1
|
Gruffaz C, Smirnov A. GTPase Era at the heart of ribosome assembly. Front Mol Biosci 2023; 10:1263433. [PMID: 37860580 PMCID: PMC10582724 DOI: 10.3389/fmolb.2023.1263433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Ribosome biogenesis is a key process in all organisms. It relies on coordinated work of multiple proteins and RNAs, including an array of assembly factors. Among them, the GTPase Era stands out as an especially deeply conserved protein, critically required for the assembly of bacterial-type ribosomes from Escherichia coli to humans. In this review, we bring together and critically analyze a wealth of phylogenetic, biochemical, structural, genetic and physiological data about this extensively studied but still insufficiently understood factor. We do so using a comparative and, wherever possible, synthetic approach, by confronting observations from diverse groups of bacteria and eukaryotic organelles (mitochondria and chloroplasts). The emerging consensus posits that Era intervenes relatively early in the small subunit biogenesis and is essential for the proper shaping of the platform which, in its turn, is a prerequisite for efficient translation. The timing of Era action on the ribosome is defined by its interactions with guanosine nucleotides [GTP, GDP, (p)ppGpp], ribosomal RNA, and likely other factors that trigger or delay its GTPase activity. As a critical nexus of the small subunit biogenesis, Era is subject to sophisticated regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. Failure of these mechanisms or a deficiency in Era function entail dramatic generalized consequences for the protein synthesis and far-reaching, pleiotropic effects on the organism physiology, such as the Perrault syndrome in humans.
Collapse
Affiliation(s)
- Christelle Gruffaz
- UMR7156- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| | - Alexandre Smirnov
- UMR7156- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
2
|
Sound the (Smaller) Alarm: The Triphosphate Magic Spot Nucleotide pGpp. Infect Immun 2023; 91:e0043222. [PMID: 36920208 PMCID: PMC10112252 DOI: 10.1128/iai.00432-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
It has recently become evident that the bacterial stringent response is regulated by a triphosphate alarmone (pGpp) as well as the canonical tetra- and pentaphosphate alarmones ppGpp and pppGpp [together, (p)ppGpp]. Often dismissed in the past as an artifact or degradation product, pGpp has been confirmed as a deliberate endpoint of multiple synthetic pathways utilizing GMP, (p)ppGpp, or GDP/GTP as precursors. Some early studies concluded that pGpp functionally mimics (p)ppGpp and that its biological role is to make alarmone metabolism less dependent on the guanine energy charge of the cell by allowing GMP-dependent synthesis to continue when GDP/GTP has been depleted. However, recent reports that pGpp binds unique potential protein receptors and is the only alarmone synthesized by the intestinal pathogen Clostridioides difficile indicate that pGpp is more than a stand-in for the longer alarmones and plays a distinct biological role beyond its functional overlap (p)ppGpp.
Collapse
|
3
|
Tamman H, Ernits K, Roghanian M, Ainelo A, Julius C, Perrier A, Talavera A, Ainelo H, Dugauquier R, Zedek S, Thureau A, Pérez J, Lima-Mendez G, Hallez R, Atkinson GC, Hauryliuk V, Garcia-Pino A. Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint. Nat Chem Biol 2023; 19:334-345. [PMID: 36470996 PMCID: PMC9974481 DOI: 10.1038/s41589-022-01198-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022]
Abstract
Stringent factors orchestrate bacterial cell reprogramming through increasing the level of the alarmones (p)ppGpp. In Beta- and Gammaproteobacteria, SpoT hydrolyzes (p)ppGpp to counteract the synthetase activity of RelA. However, structural information about how SpoT controls the levels of (p)ppGpp is missing. Here we present the crystal structure of the hydrolase-only SpoT from Acinetobacter baumannii and uncover the mechanism of intramolecular regulation of 'long'-stringent factors. In contrast to ribosome-associated Rel/RelA that adopt an elongated structure, SpoT assumes a compact τ-shaped structure in which the regulatory domains wrap around a Core subdomain that controls the conformational state of the enzyme. The Core is key to the specialization of long RelA-SpoT homologs toward either synthesis or hydrolysis: the short and structured Core of SpoT stabilizes the τ-state priming the hydrolase domain for (p)ppGpp hydrolysis, whereas the longer, more dynamic Core domain of RelA destabilizes the τ-state priming the monofunctional RelA for efficient (p)ppGpp synthesis.
Collapse
Affiliation(s)
- Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
| | - Karin Ernits
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mohammad Roghanian
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Departement of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Andres Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | | | - Anthony Perrier
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- Bacterial Cell Cycle and Development, Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Hanna Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Rémy Dugauquier
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | | | - Javier Pérez
- Synchrotron SOLEIL, Saint-Aubin - BP 48, Gif sur Yvette, France
| | - Gipsi Lima-Mendez
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Régis Hallez
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- Bacterial Cell Cycle and Development, Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- WELBIO, Brussels, Belgium
| | - Gemma C Atkinson
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medicine, University of Lund, Lund, Sweden.
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- University of Tartu, Institute of Technology, Tartu, Estonia.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
- WELBIO, Brussels, Belgium.
| |
Collapse
|
4
|
Mehrez M, Romand S, Field B. New perspectives on the molecular mechanisms of stress signalling by the nucleotide guanosine tetraphosphate (ppGpp), an emerging regulator of photosynthesis in plants and algae. THE NEW PHYTOLOGIST 2023; 237:1086-1099. [PMID: 36349398 PMCID: PMC10107265 DOI: 10.1111/nph.18604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are associated with stress signalling. In this review, we will discuss recent research highlighting the role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts of plants and algae, and the latest discoveries that open up new perspectives on the emerging roles of (p)ppGpp in acclimation to environmental stress. We explore how rapid advances in the study of (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understanding of the molecular mechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae. Filling in these gaps is likely to lead to the discovery of conserved as well as new plant- and algal-specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the chloroplast and the regulation of stress tolerance.
Collapse
Affiliation(s)
- Marwa Mehrez
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar2092TunisTunisia
| | - Shanna Romand
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| | - Ben Field
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| |
Collapse
|
5
|
Ainelo A, Caballero-Montes J, Bulvas O, Ernits K, Coppieters ‘t Wallant K, Takada H, Craig SZ, Mazzucchelli G, Zedek S, Pichová I, Atkinson GC, Talavera A, Martens C, Hauryliuk V, Garcia-Pino A. The structure of DarB in complex with Rel NTD reveals nonribosomal activation of Rel stringent factors. SCIENCE ADVANCES 2023; 9:eade4077. [PMID: 36652515 PMCID: PMC9848473 DOI: 10.1126/sciadv.ade4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Rel stringent factors are bifunctional ribosome-associated enzymes that catalyze both synthesis and hydrolysis of the alarmones (p)ppGpp. Besides the allosteric control by starved ribosomes and (p)ppGpp, Rel is regulated by various protein factors depending on specific stress conditions, including the c-di-AMP-binding protein DarB. However, how these effector proteins control Rel remains unknown. We have determined the crystal structure of the DarB2:RelNTD2 complex, uncovering that DarB directly engages the SYNTH domain of Rel to stimulate (p)ppGpp synthesis. This association with DarB promotes a SYNTH-primed conformation of the N-terminal domain region, markedly increasing the affinity of Rel for ATP while switching off the hydrolase activity of the enzyme. Binding to c-di-AMP rigidifies DarB, imposing an entropic penalty that precludes DarB-mediated control of Rel during normal growth. Our experiments provide the basis for understanding a previously unknown mechanism of allosteric regulation of Rel stringent factors independent of amino acid starvation.
Collapse
Affiliation(s)
- Andres Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Julien Caballero-Montes
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Karin Ernits
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kyo Coppieters ‘t Wallant
- Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Hiraku Takada
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Sophie Z. Craig
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Gemma C. Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| |
Collapse
|
6
|
Deciphering the induction of Listeria monocytogenes into sublethal injury using fluorescence microscopy and RT-qPCR. Int J Food Microbiol 2023; 385:109983. [DOI: 10.1016/j.ijfoodmicro.2022.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
|
7
|
The Y430F mutant of Salmonella d-ornithine/d-lysine decarboxylase has altered stereospecificity and a putrescine allosteric activation site. Arch Biochem Biophys 2022; 731:109429. [DOI: 10.1016/j.abb.2022.109429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
8
|
Tailor K, Sagar P, Dave K, Pohnerkar J. Fusion of the N-terminal 119 amino acids of RelA with the CTD domain render growth inhibitory effects of the latter, (p)ppGpp-dependent. Mol Genet Genomics 2022; 297:601-620. [PMID: 35238978 DOI: 10.1007/s00438-022-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
The guanosine nucleotide derivatives ppGpp and pppGpp are central to the remarkable capacity of bacteria to adapt to fluctuating environments and metabolic perturbations. They are synthesized by two proteins, RelA and SpoT in E. coli and the activities of each of the two enzymes are highly regulated for homeostatic control of intracellular (p)ppGpp levels. Characterization of the mutant studied here indicates that moderate level expression of RelA appreciably reduces growth of cells wherein the basal levels of (p)ppGpp are higher than in the wild type without elevating the levels further. Consistent with this result, a large part of the growth inhibition effect is reproduced by overexpression of RelA NTD-CTD fusion lacking the (p)ppGpp synthesis function. A null mutation in relA abolishes this growth inhibitory effect suggesting its requirement for basal level synthesis of (p)ppGpp. Accordingly, increase in the (p)ppGpp levels in the relA1 mutant by spoT202 mutation largely restored the growth inhibitory effects of overexpression of RelA NTD-CTD fusion. Expression of this construct consisting of 119 amino acids of the N-terminal hydrolytic domain (HD) fused in-frame with the CTD domain (±TGS domain) renders the growth inhibitory effects (p)ppGpp-responsive-inhibited growth only of spoT1 and spoT202 relA1 mutants. This finding uncovered an hitherto unrealized (p)ppGpp-dependent regulation of RelA-CTD function, unraveling the importance of RelA NTD-HD domain for its regulatory role. An incremental rise in the (p)ppGpp levels is proposed to progressively modulate the interaction of RelA-CTD with the ribosomes with possible implications in the feedback regulation of the (p)ppGpp synthesis function, a proposal that accounts for the nonlinear kinetics of (p)ppGpp synthesis and increased ratio of RelA:ribosomes, both in vitro as well as in vivo.
