellular mdm2. The key signal generated by RIP1 to up-regulate mdm2 and inhibit p53 is activation of NF-kappaB. The clinical implication of this finding is shown in glioblastoma, the most common primary malignant brain tumor in adults. We show that RIP1 is commonly overexpressed in glioblastoma, but not in grades II and III glioma, and increased expression of RIP1 confers a worse prognosis in glioblastoma. Importantly, RIP1 levels correlate strongly with mdm2 levels in glioblastoma. Our results show a key interaction between the NF-kappaB and p53 pathways that may have implications for the targeted treatment of glioblastoma.
Collapse
Affiliation(s)
- Seongmi Park
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Park S, Zhao D, Hatanpaa KJ, Mickey BE, Saha D, Boothman DA, Story MD, Wong ET, Burma S, Georgescu MM, Rangnekar VM, Chauncey SS, Habib AA. RIP1 activates PI3K-Akt via a dual mechanism involving NF-kappaB-mediated inhibition of the mTOR-S6K-IRS1 negative feedback loop and down-regulation of PTEN. Cancer Res 2009; 69:4107-11. [PMID: 19435890 DOI: 10.1158/0008-5472.can-09-0474] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Therapeutic inhibition of mammalian target of rapamycin (mTOR) in cancer is complicated by the existence of a negative feedback loop linking mTOR to the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Thus, mTOR inhibition by rapamycin or TSC1/2 results in increased PI3K-Akt activation. The death domain kinase receptor interacting protein 1 (RIP1) plays a key role in nuclear factor-kappaB (NF-kappaB) activation and also activates the PI3K-Akt pathway through unknown mechanisms. RIP1 has recently been found to be overexpressed in glioblastoma multiforme, the most common adult primary malignant brain tumor, but not in grade II to III glioma. Our data suggest that RIP1 activates PI3K-Akt using dual mechanisms by removing the two major brakes on PI3K-Akt activity. First, increased expression of RIP1 activates PI3K-Akt by interrupting the mTOR negative feedback loop. However, unlike other signals that regulate mTOR activity without affecting its level, RIP1 negatively regulates mTOR transcription via a NF-kappaB-dependent mechanism. The second mechanism used by RIP1 to activate PI3K-Akt is down-regulation of cellular PTEN levels, which appears to be independent of NF-kappaB activation. The clinical relevance of these findings is highlighted by the demonstration that RIP1 levels correlate with activation of Akt in glioblastoma multiforme. Thus, our study shows that RIP1 regulates key components of the PTEN-PI3K-Akt-mTOR pathway and elucidates a novel negative regulation of mTOR signaling at the transcriptional level by the NF-kappaB pathway. Our data suggest that the RIP1-NF-kappaB status of tumors may influence response to treatments targeting the PTEN-PI3K-mTOR signaling axis.
Collapse
Affiliation(s)
- Seongmi Park
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8813, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kurabe N, Arai S, Nishijima A, Kubota N, Suizu F, Mori M, Kurokawa J, Kondo-Miyazaki M, Ide T, Murakami K, Miyake K, Ueki K, Koga H, Yatomi Y, Tashiro F, Noguchi M, Kadowaki T, Miyazaki T. The death effector domain-containing DEDD supports S6K1 activity via preventing Cdk1-dependent inhibitory phosphorylation. J Biol Chem 2008; 284:5050-5. [PMID: 19106089 DOI: 10.1074/jbc.m808598200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell cycle regulation and biochemical responses upon nutrients and growth factors are the major regulatory mechanisms for cell sizing in mammals. Recently, we identified that the death effector domain-containing DEDD impedes mitotic progression by inhibiting Cdk1 (cyclin-dependent kinase 1) and thus maintains an increase of cell size during the mitotic phase. Here we found that DEDD also associates with S6 kinase 1 (S6K1), downstream of phosphatidylinositol 3-kinase, and supports its activity by preventing inhibitory phosphorylation of S6K1 brought about by Cdk1 during the mitotic phase. DEDD(-/-) cells showed reduced S6K1 activity, consistently demonstrating decreased levels in activating phosphorylation at the Thr-389 site. In addition, levels of Cdk1-dependent inhibitory phosphorylation at the C terminus of S6K1 were enhanced in DEDD(-/-) cells and tissues. Consequently, as in S6K1(-/-) mice, the insulin mass within pancreatic islets was reduced in DEDD(-/-) mice, resulting in glucose intolerance. These findings suggest a novel cell sizing mechanism achieved by DEDD through the maintenance of S6K1 activity prior to cell division. Our results also suggest that DEDD may harbor important roles in glucose homeostasis and that its deficiency might be involved in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Nobuya Kurabe
- Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|