1
|
Lee EJ, Sun R, Kim J. The self-renewal function of Oct-4 can be replaced by the EWS-Oct-4 fusion protein in embryonic stem cells. Cell Mol Life Sci 2025; 82:166. [PMID: 40251420 PMCID: PMC12008092 DOI: 10.1007/s00018-025-05701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Octamer-binding transcription factor 4 (Oct-4) is essential for maintenance and pluripotency of embryonic stem (ES) cells. Despite the structural similarities between Oct-4 and its homologs (Oct-1, Oct-2, and Oct-6), these homologs cannot serve as substitutes for Oct-4 when generating stem cell colonies. While nuclear receptor subfamily 5, group A, member 2 (Nr5a2) can temporarily serve as a substitute for Oct-4 during cellular reprogramming, it is insufficient to maintain these functions in ES cells. The EWS-Oct-4 fusion protein, which was identified in human tumors, is a viable alternative that can potentially sustain and enhance ES cell functions. This study used ZHBTc4 ES cells, which have tetracycline-regulated Oct-4 expression, to explore the capabilities of EWS-Oct-4. It employed a variety of assays, including western blotting, immunocytochemistry, RT-PCR, luciferase reporter assays, flow cytometry, and teratoma formation assays. EWS-Oct-4 preserved the self-renewal capacity of Oct-4-null ES cells, as demonstrated by their undifferentiated morphology and increased expression of pluripotency markers such as Sox2, Nanog, and SSEA-1. It also boosted cell proliferation and influenced cell cycle dynamics by downregulating p21 and upregulating Oct-4 target genes, including Rex-1 and fibroblast growth factor-4. Epithelial markers were upregulated and mesenchymal markers were downregulated, suggesting a shift toward an epithelial phenotype. Prominent teratoma formation further confirmed the functionality of EWS-Oct-4 in vivo. The integrity and specific functional domains of EWS-Oct-4 were critical for these effects. Finally, comparative transcriptomic analysis revealed that ES cells expressing EWS-Oct-4 and those expressing Oct-4 had highly similar global gene expression profiles, with distinct variations in differentially expressed genes. These findings indicate that EWS-Oct-4 can effectively replace Oct-4, which has significant implications for advancements in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Eun Joo Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Ruijing Sun
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea.
- Stress-Responding Bionanomaterial Center, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
2
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Mivehchi H, Eskandari-Yaghbastlo A, Emrahoglu S, Saeidpour Masouleh S, Faghihinia F, Ayoubi S, Nabi Afjadi M. Tiny messengers, big Impact: Exosomes driving EMT in oral cancer. Pathol Res Pract 2025; 268:155873. [PMID: 40022766 DOI: 10.1016/j.prp.2025.155873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Exosomes are indispensable extracellular vesicles that facilitate intercellular communication and are crucial for both healthy and pathological conditions, including cancer. The capacity of exosomes to echo the molecular characteristics of their cells of origin, including malignant cells, makes them indispensable tools for diagnosing and tracking disease progression in the field of oncology. Oral squamous cell carcinoma (OSCC), which has been identified as the sixth most prevalent cancer worldwide, has been linked to numerous risk factors, including tobacco use, alcohol consumption, human papillomavirus (HPV) infection, and inadequate oral hygiene. Exosomes pointedly influence the advancement of oral cancer via promoting tumor cell growth, invasion, angiogenesis, and immune evasion through the alteration of the tumor microenvironment. A critical apparatus in cancer metastasis is the epithelial-to-mesenchymal transition (EMT), during which cancer cells acquire improved migratory and invasive properties. EMT plays a role in metastasis, resistance to treatment, and evasion of the immune response. Exosomes facilitate EMT in oral cancer by delivering bioactive molecules that influence EMT signaling pathways. These exosomes inspire EMT in recipient cells, by this means enhancing tumor invasion and metastasis. This study aims to identify the specific exosomal components and signaling pathways that are tangled in EMT, in that way providing new avenues for targeted therapies designed to hinder the metastasis of oral cancer.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | - Sahand Emrahoglu