Collapse
Affiliation(s)
- Krishma Tailor
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prarthi Sagar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Keyur Dave
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jayashree Pohnerkar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
9
|
Maki Y, Yoshida H. Ribosomal Hibernation-Associated Factors in Escherichia coli. Microorganisms 2021; 10:microorganisms10010033. [PMID: 35056482 PMCID: PMC8778775 DOI: 10.3390/microorganisms10010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/30/2023] Open
Abstract
Bacteria convert active 70S ribosomes to inactive 100S ribosomes to survive under various stress conditions. This state, in which the ribosome loses its translational activity, is known as ribosomal hibernation. In gammaproteobacteria such as Escherichia coli, ribosome modulation factor and hibernation-promoting factor are involved in forming 100S ribosomes. The expression of ribosome modulation factor is regulated by (p)ppGpp (which is induced by amino acid starvation), cAMP-CRP (which is stimulated by reduced metabolic energy), and transcription factors involved in biofilm formation. This indicates that the formation of 100S ribosomes is an important strategy for bacterial survival under various stress conditions. In recent years, the structures of 100S ribosomes from various bacteria have been reported, enhancing our understanding of the 100S ribosome. Here, we present previous findings on the 100S ribosome and related proteins and describe the stress-response pathways involved in ribosomal hibernation.
Collapse
|
10
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
11
|
Anderson BW, Fung DK, Wang JD. Regulatory Themes and Variations by the Stress-Signaling Nucleotide Alarmones (p)ppGpp in Bacteria. Annu Rev Genet 2021; 55:115-133. [PMID: 34416118 DOI: 10.1146/annurev-genet-021821-025827] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial stress-signaling alarmones are important components of a protective network against diverse stresses such as nutrient starvation and antibiotic assault. pppGpp and ppGpp, collectively (p)ppGpp, have well-documented regulatory roles in gene expression and protein translation. Recent work has highlighted another key function of (p)ppGpp: inducing rapid and coordinated changes in cellular metabolism by regulating enzymatic activities, especially those involved in purine nucleotide synthesis. Failure of metabolic regulation by (p)ppGpp results in the loss of coordination between metabolic and macromolecular processes, leading to cellular toxicity. In this review, we document how (p)ppGpp and newly characterized nucleotides pGpp and (p)ppApp directly regulate these enzymatic targets for metabolic remodeling. We examine targets' common determinants for alarmone interaction as well as their evolutionary diversification. We highlight classical and emerging themes in nucleotide signaling, including oligomerization and allostery along with metabolic interconversion and crosstalk, illustrating how they allow optimized bacterial adaptation to their environmental niches.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| | - Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| |
Collapse
|
12
|
Pulschen AA, Fernandes AZN, Cunha AF, Sastre DE, Matsuguma BE, Gueiros-Filho FJ. Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophys Rev 2021; 13:1039-1051. [DOI: 10.1007/s12551-021-00895-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
|
13
|
Mojr V, Roghanian M, Tamman H, Do Pham DD, Petrová M, Pohl R, Takada H, Van Nerom K, Ainelo H, Caballero-Montes J, Jimmy S, Garcia-Pino A, Hauryliuk V, Rejman D. Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools. ACS Chem Biol 2021; 16:1680-1691. [PMID: 34477366 DOI: 10.1021/acschembio.1c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.
Collapse
Affiliation(s)
- Viktor Mojr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Mohammad Roghanian
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Duy Dinh Do Pham
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hiraku Takada
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Katleen Van Nerom
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Hanna Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Julien Caballero-Montes
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Steffi Jimmy
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Deutsches Elektronen-Synchrotron DESY, Centre for Structural Systems Biology (CSSB), Notkestr. 85, 22607 Hamburg, Germany
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Vasili Hauryliuk
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
14
|
(p)ppGpp controls stringent factors by exploiting antagonistic allosteric coupling between catalytic domains. Mol Cell 2021; 81:3310-3322.e6. [PMID: 34416138 DOI: 10.1016/j.molcel.2021.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/26/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Amino acid starvation is sensed by Escherichia coli RelA and Bacillus subtilis Rel through monitoring the aminoacylation status of ribosomal A-site tRNA. These enzymes are positively regulated by their product-the alarmone nucleotide (p)ppGpp-through an unknown mechanism. The (p)ppGpp-synthetic activity of Rel/RelA is controlled via auto-inhibition by the hydrolase/pseudo-hydrolase (HD/pseudo-HD) domain within the enzymatic N-terminal domain region (NTD). We localize the allosteric pppGpp site to the interface between the SYNTH and pseudo-HD/HD domains, with the alarmone stimulating Rel/RelA by exploiting intra-NTD autoinhibition dynamics. We show that without stimulation by pppGpp, starved ribosomes cannot efficiently activate Rel/RelA. Compromised activation by pppGpp ablates Rel/RelA function in vivo, suggesting that regulation by the second messenger (p)ppGpp is necessary for mounting an acute starvation response via coordinated enzymatic activity of individual Rel/RelA molecules. Control by (p)ppGpp is lacking in the E. coli (p)ppGpp synthetase SpoT, thus explaining its weak synthetase activity.
Collapse
|
15
|
Bange G, Brodersen DE, Liuzzi A, Steinchen W. Two P or Not Two P: Understanding Regulation by the Bacterial Second Messengers (p)ppGpp. Annu Rev Microbiol 2021; 75:383-406. [PMID: 34343020 DOI: 10.1146/annurev-micro-042621-122343] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Anastasia Liuzzi
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Wieland Steinchen
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
16
|
Melendez-Alvarez J, He C, Zhang R, Kuang Y, Tian XJ. Emergent Damped Oscillation Induced by Nutrient-Modulating Growth Feedback. ACS Synth Biol 2021; 10:1227-1236. [PMID: 33915046 PMCID: PMC10893968 DOI: 10.1021/acssynbio.1c00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth feedback, the inherent coupling between the synthetic gene circuit and the host cell growth, could significantly change the circuit behaviors. Previously, a diverse array of emergent behaviors, such as growth bistability, enhanced ultrasensitivity, and topology-dependent memory loss, were reported to be induced by growth feedback. However, the influence of the growth feedback on the circuit functions remains underexplored. Here, we reported an unexpected damped oscillatory behavior of a self-activation gene circuit induced by nutrient-modulating growth feedback. Specifically, after dilution of the activated self-activation switch into the fresh medium with moderate nutrients, its gene expression first decreases as the cell grows and then shows a significant overshoot before it reaches the steady state, leading to damped oscillation dynamics. Fitting the data with a coarse-grained model suggests a nonmonotonic growth-rate regulation on gene production rate. The underlying mechanism of the oscillation was demonstrated by a molecular mathematical model, which includes the ribosome allocation toward gene production, cell growth, and cell maintenance. Interestingly, the model predicted a counterintuitive dependence of oscillation amplitude on the nutrition level, where the highest peak was found in the medium with moderate nutrients, but was not observed in rich nutrients. We experimentally verified this prediction by tuning the nutrient level in the culture medium. We did not observe significant oscillatory behavior for the toggle switch, suggesting that the emergence of damped oscillatory behavior depends on circuit network topology. Our results demonstrated a new nonlinear emergent behavior mediated by growth feedback, which depends on the ribosome allocation between gene circuit and cell growth.
