1
|
Dessalegn B, Bitew M, Asfaw D, Khojaly E, Ibrahim SM, Abayneh T, Gelaye E, Unger H, Wijewardana V. Gamma-Irradiated Fowl Cholera Mucosal Vaccine: Potential Vaccine Candidate for Safe and Effective Immunization of Chicken Against Fowl Cholera. Front Immunol 2021; 12:768820. [PMID: 34917086 PMCID: PMC8670175 DOI: 10.3389/fimmu.2021.768820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Fowl cholera (FC) caused by Pasteurella multocida is among the serious infectious diseases of poultry. Currently, formalin inactivated FC (FI-FC) vaccine is widely used in Ethiopia. However, reports of the disease complaint remain higher despite the use of the vaccine. The aim of this study was to develop and evaluate gamma-irradiated mucosal FC vaccines that can be used nationally. In a vaccination-challenge experiment, the performance of gamma-irradiated P. multocida (at 1 kGy) formulated with Montanide gel/01 PR adjuvant was evaluated at different dose rates (0.5 and 0.3 ml) and routes (intranasal, intraocular, and oral), in comparison with FI-FC vaccine in chicken. Chickens received three doses of the candidate vaccine at 3-week intervals. Sera, and trachea and crop lavage were collected to assess the antibody levels using indirect and sandwich ELISAs, respectively. Challenge exposure was conducted by inoculation at 3.5×109 CFU/ml of P. multocida biotype A intranasally 2 weeks after the last immunization. Repeated measures ANOVA test and Kaplan Meier curve analysis were used to examine for statistical significance of antibody titers and survival analysis, respectively. Sera IgG and secretory IgA titers were significantly raised after second immunization (p=0.0001). Chicken survival analysis showed that intranasal and intraocular administration of the candidate vaccine at the dose of 0.3 ml resulted in 100% protection as compared to intramuscular injection of FI-FC vaccine, which conferred 85% protection (p=0.002). In conclusion, the results of this study showed that gamma-irradiated FC mucosal vaccine is safe and protective, indicating its potential use for immunization of chicken against FC.
Collapse
Affiliation(s)
- Bereket Dessalegn
- College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Molalegne Bitew
- Health Biotechnology Directorate, Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | - Destaw Asfaw
- College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Esraa Khojaly
- MSc Program on Vaccine Production and Quality Control, Pan Africa University for Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Nigeria
| | | | - Takele Abayneh
- Vaccine Research and Development Directorate, National Veterinary Institute, Debre Zeit, Ethiopia
| | - Esayas Gelaye
- Vaccine Research and Development Directorate, National Veterinary Institute, Debre Zeit, Ethiopia
| | - Hermann Unger
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
2
|
Sánchez Ramón S, Manzanares M, Candelas G. MUCOSAL anti-infections vaccines: Beyond conventional vaccines. REUMATOLOGIA CLINICA 2020; 16:49-55. [PMID: 30527360 DOI: 10.1016/j.reuma.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
Abstract
An urgent search is currently underway for alternatives to antibiotics to prevent infections, due to the accelerated evolution and increase in antibiotic resistance. This problem is more serious for patients with recurrent infections, since they have to use many cycles of antibiotics per year, so the risk for antibiotic resistance is higher and can be life-threatening. In recent years, the use of prophylactic vaccines via the mucosal route for these patients with recurrent infections has been demonstrated as a potentially beneficial and safe alternative to prevent infections. The new knowledge about mucosal immunity and trained immunity, a form of innate immunity memory that can enhance the response to different infectious threads, has made it easier to extend its use. The application of the new concepts of trained immunity may explain the simultaneous pro-tolerogenic and boosting effect or effects of these drugs on diverse immune cells for different infections. In this review, we describe the immunomodulatory mechanisms of mucosal polybacterial vaccines and their connection with trained immunity and its utility in the prevention of recurrent infections in immunosuppressed patients.
Collapse
Affiliation(s)
| | - Mario Manzanares
- Servicio de Inmunología, Hospital Clínico San Carlos, Madrid, España
| | - Gloria Candelas
- Servicio de Reumatología, Hospital Clínico San Carlos, Madrid, España.
| |
Collapse
|
3
|
Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, Angulo C. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines. Front Microbiol 2018; 9:2506. [PMID: 30410471 PMCID: PMC6209683 DOI: 10.3389/fmicb.2018.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Carlos Angulo
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
4
|
Wang T, Yin H, Li Y, Zhao L, Sun X, Cong H. Vaccination with recombinant adenovirus expressing multi-stage antigens of Toxoplasma gondii by the mucosal route induces higher systemic cellular and local mucosal immune responses than with other vaccination routes. ACTA ACUST UNITED AC 2017; 24:12. [PMID: 28367800 PMCID: PMC5399536 DOI: 10.1051/parasite/2017013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/17/2017] [Indexed: 01/08/2023]
Abstract
Toxoplasmosis caused by Toxoplasma gondii, an obligate intracellular protozoan, is a cause of congenital disease and abortion in humans and animals. Various vaccination strategies against toxoplasmosis in rodent models have been used in the past few decades; however, effective vaccines remain a challenge. A recombinant adenovirus vaccine expressing ubiquitin-conjugated multi-stage antigen segments (Ad-UMAS) derived from different life-cycle stages of T. gondii was constructed previously. Here, we compared the immune responses and protection effects in vaccination of mice with Ad-UMAS by five vaccination routes including intramuscular (i.m.), intravenous (i.v.), subcutaneous (s.c.), intraoral (i.o.), and intranasal (i.n.). Much higher levels of T. gondii-specific IgG and IgA antibodies were detected in the sera of the intraoral and intranasal vaccination groups on day 49 compared with controls (p < 0.05). The percentages of CD8+ T-cells in mice immunized intranasally and intraorally were larger than in mice immunized intramuscularly (p < 0.05). The highest level of IL-2 and IFN-γ was detected in the group with nasal immunization, and splenocyte proliferation activity was significantly enhanced in mice immunized via the oral and nasal routes. Furthermore, the higher survival rate (50%) and lower cyst numbers observed in the intraoral and intranasal groups all indicate that Ad-UMAS is far more effective in protecting mice against T. gondii infection via the mucosal route. Ad-UMAS could be an effective and safe mucosal candidate vaccine to protect animals and humans against T. gondii infection.
Collapse
Affiliation(s)
- Ting Wang
- Department of Human Parasitology, Shandong University, School of Medicine, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, P.R. China
| | - Huiquan Yin
- Department of Human Parasitology, Shandong University, School of Medicine, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, P.R. China
| | - Yan Li
- Department of Human Parasitology, Shandong University, School of Medicine, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, P.R. China
| | - Lingxiao Zhao
- Shandong Xiehe University, No. 6277 Jiqing Road, Jinan, Shandong 250107, P.R. China
| | - Xiahui Sun
- Department of Human Parasitology, Shandong University, School of Medicine, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, P.R. China
| | - Hua Cong
- Department of Human Parasitology, Shandong University, School of Medicine, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, P.R. China
| |
Collapse
|