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saminalsadat Ayoubi
- School of Dental Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Sravani A, Thomas J. Targeting epithelial-mesenchymal transition signaling pathways with Dietary Phytocompounds and repurposed drug combinations for overcoming drug resistance in various cancers. Heliyon 2025; 11:e41964. [PMID: 39959483 PMCID: PMC11830326 DOI: 10.1016/j.heliyon.2025.e41964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial step in metastasis formation. It enhances the ability of cancer cells' to self-renew and initiate tumors, while also increasing resistance to apoptosis and chemotherapy. Among the signaling pathways a few signaling pathways such as Notch, TGF-beta, and Wnt-beta catenin are critically involved in the epithelial-to-mesenchymal transition (EMT) acquisition. Therefore, regulating EMT is a key strategy for controlling malignant cell behavior. This is done by interconnecting other signaling pathways in many cancer types. Although there is extensive preclinical evidence regarding EMT's function in the development of cancer, there is still a deficiency in clinical translation at the therapeutic level. Thus, there is a need for medications that are both highly effective and with low cytotoxic for modulating EMT transitions at ground level. Thus, this led to the study of the evaluation and efficiency of phytochemicals found in dietary sources of fruits and vegetables and also the combination of small molecular repurposed drugs that can enhance the effectiveness of traditional cancer treatments. This review summarises major EMT-associated pathways and their cross talks with their mechanistic insights and the role of different dietary phytochemicals (curcumin, ginger, fennel, black pepper, and clove) and their natural analogs and also repurposed drugs (metformin, statin, chloroquine, and vitamin D) which are commonly used in regulating EMT in various preclinical studies. This review also investigates the concept of low-toxicity and broad spectrum ("The Halifax Project") approach which can help for site targeting of several key pathways and their mechanism. We also discuss the mechanisms of action, models for our dietary phytochemicals, and repurposed drugs and their combinations used to identify potential anti-EMT activities. Additionally, we also analyzed existing literature and proposed new directions for accelerating the discovery of novel drug candidates that are safe to administer.
Collapse
Affiliation(s)
- A.N.K.V. Sravani
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - John Thomas
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Luo X, Wen W. MicroRNA in prostate cancer: from biogenesis to applicative potential. BMC Urol 2024; 24:244. [PMID: 39506720 PMCID: PMC11539483 DOI: 10.1186/s12894-024-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Prostate cancer is the most common solid malignant tumor in men, characterized by high morbidity and mortality. While current screening tools, such as prostate-specific antigen (PSA) testing and digital rectal examination, are available for early detection of prostate cancer, their sensitivity and specificity are limited. Tissue puncture biopsy, although capable of offering a definitive diagnosis, has poor positive predictive rates and burdens the patient more. Therefore, more reliable molecular diagnostic tools for prostate cancer urgently need to be developed. In recent years, microRNAs (miRNAs) have attracted much attention in prostate cancer research. miRNAs are extensively engaged in biological processes such as cell proliferation, differentiation, apoptosis, migration, and invasion by modulating gene expression post-transcriptionally. Dysregulation of miRNA expression in cancer is considered a critical factor in tumorigenesis and progression. This review first briefly introduces the biogenesis of miRNAs and their functions in cancer, then focuses on tumor-promoting miRNAs and tumor-suppressor miRNAs in prostate cancer. Finally, the potential application of miRNAs as multifunctional tools for cancer diagnosis, prognostic assessment, and therapy is discussed in detail. The concluding section summarizes the major points of the review and the challenges ahead.