Collapse
Affiliation(s)
- Juan Melendez-Alvarez
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Changhan He
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
17
|
Chau NYE, Ahmad S, Whitney JC, Coombes BK. Emerging and divergent roles of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis. PLoS Pathog 2021; 17:e1009532. [PMID: 33984072 PMCID: PMC8118318 DOI: 10.1371/journal.ppat.1009532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria inhabit diverse environmental niches and consequently must modulate their metabolism to adapt to stress. The nucleotide second messengers guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) (collectively referred to as (p)ppGpp) are essential for survival during nutrient starvation. (p)ppGpp is synthesized by the RelA-SpoT homologue (RSH) protein family and coordinates the control of cellular metabolism through its combined effect on over 50 proteins. While the role of (p)ppGpp has largely been associated with nutrient limitation, recent studies have shown that (p)ppGpp and related nucleotides have a previously underappreciated effect on different aspects of bacterial physiology, such as maintaining cellular homeostasis and regulating bacterial interactions with a host, other bacteria, or phages. (p)ppGpp produced by pathogenic bacteria facilitates the evasion of host defenses such as reactive nitrogen intermediates, acidic pH, and the complement system. Additionally, (p)ppGpp and pyrophosphorylated derivatives of canonical adenosine nucleotides called (p)ppApp are emerging as effectors of bacterial toxin proteins. Here, we review the RSH protein family with a focus on its unconventional roles during host infection and bacterial competition.
Collapse
Affiliation(s)
- N. Y Elizabeth Chau
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shehryar Ahmad
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - John C. Whitney
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Sinha AK, Winther KS. The RelA hydrolase domain acts as a molecular switch for (p)ppGpp synthesis. Commun Biol 2021; 4:434. [PMID: 33790389 PMCID: PMC8012599 DOI: 10.1038/s42003-021-01963-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/04/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteria synthesize guanosine tetra- and penta phosphate (commonly referred to as (p)ppGpp) in response to environmental stresses. (p)ppGpp reprograms cell physiology and is essential for stress survival, virulence and antibiotic tolerance. Proteins of the RSH superfamily (RelA/SpoT Homologues) are ubiquitously distributed and hydrolyze or synthesize (p)ppGpp. Structural studies have suggested that the shift between hydrolysis and synthesis is governed by conformational antagonism between the two active sites in RSHs. RelA proteins of γ-proteobacteria exclusively synthesize (p)ppGpp and encode an inactive pseudo-hydrolase domain. Escherichia coli RelA synthesizes (p)ppGpp in response to amino acid starvation with cognate uncharged tRNA at the ribosomal A-site, however, mechanistic details to the regulation of the enzymatic activity remain elusive. Here, we show a role of the enzymatically inactive hydrolase domain in modulating the activity of the synthetase domain of RelA. Using mutagenesis screening and functional studies, we identify a loop region (residues 114–130) in the hydrolase domain, which controls the synthetase activity. We show that a synthetase-inactive loop mutant of RelA is not affected for tRNA binding, but binds the ribosome less efficiently than wild type RelA. Our data support the model that the hydrolase domain acts as a molecular switch to regulate the synthetase activity. Sinha and Winther show that the Escherichia coli RelA inactive hydrolase domain modulates the activity of the synthetase domain. RelA produces (p)ppGpp in γ-proteobacteria; using mutagenesis screening and functional studies, the authors demonstrate that the H loop region in the RelA hydrolase domain acts as a molecular switch to regulate the synthetase domain activity of the enzyme.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
19
|
DeVilbiss SE, Steele MK, Krometis LAH, Badgley BD. Freshwater salinization increases survival of Escherichia coli and risk of bacterial impairment. WATER RESEARCH 2021; 191:116812. [PMID: 33461082 DOI: 10.1016/j.watres.2021.116812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Elevated levels of Escherichia coli (E. coli) are responsible for more designated freshwater stream impairments than any other contaminant in the United States. E. coli are intentionally used as a sentinel of fecal contamination for freshwaters because previous research indicates that salt concentrations in brackish or marine waters reduce E. coli survival, rendering it a less effective indicator of public health risks. Given increasing evidence of freshwater salinization associated with upland anthropogenic land-use, understanding the effects on fecal indicators is critical; however, changes in E. coli survival along the freshwater salinity range (≤ 1500 µS cm-1) have not been previously examined. Through a series of controlled mesocosm experiments, we provide direct evidence that salinization causes E. coli survival rates in freshwater to increase at conductivities as low as 350 µS cm-1 and peak at 1500 µS cm-1, revealing a subsidy-stress response across the freshwater-marine continuum. Furthermore, specific base cations affect E. coli survival differently, with Mg2+ increasing E. coli survival rates relative to other chloride salts. Further investigation of the mechanisms by which freshwater salinization increases susceptibility to or exacerbates bacterial water quality impairments is recommended. Addressing salinization with nuanced approaches that consider salt sources and chemistry could assist in prioritizing and addressing bacterial water quality management.
Collapse
Affiliation(s)
- Stephen E DeVilbiss
- School of Plant and Environmental Sciences, Virginia Tech Blacksburg, VA 24061, United States
| | - Meredith K Steele
- School of Plant and Environmental Sciences, Virginia Tech Blacksburg, VA 24061, United States.
| | - Leigh-Anne H Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Tech Blacksburg, VA 24061, United States
| |
Collapse
|
20
|
relA and spoT Gene Expression is Modulated in Salmonella Grown Under Static Magnetic Field. Curr Microbiol 2021; 78:887-893. [PMID: 33515321 DOI: 10.1007/s00284-021-02346-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Virtually all bacterial species synthesize high levels of (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the stringent response and other stresses in bacteria. relA and spoT genes are, respectively, involved in synthesis and synthesis/biodegradation of (p)ppGpp. We aimed in this work to evaluate the impact of static magnetic field (SMF) 200 mT exposure on the expression of relA and spoT genes in Salmonella enterica Hadar. Bacteria were exposed to a SMF during 9 h, and RNA extraction was followed by reverse transcriptase polymerase chain reaction (RT-PCR). The relative quantification of mRNA expression levels using the 16S rRNA reference gene did not change during the SMF exposure. However, results showed a significant increase in gene expression for relA after 3 h of exposure (P < 0.05) and after 6 h for spoT (P < 0.05). The differential gene expression of relA and spoT could be considered as a potential stress response to a SMF exposure in Salmonella related to the production/degradation of (p)ppGpp.
Collapse
|
21
|
Takada H, Roghanian M, Caballero-Montes J, Van Nerom K, Jimmy S, Kudrin P, Trebini F, Murayama R, Akanuma G, Garcia-Pino A, Hauryliuk V. Ribosome association primes the stringent factor Rel for tRNA-dependent locking in the A-site and activation of (p)ppGpp synthesis. Nucleic Acids Res 2021; 49:444-457. [PMID: 33330919 PMCID: PMC7797070 DOI: 10.1093/nar/gkaa1187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
In the Gram-positive Firmicute bacterium Bacillus subtilis, amino acid starvation induces synthesis of the alarmone (p)ppGpp by the RelA/SpoT Homolog factor Rel. This bifunctional enzyme is capable of both synthesizing and hydrolysing (p)ppGpp. To detect amino acid deficiency, Rel monitors the aminoacylation status of the ribosomal A-site tRNA by directly inspecting the tRNA’s CCA end. Here we dissect the molecular mechanism of B. subtilis Rel. Off the ribosome, Rel predominantly assumes a ‘closed’ conformation with dominant (p)ppGpp hydrolysis activity. This state does not specifically select deacylated tRNA since the interaction is only moderately affected by tRNA aminoacylation. Once bound to the vacant ribosomal A-site, Rel assumes an ‘open’ conformation, which primes its TGS and Helical domains for specific recognition and stabilization of cognate deacylated tRNA on the ribosome. The tRNA locks Rel on the ribosome in a hyperactivated state that processively synthesises (p)ppGpp while the hydrolysis is suppressed. In stark contrast to non-specific tRNA interactions off the ribosome, tRNA-dependent Rel locking on the ribosome and activation of (p)ppGpp synthesis are highly specific and completely abrogated by tRNA aminoacylation. Binding pppGpp to a dedicated allosteric site located in the N-terminal catalytic domain region of the enzyme further enhances its synthetase activity.
Collapse
Affiliation(s)
- Hiraku Takada
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Mohammad Roghanian
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Julien Caballero-Montes
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Building BC, Room 1C4 203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Katleen Van Nerom
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Building BC, Room 1C4 203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Steffi Jimmy
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Pavel Kudrin
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Fabio Trebini
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Rikinori Murayama
- Akita Prefectural Research Center for Public Health and Environment, 6-6 Senshu-Kubotamachi, Akita, 010-0874, Japan
| | - Genki Akanuma
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Building BC, Room 1C4 203, Boulevard du Triomphe, 1050 Brussels, Belgium.,WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden.,University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| |
Collapse
|
22
|
Kushwaha GS, Patra A, Bhavesh NS. Structural Analysis of (p)ppGpp Reveals Its Versatile Binding Pattern for Diverse Types of Target Proteins. Front Microbiol 2020; 11:575041. [PMID: 33224117 PMCID: PMC7674647 DOI: 10.3389/fmicb.2020.575041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
(p)ppGpp, highly phosphorylated guanosine, are global regulatory nucleotides that modulate several biochemical events in bacterial physiology ranging from core central dogma to various metabolic pathways. Conventionally, (p)ppGpp collectively refers to two nucleotides, ppGpp, and pppGpp in the literature. Initially, (p)ppGpp has been discovered as a transcription regulatory molecule as it binds to RNA polymerase and regulates transcriptional gene regulation. During the past decade, several other target proteins of (p)ppGpp have been discovered and as of now, more than 30 proteins have been reported to be regulated by the binding of these two signaling nucleotides. The regulation of diverse biochemical activities by (p)ppGpp requires fine-tuned molecular interactions with various classes of proteins so that it can moderate varied functions. Here we report a structural dynamics of (p)ppGpp in the unbound state using well-defined computational tools and its interactions with target proteins to understand the differential regulation by (p)ppGpp at the molecular level. We carried out replica exchange molecular dynamics simulation studies to enhance sampling of conformations during (p)ppGpp simulation. The detailed comparative analysis of torsion angle conformation of ribose sugar of unbound (p)ppGpp and bound states of (p)ppGpp was carried out. The structural dynamics shows that two linear phosphate chains provide plasticity to (p)ppGpp nucleotides for the binding to diverse proteins. Moreover, the intermolecular interactions between (p)ppGpp and target proteins were characterized through various physicochemical parameters including, hydrogen bonds, van der Waal’s interactions, aromatic stacking, and side chains of interacting residues of proteins. Surprisingly, we observed that interactions of (p)ppGpp to target protein have a consensus binding pattern for a particular functional class of enzymes. For example, the binding of (p)ppGpp to RNA polymerase is significantly different from the binding of (p)ppGpp to the proteins involved in the ribosome biogenesis pathway. Whereas, (p)ppGpp binding to enzymes involved in nucleotide metabolism facilitates the functional regulation through oligomerization. Analysis of these datasets revealed that guanine base-specific contacts are key determinants to discriminate functional class of protein. Altogether, our studies provide significant information to understand the differential interaction pattern of (p)ppGpp to its target and this information may be useful to design antibacterial compounds based on (p)ppGpp analogs.
Collapse
Affiliation(s)
- Gajraj Singh Kushwaha
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,KIIT Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) (Deemed to be University), Bhubaneswar, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
23
|
Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 2020; 19:256-271. [PMID: 33149273 DOI: 10.1038/s41579-020-00470-y] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5'-monophosphate 3'-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.
Collapse
Affiliation(s)
- Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Naznin R Choudhury
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
24
|
Sanyal R, Vimala A, Harinarayanan R. Studies on the Regulation of (p)ppGpp Metabolism and Its Perturbation Through the Over-Expression of Nudix Hydrolases in Escherichia coli. Front Microbiol 2020; 11:562804. [PMID: 33178149 PMCID: PMC7593582 DOI: 10.3389/fmicb.2020.562804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
Stringent response mediated by modified guanosine nucleotides is conserved across bacteria and is regulated through the Rel/Spo functions. In Escherichia coli, RelA and SpoT proteins synthesize the modified nucleotides ppGpp and pppGpp, together referred to as (p)ppGpp. SpoT is also the primary (p)ppGpp hydrolase. In this study, using hypomorphic relA alleles, we provide experimental evidence for SpoT-mediated negative regulation of the amplification of RelA-dependent stringent response. We investigated the kinetics of ppGpp degradation in cells recovering from stringent response in the complete absence of SpoT function. We found that, although greatly diminished, there was slow ppGpp degradation and growth resumption after a lag period, concomitant with decrease in ppGpp pool. We present evidence for reduction in the ppGpp degradation rate following an increase in pppGpp pool, during recovery from stringent response. From a genetic screen, the nudix hydrolases MutT and NudG were identified as over-expression suppressors of the growth defect of ΔspoT and ΔspoT ΔgppA strains. The effect of over-expression of these hydrolases on the stringent response to amino acid starvation and basal (p)ppGpp pool was studied. Over-expression of each hydrolase reduced the strength of the stringent response to amino acid starvation, and additionally, perturbed the ratio of ppGpp to pppGpp in strains with reduced SpoT hydrolase activity. In these strains that do not accumulate pppGpp during amino acid starvation, the expression of NudG or MutT supported pppGpp accumulation. This lends support to the idea that a reduction in the SpoT hydrolase activity is sufficient to cause the loss of pppGpp accumulation and therefore the phenomenon is independent of hydrolases that target pppGpp, such as GppA.
Collapse
Affiliation(s)
- Rajeshree Sanyal
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Allada Vimala
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rajendran Harinarayanan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
25
|
Fernández-Coll L, Cashel M. Possible Roles for Basal Levels of (p)ppGpp: Growth Efficiency Vs. Surviving Stress. Front Microbiol 2020; 11:592718. [PMID: 33162969 PMCID: PMC7581894 DOI: 10.3389/fmicb.2020.592718] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
Two (p)ppGpp nucleotide analogs, sometimes abbreviated simply as ppGpp, are widespread in bacteria and plants. Their name alarmone reflects a view of their function as intracellular hormone-like protective alarms that can increase a 100-fold when sensing any of an array of physical or nutritional dangers, such as abrupt starvation, that trigger lifesaving adjustments of global gene expression and physiology. The diversity of mechanisms for stress-specific adjustments of this sort is large and further compounded by almost infinite microbial diversity. The central question raised by this review is whether the small basal levels of (p)ppGpp functioning during balanced growth serve very different roles than alarmone-like functions. Recent discoveries that abrupt amino acid starvation of Escherichia coli, accompanied by very high levels of ppGpp, occasion surprising instabilities of transfer RNA (tRNA), ribosomal RNA (rRNA), and ribosomes raises new questions. Is this destabilization, a mode of regulation linearly related to (p)ppGpp over the entire continuum of (p)ppGpp levels, including balanced growth? Are regulatory mechanisms exerted by basal (p)ppGpp levels fundamentally different than for high levels? There is evidence from studies of other organisms suggesting special regulatory features of basal levels compared to burst of (p)ppGpp. Those differences seem to be important even during bacterial infection, suggesting that unbalancing the basal levels of (p)ppGpp may become a future antibacterial treatment. A simile for this possible functional duality is that (p)ppGpp acts like a car’s brake, able to stop to avoid crashes as well as to slow down to drive safely.
Collapse
Affiliation(s)
- Llorenç Fernández-Coll
- Intramural Research Program, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| | - Michael Cashel
- Intramural Research Program, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| |
Collapse
|
26
|
The (p)ppGpp Synthetase RSH Mediates Stationary-Phase Onset and Antibiotic Stress Survival in Clostridioides difficile. J Bacteriol 2020; 202:JB.00377-20. [PMID: 32661079 DOI: 10.1128/jb.00377-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
The human pathogen Clostridioides difficile is increasingly tolerant of multiple antibiotics and causes infections with a high rate of recurrence, creating an urgent need for new preventative and therapeutic strategies. The stringent response, a universal bacterial response to extracellular stress, governs antibiotic survival and pathogenesis in diverse organisms but has not previously been characterized in C. difficile Here, we report that the C. difficile (p)ppGpp synthetase RSH is incapable of utilizing GTP or GMP as a substrate but readily synthesizes ppGpp from GDP. The enzyme also utilizes many structurally diverse metal cofactors for reaction catalysis and remains functionally stable at a wide range of environmental pHs. Transcription of rsh is stimulated by stationary-phase onset and by exposure to the antibiotics clindamycin and metronidazole. Chemical inhibition of RSH by the ppGpp analog relacin increases antibiotic susceptibility in epidemic C. difficile R20291, indicating that RSH inhibitors may be a viable strategy for drug development against C. difficile infection. Finally, transcriptional suppression of rsh also increases bacterial antibiotic susceptibility, suggesting that RSH contributes to C. difficile antibiotic tolerance and survival.IMPORTANCE Clostridioides difficile infection (CDI) is an urgent public health threat with a high recurrence rate, in part because the causative bacterium has a high rate of antibiotic survival. The (p)ppGpp-mediated bacterial stringent response plays a role in antibiotic tolerance in diverse pathogens and is a potential target for development of new antimicrobials because the enzymes that metabolize (p)ppGpp have no mammalian homologs. We report that stationary-phase onset and antibiotics induce expression of the clostridial ppGpp synthetase RSH and that both chemical inhibition and translational suppression of RSH increase C. difficile antibiotic susceptibility. This demonstrates that development of RSH inhibitors to serve as adjuvants to antibiotic therapy is a potential approach for the development of new strategies to combat CDI.
Collapse
|
27
|
Steinchen W, Zegarra V, Bange G. (p)ppGpp: Magic Modulators of Bacterial Physiology and Metabolism. Front Microbiol 2020; 11:2072. [PMID: 33013756 PMCID: PMC7504894 DOI: 10.3389/fmicb.2020.02072] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 01/21/2023] Open
Abstract
When bacteria experience growth-limiting environmental conditions, the synthesis of the hyperphosphorylated guanosine derivatives (p)ppGpp is induced by enzymes of the RelA/SpoT homology (RSH)-type protein family. High levels of (p)ppGpp induce a process called "stringent response", a major cellular reprogramming during which ribosomal RNA (rRNA) and transfer RNA (tRNA) synthesis is downregulated, stress-related genes upregulated, messenger RNA (mRNA) stability and translation altered, and allocation of scarce resources optimized. The (p)ppGpp-mediated stringent response is thus often regarded as an all-or-nothing paradigm induced by stress. Over the past decades, several binding partners of (p)ppGpp have been uncovered displaying dissociation constants from below one micromolar to more than one millimolar and thus coincide with the accepted intracellular concentrations of (p)ppGpp under non-stringent (basal levels) and stringent conditions. This suggests that the ability of (p)ppGpp to modulate target proteins or processes would be better characterized as an unceasing continuum over a concentration range instead of being an abrupt switch of biochemical processes under specific conditions. We analyzed the reported binding affinities of (p)ppGpp targets and depicted a scheme for prioritization of modulation by (p)ppGpp. In this ranking, many enzymes of e.g., nucleotide metabolism are among the first targets to be affected by rising (p)ppGpp while more fundamental processes such as DNA replication are among the last. This preference should be part of (p)ppGpp's "magic" in the adaptation of microorganisms while still maintaining their potential for outgrowth once a stressful condition is overcome.