Collapse
Affiliation(s)
- Xu Luo
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Wen
- Department of Urology, West China Tianfu Hospital, Sichuan University, Chengdu, 610213, P.R. China.
| |
Collapse
|
6
|
Kantor NB, Sepulveda-Beltran PA, Valdés-Arias D, Locatelli EVT, Mulpuri L, Gunawardene AN, Amescua G, Perez VL, Tonk R, Wang T, Galor A. Epidemiology and risk factors for the development of cicatrizing conjunctivitis in chronic ocular graft-versus-host disease. Ocul Surf 2024; 34:341-347. [PMID: 39276859 PMCID: PMC11625611 DOI: 10.1016/j.jtos.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE To evaluate the incidence of chronic cicatrizing conjunctivitis (CCC) and its associated risk factors in the context of chronic ocular graft-vs-host disease (coGVHD). METHODS A retrospective chart review of individuals diagnosed with coGVHD following hematopoietic stem cell transplantation (HSCT) who were seen at the Bascom Palmer Eye Institute between May 2010 and November 2021 was performed. Data regarding baseline demographic characteristics, systemic co-morbidities, lid margin abnormalities, ocular cicatricial changes, transplant information, immunosuppressive therapy, and GVHD severity assessments were collected. The incidence of cicatricial conjunctivitis was estimated with Kaplan-Meier survival analysis. A Cox regression model was used to assess the contribution of demographic and systemic variables to the development of CCC. RESULTS 167 individuals were included (53.9 ± 14.7 years old; 60.5 % male). 65 individuals presented with features suggestive of CCC an average of 60.9 ± 53.8 months after HSCT, with 60-month and 120-month incidences of 29.3 % and 48.9 %, respectively. Multivariable analysis demonstrated that age younger than 50 at the time of the first eye visit was associated with a higher chance of CCC development (Hazard Ratio (HR): 2.14, 95 % Confidence Interval (CI): 1.16-3.97, p = 0.02). CONCLUSION Clinically detected cicatrizing conjunctivitis is an ocular manifestation of coGVHD, with an incidence that increases over time. Younger individuals may be at higher risk for CCC development.
Collapse
Affiliation(s)
- Nicole B Kantor
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Surgical and Research Services, Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - Paula A Sepulveda-Beltran
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Surgical and Research Services, Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - David Valdés-Arias
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Surgical and Research Services, Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - Elyana V T Locatelli
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Surgical and Research Services, Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - Lakshman Mulpuri
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Araliya N Gunawardene
- Surgical and Research Services, Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - Guillermo Amescua
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Victor L Perez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rahul Tonk
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Trent Wang
- Sylvester Comprehensive Cancer Center, Division of Transplant and Cell Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Surgical and Research Services, Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA.
| |
Collapse
|
7
|
den Hollander P, Maddela JJ, Mani SA. Spatial and Temporal Relationship between Epithelial-Mesenchymal Transition (EMT) and Stem Cells in Cancer. Clin Chem 2024; 70:190-205. [PMID: 38175600 PMCID: PMC11246550 DOI: 10.1093/clinchem/hvad197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is often linked with carcinogenesis. However, EMT is also important for embryo development and only reactivates in cancer. Connecting how EMT occurs during embryonic development and in cancer could help us further understand the root mechanisms of cancer diseases. CONTENT There are key regulatory elements that contribute to EMT and the induction and maintenance of stem cell properties during embryogenesis, tissue regeneration, and carcinogenesis. Here, we explore the implications of EMT in the different stages of embryogenesis and tissue development. We especially highlight the necessity of EMT in the mesodermal formation and in neural crest cells. Through EMT, these cells gain epithelial-mesenchymal plasticity (EMP). With this transition, crucial morphological changes occur to progress through the metastatic cascade as well as tissue regeneration after an injury. Stem-like cells, including cancer stem cells, are generated from EMT and during this process upregulate factors necessary for stem cell maintenance. Hence, it is important to understand the key regulators allowing stem cell awakening in cancer, which increases plasticity and promotes treatment resistance, to develop strategies targeting this cell population and improve patient outcomes. SUMMARY EMT involves multifaceted regulation to allow the fluidity needed to facilitate adaptation. This regulatory mechanism, plasticity, involves many cooperating transcription factors. Additionally, posttranslational modifications, such as splicing, activate the correct isoforms for either epithelial or mesenchymal specificity. Moreover, epigenetic regulation also occurs, such as acetylation and methylation. Downstream signaling ultimately results in the EMT which promotes tissue generation/regeneration and cancer progression.