Collapse
Affiliation(s)
- Wieland Steinchen
- Department of Chemistry, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | | | - Gert Bange
- Department of Chemistry, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
28
|
González Plaza JJ. Small RNAs as Fundamental Players in the Transference of Information During Bacterial Infectious Diseases. Front Mol Biosci 2020; 7:101. [PMID: 32613006 PMCID: PMC7308464 DOI: 10.3389/fmolb.2020.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Communication shapes life on Earth. Transference of information has played a paramount role on the evolution of all living or extinct organisms since the appearance of life. Success or failure in this process will determine the prevalence or disappearance of a certain set of genes, the basis of Darwinian paradigm. Among different molecules used for transmission or reception of information, RNA plays a key role. For instance, the early precursors of life were information molecules based in primitive RNA forms. A growing field of research has focused on the contribution of small non-coding RNA forms due to its role on infectious diseases. These are short RNA species that carry out regulatory tasks in cis or trans. Small RNAs have shown their relevance in fine tuning the expression and activity of important regulators of essential genes for bacteria. Regulation of targets occurs through a plethora of mechanisms, including mRNA stabilization/destabilization, driving target mRNAs to degradation, or direct binding to regulatory proteins. Different studies have been conducted during the interplay of pathogenic bacteria with several hosts, including humans, animals, or plants. The sRNAs help the invader to quickly adapt to the change in environmental conditions when it enters in the host, or passes to a free state. The adaptation is achieved by direct targeting of the pathogen genes, or subversion of the host immune system. Pathogens trigger also an immune response in the host, which has been shown as well to be regulated by a wide range of sRNAs. This review focuses on the most recent host-pathogen interaction studies during bacterial infectious diseases, providing the perspective of the pathogen.
Collapse
Affiliation(s)
- Juan José González Plaza
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
29
|
Hu S, Chen Q, Guo F, Wang M, Zhao H, Wang Y, Ni D, Wang P. (Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis. PLANT MOLECULAR BIOLOGY 2020; 103:287-302. [PMID: 32240472 DOI: 10.1007/s11103-020-00992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Volatile components in fresh leaves are involved in the regulation of many stress responses, such as insect damage, fungal infection and high temperature. However, the potential function of volatile components in hyperosmotic response is largely unknown. Here, we found that 7-day hyperosmotic treatment specifically led to the accumulation of (Z)-3-hexen-1-ol, (E)-2-hexenal and methyl salicylate. Transcriptome and qRT-PCR analyses suggested the activation of linolenic acid degradation and methyl salicylate processes. Importantly, exogenous (Z)-3-hexen-1-ol pretreatment dramatically enhanced the hyperosmotic stress tolerance of tea plants and decreased stomatal conductance, whereas (E)-2-hexenal and methyl salicylate pretreatments did not exhibit such a function. qRT-PCR analysis revealed that exogenous ABA induced the expressions of related enzyme genes, and (Z)-3-hexen-1-ol could up-regulate the expressions of many DREB and RD genes. Moreover, exogenous (Z)-3-hexen-1-ol tremendously induced the expressions of specific LOX and ADH genes within 24 h. Taken together, hyperosmotic stress induced (Z)-3-hexen-1-ol accumulation in tea plant via the activation of most LOX, HPL and ADH genes, while (Z)-3-hexen-1-ol could dramatically enhance the hyperosmotic stress tolerance via the decrease of stomatal conductance and MDA, accumulation of ABA and proline, activation of DREB and RD gene expressions, and probably positive feedback regulation of LOXs and ADHs. KEY MESSAGE: Hyperosmotic stress induced (Z)-3-hexen-1-ol accumulation in Camellia sinensis via the up-regulation of most LOX, HPL and ADH genes, while (Z)-3-hexen-1-ol could dramatically enhance the hyperosmotic stress tolerance via the decrease of stomatal conductance, accumulation of proline, activation of DREB and RD gene expressions, and probably positive feedback regulation of LOXs and ADHs.
Collapse
Affiliation(s)
- Shuangling Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Mingle Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
30
|
Takada H, Roghanian M, Murina V, Dzhygyr I, Murayama R, Akanuma G, Atkinson GC, Garcia-Pino A, Hauryliuk V. The C-Terminal RRM/ACT Domain Is Crucial for Fine-Tuning the Activation of 'Long' RelA-SpoT Homolog Enzymes by Ribosomal Complexes. Front Microbiol 2020; 11:277. [PMID: 32184768 PMCID: PMC7058999 DOI: 10.3389/fmicb.2020.00277] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
The (p)ppGpp-mediated stringent response is a bacterial stress response implicated in virulence and antibiotic tolerance. Both synthesis and degradation of the (p)ppGpp alarmone nucleotide are mediated by RelA-SpoT Homolog (RSH) enzymes which can be broadly divided in two classes: single-domain 'short' and multi-domain 'long' RSH. The regulatory ACT (Aspartokinase, Chorismate mutase and TyrA)/RRM (RNA Recognition Motif) domain is a near-universal C-terminal domain of long RSHs. Deletion of RRM in both monofunctional (synthesis-only) RelA as well as bifunctional (i.e., capable of both degrading and synthesizing the alarmone) Rel renders the long RSH cytotoxic due to overproduction of (p)ppGpp. To probe the molecular mechanism underlying this effect we characterized Escherichia coli RelA and Bacillus subtilis Rel RSHs lacking RRM. We demonstrate that, first, the cytotoxicity caused by the removal of RRM is counteracted by secondary mutations that disrupt the interaction of the RSH with the starved ribosomal complex - the ultimate inducer of (p)ppGpp production by RelA and Rel - and, second, that the hydrolytic activity of Rel is not abrogated in the truncated mutant. Therefore, we conclude that the overproduction of (p)ppGpp by RSHs lacking the RRM domain is not explained by a lack of auto-inhibition in the absence of RRM or/and a defect in (p)ppGpp hydrolysis. Instead, we argue that it is driven by misregulation of the RSH activation by the ribosome.
Collapse
Affiliation(s)
- Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Mohammad Roghanian
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Ievgen Dzhygyr
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Rikinori Murayama
- Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Genki Akanuma
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | | | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO, Brussels, Belgium
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
31
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
32
|
Zamakhaev MV, Goncharenko AV, Shumkov MS. Toxin-Antitoxin Systems and Bacterial Persistence (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Irving SE, Corrigan RM. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. MICROBIOLOGY-SGM 2019; 164:268-276. [PMID: 29493495 DOI: 10.1099/mic.0.000621] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stringent response is a conserved bacterial stress response mechanism that allows bacteria to respond to nutritional challenges. It is mediated by the alarmones pppGpp and ppGpp, nucleotides that are synthesized and hydrolyzed by members of the RSH superfamily. Whilst there are key differences in the binding targets for (p)ppGpp between Gram-negative and Gram-positive bacterial species, the transient accumulation of (p)ppGpp caused by nutritional stresses results in a global change in gene expression in all species. The RSH superfamily of enzymes is ubiquitous throughout the bacterial kingdom, and can be split into three main groups: the long-RSH enzymes; the small alarmone synthetases (SAS); and the small alarmone hydrolases (SAH). Despite the prevalence of these enzymes, there are important differences in the way in which they are regulated on a transcriptional and post-translational level. Here we provide an overview of the diverse regulatory mechanisms that are involved in governing this crucial signalling network. Understanding how the RSH superfamily members are regulated gives insights into the varied important biological roles for this signalling pathway across the bacteria.