Collapse
Affiliation(s)
- Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
8
|
Wang W, Zhang X, Zhao N, Xu ZH, Jin K, Jin ZB. RNA fusion in human retinal development. eLife 2024; 13:e92523. [PMID: 38165397 PMCID: PMC10890785 DOI: 10.7554/elife.92523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Chimeric RNAs have been found in both cancerous and healthy human cells. They have regulatory effects on human stem/progenitor cell differentiation, stemness maintenance, and central nervous system development. However, whether they are present in human retinal cells and their physiological functions in the retinal development remain unknown. Based on the human embryonic stem cell-derived retinal organoids (ROs) spanning from days 0 to 120, we present the expression atlas of chimeric RNAs throughout the developing ROs. We confirmed the existence of some common chimeric RNAs and also discovered many novel chimeric RNAs during retinal development. We focused on CTNNBIP1-CLSTN1 (CTCL) whose downregulation caused precocious neuronal differentiation and a marked reduction of neural progenitors in human cerebral organoids. CTCL is universally present in human retinas, ROs, and retinal cell lines, and its loss-of-function biases the progenitor cells toward retinal pigment epithelial cell fate at the expense of retinal cells. Together, this work provides a landscape of chimeric RNAs and reveals evidence for their critical role in human retinal development.
Collapse
Affiliation(s)
- Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Ning Zhao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Ze-Hua Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Alexandrova M, Manchorova D, You Y, Terzieva A, Dimitrova V, Mor G, Dimova T. Validation of the Sw71-spheroid model with primary trophoblast cells. Am J Reprod Immunol 2023; 90:e13800. [PMID: 38009060 DOI: 10.1111/aji.13800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
PROBLEM Human implantation is a limiting factor for the success of natural and IVF reproduction since about 60% of pregnancy losses occur in the peri-implantation period. The in vitro modeling of human implantation challenges the researchers in accurate recreation of the complex in vivo differentiation and function of human blastocyst in the peri-implantation period. In previous studies, we constructed Sw71-spheroid models, which like human blastocyst undergo compactization, attaches to the endometrial epithelium, invade, and migrate. The aim of this study was to validate the trophoblast Sw71-spheroid model with primary trophoblast cells, derived from healthy women in early pregnancy. METHOD OF STUDY We performed a direct comparison of Sw71-spheroid model with placenta-derived primary trophoblasts regarding their hybrid phenotype and HLA status, as well as the ability to generate spheroids able to migrate and invade. From the primary trophoblast cells, isolated by mild enzymatic treatment and Percoll gradient separation, were generated long-lived clones, which phenotype was assessed by FACS and immunocytochemistry. RESULTS Our results showed that cultured primary trophoblasts have the EVT phenotype (Vim+/CK7+/HLA-C+/HLA-G+), like Sw71 cells. In both 3D culture settings, we obtained stable, round-shaped, multilayered spheroids. Although constructed from the same number of cells, the primary trophoblast spheroids were smaller. The primary trophoblast spheroids migrate successfully, and in term of invasion are equally potent but less stable as compared to Sw71 spheroids. CONCLUSIONS The Sw71 cell line and cultured native trophoblast cells are interchangeable regarding their EVT phenotype (HLA-C+/HLA-G+/Vim+/CK7+). The blastocyst-like spheroids sourced by both types of cells differentiate in the same time frame and function similarly. We strongly advise the use of Sw71 spheroids as blastocyst surrogate for observation on trophectoderm differentiation and function during early human implantation.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| | - Antonia Terzieva
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Fetal medicine clinic, Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia, Bulgaria
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
10
|
Randhawa K, Jahani-Asl A. CLIC1 regulation of cancer stem cells in glioblastoma. CURRENT TOPICS IN MEMBRANES 2023; 92:99-123. [PMID: 38007271 DOI: 10.1016/bs.ctm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Collapse
Affiliation(s)