Collapse
Affiliation(s)
- Sophie E Irving
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca M Corrigan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
34
|
Turnbull KJ, Dzhygyr I, Lindemose S, Hauryliuk V, Roghanian M. Intramolecular Interactions Dominate the Autoregulation of Escherichia coli Stringent Factor RelA. Front Microbiol 2019; 10:1966. [PMID: 31507571 PMCID: PMC6719525 DOI: 10.3389/fmicb.2019.01966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023] Open
Abstract
Amino acid starvation in Escherichia coli activates the enzymatic activity of the stringent factor RelA, leading to accumulation of the alarmone nucleotide (p)ppGpp. The alarmone acts as an intercellular messenger to regulate transcription, translation and metabolism to mediate bacterial stress adaptation. The enzymatic activity of RelA is subject to multi-layered allosteric control executed both by ligands - such as "starved" ribosomal complexes, deacylated tRNA and pppGpp - and by individual RelA domains. The auto-regulation of RelA is proposed to act either in cis (inhibition of the enzymatic activity of the N-terminal region, NTD, by regulatory C-terminal region, CTD) or in trans (CTD-mediated dimerization leading to enzyme inhibition). In this report, we probed the regulatory roles of the individual domains of E. coli RelA and our results are not indicative of RelA dimerization being the key regulatory mechanism. First, at growth-permitting levels, ectopic expression of RelA CTD does not interfere with activation of native RelA, indicating lack of regulation via inhibitory complex formation in the cell. Second, in our biochemical assays, increasing RelA concentration does not decrease the enzyme activity, as would be expected in the case of efficient auto-inhibition via dimerization. Third, while high-level CTD expression efficiently inhibits the growth, the effect is independent of native RelA and is mediated by direct inhibition of protein synthesis, likely via direct interaction with the ribosomal A-site. Finally, deletion of the RRM domain of the CTD region leads to growth inhibition mediated by accumulation of (p)ppGpp, suggesting de-regulation of the synthetic activity in this mutant.
Collapse
Affiliation(s)
- Kathryn Jane Turnbull
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Ievgen Dzhygyr
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Søren Lindemose
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mohammad Roghanian
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Stadler AM, Schneidewind J, Zamponi M, Knieps-Grünhagen E, Gholami S, Schwaneberg U, Rivalta I, Garavelli M, Davari MD, Jaeger KE, Krauss U. Ternary Complex Formation and Photoactivation of a Photoenzyme Results in Altered Protein Dynamics. J Phys Chem B 2019; 123:7372-7384. [PMID: 31380636 DOI: 10.1021/acs.jpcb.9b06608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interplay between protein dynamics and catalysis remains a fundamental question in enzymology. We here investigate the ns-timescale dynamics of a light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR), a photoenzyme crucial for chlorophyll synthesis. LPORs catalyze the light-triggered trans addition of a hydride and a proton across the C17═C18 double bond of the chlorophyll precursor protochlorophyllide (Pchlide). Because of the lack of an LPOR structure, the global structural and dynamic consequences of LPOR/Pchlide/NADPH ternary complex formation remain elusive. Moreover, photoactivation of LPORs by low-light preillumination is controversially discussed as unequivocal proof for this phenomenon is lacking. By employing quasielastic neutron spectroscopy (QENS), we show that the formation of the ternary holoprotein complex as well as photoactivation lead to progressive rigidification of the protein. These findings are supported by thermostability measurements, which reveal different melting behavior and thermostabilities for the apo- and holoprotein ternary complexes. Molecular dynamics simulations in good agreement with the experimental QENS results suggest that the increased flexibility observed for the apoprotein stems from structural fluctuations of the NADPH and Pchlide substrate binding sites of the enzyme. On the basis of our results, in conjunction with activity and stability measurements, we provide independent proof for LPOR photoactivation, defined as a process that modifies the protein structure and dynamics, resulting in an increased substrate turnover. Our findings advance the structural and dynamic understanding of LPORs and provide a first link between protein dynamics and catalysis for this enzyme class.
Collapse
Affiliation(s)
| | | | - Michaela Zamponi
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstr. 1 , 85748 Garching , Germany
| | | | - Samira Gholami
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany.,DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182 , F-69342 Lyon , France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy.,École Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, Université de Lyon , 46 Allée d'Italie , F-69364 Lyon Cedex 07 , France
| | - Mehdi D Davari
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Karl-Erich Jaeger
- IBG-1: Biotechnologie , Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| | | |
Collapse
|
36
|
Van Nerom K, Tamman H, Takada H, Hauryliuk V, Garcia-Pino A. The Rel stringent factor from Thermus thermophilus: crystallization and X-ray analysis. Acta Crystallogr F Struct Biol Commun 2019; 75:561-569. [PMID: 31397328 PMCID: PMC6688660 DOI: 10.1107/s2053230x19010628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/26/2019] [Indexed: 11/11/2022] Open
Abstract
The stringent response, controlled by (p)ppGpp, enables bacteria to trigger a strong phenotypic resetting that is crucial to cope with adverse environmental changes and is required for stress survival and virulence. In the bacterial cell, (p)ppGpp levels are regulated by the concerted opposing activities of RSH (RelA/SpoT homologue) enzymes that can transfer a pyrophosphate group of ATP to the 3' position of GDP (or GTP) or remove the 3' pyrophosphate moiety from (p)ppGpp. Bifunctional Rel enzymes are notoriously difficult to crystallize owing to poor stability and a propensity for aggregation, usually leading to a loss of biological activity after purification. Here, the production, biochemical analysis and crystallization of the bifunctional catalytic region of the Rel stringent factor from Thermus thermophilus (RelTtNTD) in the resting state and bound to nucleotides are described. RelTt and RelTtNTD are monomers in solution that are stabilized by the binding of Mn2+ and mellitic acid. RelTtNTD crystallizes in space group P4122, with unit-cell parameters a = b = 88.4, c = 182.7 Å, at 4°C and in space group P41212, with unit-cell parameters a = b = 105.7, c = 241.4 Å, at 20°C.
Collapse
Affiliation(s)
- Katleen Van Nerom
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| |
Collapse
|
37
|
Kudrin P, Dzhygyr I, Ishiguro K, Beljantseva J, Maksimova E, Oliveira SRA, Varik V, Payoe R, Konevega AL, Tenson T, Suzuki T, Hauryliuk V. The ribosomal A-site finger is crucial for binding and activation of the stringent factor RelA. Nucleic Acids Res 2019; 46:1973-1983. [PMID: 29390134 PMCID: PMC5829649 DOI: 10.1093/nar/gky023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/24/2018] [Indexed: 01/18/2023] Open
Abstract
During amino acid starvation the Escherichia coli stringent response factor RelA recognizes deacylated tRNA in the ribosomal A-site. This interaction activates RelA-mediated synthesis of alarmone nucleotides pppGpp and ppGpp, collectively referred to as (p)ppGpp. These two alarmones are synthesized by addition of a pyrophosphate moiety to the 3' position of the abundant cellular nucleotide GTP and less abundant nucleotide GDP, respectively. Using untagged native RelA we show that allosteric activation of RelA by pppGpp increases the efficiency of GDP conversion to achieve the maximum rate of (p)ppGpp production. Using a panel of ribosomal RNA mutants, we show that the A-site finger structural element of 23S rRNA helix 38 is crucial for RelA binding to the ribosome and consequent activation, and deletion of the element severely compromises (p)ppGpp accumulation in E. coli upon amino acid starvation. Through binding assays and enzymology, we show that E. coli RelA does not form a stable complex with, and is not activated by, deacylated tRNA off the ribosome. This indicates that in the cell, RelA first binds the empty A-site and then recruits tRNA rather than first binding tRNA and then binding the ribosome.
Collapse
Affiliation(s)
- Pavel Kudrin
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Ievgen Dzhygyr
- Department of Molecular Biology, Umeå University, Building 6K, 6L, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, SE-901 87 Umeå, Sweden
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jelena Beljantseva
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Elena Maksimova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina 188300, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | | | - Vallo Varik
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Roshani Payoe
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina 188300, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia.,National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, SE-901 87 Umeå, Sweden
| |
Collapse
|
38
|
Kushwaha GS, Oyeyemi BF, Bhavesh NS. Stringent response protein as a potential target to intervene persistent bacterial infection. Biochimie 2019; 165:67-75. [PMID: 31302165 DOI: 10.1016/j.biochi.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/07/2019] [Indexed: 01/25/2023]
Abstract
More than half of the world's population is infected with persistent bacterial infections, consequently, persisters are gradually becoming a major public health concern. During the persistent phase, bacterial pathogens deploy many regulatory strategies to compensate unfavorable host environmental conditions. The stringent response is one of such gene regulatory mechanisms which is stimulated by nutrient starvation. It is regulated by the synthesis of highly phosphorylated signaling nucleotides, (p)ppGpp or alarmone. (p)ppGpp is synthesized by ppGpp synthetases, and these proteins are classified as RelA/SpoT homolog (RSH) proteins. Subsequently, (p)ppGpp modulate several molecular and biochemical processes ranging from transcription to metabolism. Imperativeness of (p)ppGpp synthetases has been investigated by numerous approaches including microbiology and animal studies, thereby establishing that Rel enzyme deleted strains of pathogenic bacteria were unable to transform in persister form. In this review, we summarize recent findings to corroborate the rationality to consider (p)ppGpp synthetase as a potential target in discovering a novel class of antimicrobial agents to combat persistent infections. Moreover, inhibition studies on Mycobacterium tuberculosis (p)ppGpp synthetase shows that these inhibitors prevent dormant state transition and biofilm formation. Also, we have highlighted the structural biology of (p)ppGpp synthetases, which may provide significant information that could be used in structure-based inhibitor design.
Collapse
Affiliation(s)
- Gajraj Singh Kushwaha
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Bolaji Fatai Oyeyemi
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
39
|
Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc Natl Acad Sci U S A 2019; 116:8310-8319. [PMID: 30971496 DOI: 10.1073/pnas.1819682116] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The second messenger nucleotide ppGpp dramatically alters gene expression in bacteria to adjust cellular metabolism to nutrient availability. ppGpp binds to two sites on RNA polymerase (RNAP) in Escherichia coli, but it has also been reported to bind to many other proteins. To determine the role of the RNAP binding sites in the genome-wide effects of ppGpp on transcription, we used RNA-seq to analyze transcripts produced in response to elevated ppGpp levels in strains with/without the ppGpp binding sites on RNAP. We examined RNAs rapidly after ppGpp production without an accompanying nutrient starvation. This procedure enriched for direct effects of ppGpp on RNAP rather than for indirect effects on transcription resulting from starvation-induced changes in metabolism or on secondary events from the initial effects on RNAP. The transcriptional responses of all 757 genes identified after 5 minutes of ppGpp induction depended on ppGpp binding to RNAP. Most (>75%) were not reported in earlier studies. The regulated transcripts encode products involved not only in translation but also in many other cellular processes. In vitro transcription analysis of more than 100 promoters from the in vivo dataset identified a large collection of directly regulated promoters, unambiguously demonstrated that most effects of ppGpp on transcription in vivo were direct, and allowed comparison of DNA sequences from inhibited, activated, and unaffected promoter classes. Our analysis greatly expands our understanding of the breadth of the stringent response and suggests promoter sequence features that contribute to the specific effects of ppGpp.
Collapse
|
40
|
Chen S, Zhou Q, Tan X, Li Y, Ren G, Wang X. The Global Response of Cronobacter sakazakii Cells to Amino Acid Deficiency. Front Microbiol 2018; 9:1875. [PMID: 30154778 PMCID: PMC6102319 DOI: 10.3389/fmicb.2018.01875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
Cronobacter species can cause necrotizing enterocolitis and meningitis in neonates and infants, their infection is closely relevant to their responses to extreme growth conditions. In this study, the response of Cronobacter species to amino acid deficiency has been investigated. Four Cronobacter species formed smooth colonies when grown on the solid LB medium, but formed mucoid colonies when grown on the amino acid deficient M9 medium. When the mucoid colonies were stained with tannin mordant, exopolysaccharide around the cells could be discerned. The exopolysaccharide was isolated, analyzed, and identified as colanic acid. When genes wcaD and wcaE relevant to colanic acid biosynthesis were deleted in Cronobacter sakazakii BAA-894, no exopolysaccharide could be produced, confirming the exopolysaccharide formed in C. sakazakii grown in M9 is colanic acid. On the other hand, when genes rcsA, rcsB, rcsC, rcsD, or rcsF relevant to Rcs phosphorelay system was deleted in C. sakazakii BAA-894, colanic acid could not be produced, suggesting that the production of colanic acid in C. sakazakii is regulated by Rcs phosphorelay system. Furthermore, C. sakazakii BAA-894 grown in M9 supplemented with amino acids could not produce exopolysaccharide. Transcriptomes of C. sakazakii BAA-894 grown in M9 or LB were analyzed. A total of 3956 genes were differentially expressed in M9, of which 2339 were up-regulated and 1617 were down-regulated. When C. sakazakii BAA-894 was grown in M9, the genes relevant to the biosynthesis of exopolysaccharide were significantly up-regulated; on the other hand, the genes relevant to the flagellum formation and chemotaxis were significantly down-regulated; in addition, most genes relevant to various amino acid biosynthesis were also significantly regulated. The results demonstrate that amino acid deficiency has a global impact on C. sakazakii cells.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ge Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
41
|
Lee JW, Park YH, Seok YJ. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli. Proc Natl Acad Sci U S A 2018; 115:E6845-E6854. [PMID: 29915072 PMCID: PMC6055147 DOI: 10.1073/pnas.1722514115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteria respond to nutritional stresses by changing the cellular concentration of the alarmone (p)ppGpp. This control mechanism, called the stringent response, depends on two enzymes, the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT in Escherichia coli and related bacteria. Because SpoT is the only enzyme responsible for (p)ppGpp hydrolysis in these bacteria, SpoT activity needs to be tightly regulated to prevent the uncontrolled accumulation of (p)ppGpp, which is lethal. To date, however, no such regulation of SpoT (p)ppGpp hydrolase activity has been documented in E. coli In this study, we show that Rsd directly interacts with SpoT and stimulates its (p)ppGpp hydrolase activity. Dephosphorylated HPr, but not phosphorylated HPr, of the phosphoenolpyruvate-dependent sugar phosphotransferase system could antagonize the stimulatory effect of Rsd on SpoT (p)ppGpp hydrolase activity. Thus, we suggest that Rsd is a carbon source-dependent regulator of the stringent response in E. coli.
Collapse
Affiliation(s)
- Jae-Woo Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Ha Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Republic of Korea;
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Abstract
The alarmone (p)ppGpp plays pivotal roles in basic bacterial stress responses by increasing tolerance of various nutritional limitations and chemical insults, including antibiotics. Despite intensive studies since (p)ppGpp was discovered over 4 decades ago, (p)ppGpp binding proteins have not been systematically identified in Escherichia coli. We applied DRaCALA (differential radial capillary action of ligand assay) to identify (p)ppGpp-protein interactions. We discovered 12 new (p)ppGpp targets in E. coli that, based on their physiological functions, could be classified into four major groups, involved in (i) purine nucleotide homeostasis (YgdH), (ii) ribosome biogenesis and translation (RsgA, Era, HflX, and LepA), (iii) maturation of dehydrogenases (HypB), and (iv) metabolism of (p)ppGpp (MutT, NudG, TrmE, NadR, PhoA, and UshA). We present a comprehensive and comparative biochemical and physiological characterization of these novel (p)ppGpp targets together with a comparative analysis of relevant, known (p)ppGpp binding proteins. Via this, primary targets of (p)ppGpp in E. coli are identified. The GTP salvage biosynthesis pathway and ribosome biogenesis and translation are confirmed as targets of (p)ppGpp that are highly conserved between E. coli and Firmicutes. In addition, an alternative (p)ppGpp degradative pathway, involving NudG and MutT, was uncovered. This report thus significantly expands the known cohort of (p)ppGpp targets in E. coli. Antibiotic resistance and tolerance exhibited by pathogenic bacteria have resulted in a global public health crisis. Remarkably, almost all bacterial pathogens require the alarmone (p)ppGpp to be virulent. Thus, (p)ppGpp not only induces tolerance of nutritional limitations and chemical insults, including antibiotics, but is also often required for induction of virulence genes. However, understanding of the molecular targets of (p)ppGpp and the mechanisms by which (p)ppGpp influences bacterial physiology is incomplete. In this study, a systematic approach was used to uncover novel targets of (p)ppGpp in E. coli, the best-studied model bacterium. Comprehensive comparative studies of the targets revealed conserved target pathways of (p)ppGpp in both Gram-positive and -negative bacteria and novel targets of (p)ppGpp, including an alternative degradative pathway of (p)ppGpp. Thus, our discoveries may help in understanding of how (p)ppGpp increases the stress resilience and multidrug tolerance not only of the model organism E. coli but also of the pathogenic organisms in which these targets are conserved.
Collapse
|
44
|
Yamamoto N, Isshiki R, Kawai Y, Tanaka D, Sekiguchi T, Matsumoto S, Tsuneda S. Stochastic expression of lactate dehydrogenase A induces Escherichia coli persister formation. J Biosci Bioeng 2018; 126:30-37. [PMID: 29449156 DOI: 10.1016/j.jbiosc.2018.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 01/06/2023]
Abstract
Bacterial persisters are phenotypic variants that survive the treatment of lethal doses of growth-targeting antibiotics without mutations. Although the mechanism underlying persister formation has been studied for decades, how the persister phenotype is switched on and protects itself from antibiotics has been elusive. In this study, we focused on the lactate dehydrogenase gene (ldhA) that was upregulated in an Escherichia coli persister-enriched population. A survival rate assay using an ldhA-overexpressing strain showed that ldhA expression induced persister formation. To identify ldhA-mediated persister formation at the single-cell level, time-lapse microscopy with a microfluidic device was used. Stochastic ldhA expression was found to induce dormancy and tolerance against high-dose ampicillin treatment (500 μg/ml). To better understand the underlying mechanism, we investigated the relationship between ldhA-mediated persister formation and previously reported persister formation through aerobic metabolism repression. As a result, ldhA expression enhanced the proton motive force (PMF) and ATP synthesis. These findings suggest that ldhA-mediated persister formation pathway is different from previously reported persister formation via repression of aerobic metabolism.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Rino Isshiki
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuto Kawai
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Daiki Tanaka
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shinya Matsumoto
- Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan.
| |
Collapse
|
45
|
Stegen JC, Johnson T, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, Arntzen EV, Chrisler WB, Chu RK, Fansler SJ, Graham EB, Kennedy DW, Resch CT, Tfaily M, Zachara J. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nat Commun 2018; 9:585. [PMID: 29422537 PMCID: PMC5805721 DOI: 10.1038/s41467-018-02922-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 01/09/2018] [Indexed: 11/17/2022] Open
Abstract
The hyporheic corridor (HC) encompasses the river–groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW–RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology–biochemistry–microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW–RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems. The mechanisms responsible for stimulating biogeochemical activity in the hyporheic corridor (HC) are poorly understood. Here, the authors find that previously unrecognized thermodynamic mechanisms regulated by groundwater-river water mixing may strongly influence HC biogeochemical and microbial dynamics.
Collapse
Affiliation(s)
- James C Stegen
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Tim Johnson
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Michael J Wilkins
- Department of Microbiology The Ohio State University, Columbus, OH, 43210, USA.,School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Allan E Konopka
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Evan V Arntzen
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Rosalie K Chu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Sarah J Fansler
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Emily B Graham
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - David W Kennedy
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Charles T Resch
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Malak Tfaily
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - John Zachara
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
46
|
Manav MC, Beljantseva J, Bojer MS, Tenson T, Ingmer H, Hauryliuk V, Brodersen DE. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J Biol Chem 2018; 293:3254-3264. [PMID: 29326162 DOI: 10.1074/jbc.ra117.001374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
The stringent response is a global reprogramming of bacterial physiology that renders cells more tolerant to antibiotics and induces virulence gene expression in pathogens in response to stress. This process is driven by accumulation of the intracellular alarmone guanosine-5'-di(tri)phosphate-3'-diphosphate ((p)ppGpp), which is produced by enzymes of the RelA SpoT homologue (RSH) family. The Gram-positive Firmicute pathogen, Staphylococcus aureus, encodes three RSH enzymes: a multidomain RSH (Rel) that senses amino acid starvation on the ribosome and two small alarmone synthetase (SAS) enzymes, RelQ (SAS1) and RelP (SAS2). In Bacillus subtilis, RelQ (SAS1) was shown to form a tetramer that is activated by pppGpp and inhibited by single-stranded RNA, but the structural and functional regulation of RelP (SAS2) is unexplored. Here, we present crystal structures of S. aureus RelP in two major functional states, pre-catalytic (bound to GTP and the non-hydrolyzable ATP analogue, adenosine 5'-(α,β-methylene)triphosphate (AMP-CPP)), and post-catalytic (bound to pppGpp). We observed that RelP also forms a tetramer, but unlike RelQ (SAS1), it is strongly inhibited by both pppGpp and ppGpp and is insensitive to inhibition by RNA. We also identified putative metal ion-binding sites at the subunit interfaces that were consistent with the observed activation of the enzyme by Zn2+ ions. The structures reported here reveal the details of the catalytic mechanism of SAS enzymes and provide a molecular basis for understanding differential regulation of SAS enzymes in Firmicute bacteria.
Collapse
Affiliation(s)
- Melek Cemre Manav
- From the Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Jelena Beljantseva
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin S Bojer
- the Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark, and
| | - Tanel Tenson
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Hanne Ingmer
- the Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark, and
| | - Vasili Hauryliuk
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,the Department of Molecular Biology and.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Ditlev E Brodersen
- From the Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
47
|
The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood. Infect Immun 2017; 86:IAI.00612-17. [PMID: 29109175 PMCID: PMC5736797 DOI: 10.1128/iai.00612-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.
Collapse
|
48
|
Hauryliuk V, Atkinson GC. Small Alarmone Synthetases as novel bacterial RNA-binding proteins. RNA Biol 2017; 14:1695-1699. [PMID: 28820325 DOI: 10.1080/15476286.2017.1367889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, antibiotic tolerance and pathogenicity. We have recently shown that the Small Alarmone Synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis has an RNA-binding activity (Beljantseva et al. 2017). RelQ's activities as an enzyme and as an RNA-binding protein are mutually incompatible: binding of single-stranded RNA potently inhibits (p)ppGpp synthesis in a sequence-specific manner, and RelQ's enzymatic activity destabilizes the RNA:RelQ complex. RelQ's allosteric regulator, pppGpp, destabilizes RNA binding and activates RelQ's enzymatic activity. Since SAS enzymes are widely distributed in bacteria, and, as has been discovered recently, are also mobilized by phages (Dedrick et al. 2017), RNA binding to SASs could be a widespread mechanism. The initial discovery raises numerous questions regarding RNA-binding function of the SAS enzymes: What is the molecular mechanism underlying the incompatibility of RNA:SAS complex formation with pppGpp binding and (p)ppGpp synthesis? What are the RNA targets in living cells? What is the regulatory output of the system - (p)ppGpp synthesis, modulation of RNA structure and function, or both?
Collapse
Affiliation(s)
- Vasili Hauryliuk
- a Department of Molecular Biology , Umeå University , 6L University Hospital Area, Umeå , Sweden.,b Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, University Hospital Area , Umeå , Sweden.,c University of Tartu, Institute of Technology , Tartu , Estonia
| | - Gemma C Atkinson
- a Department of Molecular Biology , Umeå University , 6L University Hospital Area, Umeå , Sweden
| |
Collapse
|
49
|
Kulis-Horn RK, Rückert C, Kalinowski J, Persicke M. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond. BMC Microbiol 2017; 17:161. [PMID: 28720084 PMCID: PMC5516325 DOI: 10.1186/s12866-017-1069-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background The eighth step of l-histidine biosynthesis is carried out by an enzyme called histidinol-phosphate phosphatase (HolPase). Three unrelated HolPase families are known so far. Two of them are well studied: HAD-type HolPases known from Gammaproteobacteria like Escherichia coli or Salmonella enterica and PHP-type HolPases known from yeast and Firmicutes like Bacillus subtilis. However, the third family of HolPases, the inositol monophosphatase (IMPase)-like HolPases, present in Actinobacteria like Corynebacterium glutamicum (HisN) and plants, are poorly characterized. Moreover, there exist several IMPase-like proteins in bacteria (e.g. CysQ, ImpA, and SuhB) which are very similar to HisN but most likely do not participate in l-histidine biosynthesis. Results Deletion of hisN, the gene encoding the IMPase-like HolPase in C. glutamicum, does not result in complete l-histidine auxotrophy. Out of four hisN homologs present in the genome of C. glutamicum (impA, suhB, cysQ, and cg0911), only cg0911 encodes an enzyme with HolPase activity. The enzymatic properties of HisN and Cg0911 were determined, delivering the first available kinetic data for IMPase-like HolPases. Additionally, we analyzed the amino acid sequences of potential HisN, ImpA, SuhB, CysQ and Cg0911 orthologs from bacteria and identified six conserved sequence motifs for each group of orthologs. Mutational studies confirmed the importance of a highly conserved aspartate residue accompanied by several aromatic amino acid residues present in motif 5 for HolPase activity. Several bacterial proteins containing all identified HolPase motifs, but showing only moderate sequence similarity to HisN from C. glutamicum, were experimentally confirmed as IMPase-like HolPases, demonstrating the value of the identified motifs. Based on the confirmed IMPase-like HolPases two profile Hidden Markov Models (HMMs) were build using an iterative approach. These HMMs allow the fast, reliable detection and differentiation of the two paralog groups from each other and other IMPases. Conclusion The kinetic data obtained for HisN from C. glutamicum, as an example for an IMPase-like HolPases, shows remarkable differences in enzyme properties as compared to HAD- or PHP-type HolPases. The six sequence motifs and the HMMs presented in this study can be used to reliably differentiate between IMPase-like HolPases and IMPase-like proteins with no such activity, with the potential to enhance current and future genome annotations. A phylogenetic analysis reveals that IMPase-like HolPases are not only present in Actinobacteria and plant but can be found in further bacterial phyla, including, among others, Proteobacteria, Chlorobi and Planctomycetes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1069-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Kasimir Kulis-Horn
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
50
|
Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce relA-Dependent and relA-Independent Tolerance to β-Lactams. Antimicrob Agents Chemother 2017; 61:AAC.02173-16. [PMID: 28115345 PMCID: PMC5365698 DOI: 10.1128/aac.02173-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/15/2017] [Indexed: 01/29/2023] Open
Abstract
The nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance, and virulence. During amino acid starvation, the Escherichia coli (p)ppGpp synthetase RelA is activated by deacylated tRNA in the ribosomal A-site. An increase in (p)ppGpp is believed to drive the formation of antibiotic-tolerant persister cells, prompting the development of strategies to inhibit (p)ppGpp synthesis. We show that in a biochemical system from purified E. coli components, the antibiotic thiostrepton efficiently inhibits RelA activation by the A-site tRNA. In bacterial cultures, the ribosomal inhibitors thiostrepton, chloramphenicol, and tetracycline all efficiently abolish accumulation of (p)ppGpp induced by the Ile-tRNA synthetase inhibitor mupirocin. This abolishment, however, does not reduce the persister level. In contrast, the combination of dihydrofolate reductase inhibitor trimethoprim with mupirocin, tetracycline, or chloramphenicol leads to ampicillin tolerance. The effect is independent of RelA functionality, specific to β-lactams, and not observed with the fluoroquinolone norfloxacin. These results refine our understanding of (p)ppGpp's role in antibiotic tolerance and persistence and demonstrate unexpected drug interactions that lead to tolerance to bactericidal antibiotics.
Collapse
|