- Kamaldeep Randhawa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Zhao X, Radford BN, Ungrin M, Dean W, Hemberger M. The Trophoblast Compartment Helps Maintain Embryonic Pluripotency and Delays Differentiation towards Cardiomyocytes. Int J Mol Sci 2023; 24:12423. [PMID: 37569800 PMCID: PMC10418709 DOI: 10.3390/ijms241512423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Normal developmental progression relies on close interactions between the embryonic and extraembryonic lineages in the pre- and peri-gastrulation stage conceptus. For example, mouse epiblast-derived FGF and NODAL signals are required to maintain a stem-like state in trophoblast cells of the extraembryonic ectoderm, while visceral endoderm signals are pivotal to pattern the anterior region of the epiblast. These developmental stages also coincide with the specification of the first heart precursors. Here, we established a robust differentiation protocol of mouse embryonic stem cells (ESCs) into cardiomyocyte-containing embryoid bodies that we used to test the impact of trophoblast on this key developmental process. Using trophoblast stem cells (TSCs) to produce trophoblast-conditioned medium (TCM), we show that TCM profoundly slows down the cardiomyocyte differentiation dynamics and specifically delays the emergence of cardiac mesoderm progenitors. TCM also strongly promotes the retention of pluripotency transcription factors, thereby sustaining the stem cell state of ESCs. By applying TCM from various mutant TSCs, we further show that those mutations that cause a trophoblast-mediated effect on early heart development in vivo alter the normal cardiomyocyte differentiation trajectory. Our approaches provide a meaningful deconstruction of the intricate crosstalk between the embryonic and the extraembryonic compartments. They demonstrate that trophoblast helps prolong a pluripotent state in embryonic cells and delays early differentiative processes, likely through production of leukemia inhibitory factor (LIF). These data expand our knowledge of the multifaceted signaling interactions among distinct compartments of the early conceptus that ensure normal embryogenesis, insights that will be of significance for the field of synthetic embryo research.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
| | - Bethany N. Radford
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Wendy Dean
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
| | - Myriam Hemberger
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
12
|
Tu SM, Aydin AM, Maraboyina S, Chen Z, Singh S, Gokden N, Langford T. Stem Cell Origin of Cancer: Implications of Oncogenesis Recapitulating Embryogenesis in Cancer Care. Cancers (Basel) 2023; 15:cancers15092516. [PMID: 37173982 PMCID: PMC10177345 DOI: 10.3390/cancers15092516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
From this perspective, we wonder about the clinical implications of oncology recapturing ontogeny in the contexts of neoantigens, tumor biomarkers, and cancer targets. We ponder about the biological ramifications of finding remnants of mini-organs and residuals of tiny embryos in some tumors. We reminisce about classical experiments showing that the embryonic microenvironment possesses antitumorigenic properties. Ironically, a stem-ness niche-in the wrong place at the wrong time-is also an onco-niche. We marvel at the paradox of TGF-beta both as a tumor suppressor and a tumor promoter. We query about the dualism of EMT as a stem-ness trait engaged in both normal development and abnormal disease states, including various cancers. It is uncanny that during fetal development, proto-oncogenes wax, while tumor-suppressor genes wane. Similarly, during cancer development, proto-oncogenes awaken, while tumor-suppressor genes slumber. Importantly, targeting stem-like pathways has therapeutic implications because stem-ness may be the true driver, if not engine, of the malignant process. Furthermore, anti-stem-like activity elicits anti-cancer effects for a variety of cancers because stem-ness features may be a universal property of cancer. When a fetus survives and thrives despite immune surveillance and all the restraints of nature and the constraints of its niche, it is a perfect baby. Similarly, when a neoplasm survives and thrives in an otherwise healthy and immune-competent host, is it a perfect tumor? Therefore, a pertinent narrative of cancer depends on a proper perspective of cancer. If malignant cells are derived from stem cells, and both cells are intrinsically RB1 negative and TP53 null, do the absence of RB1 and loss of TP53 really matter in this whole narrative and an entirely different perspective of cancer?
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ahmet Murat Aydin
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhongning Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sunny Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
13
|
Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk S, Brzeziańska-Lasota E. Assessment of BMP7, SMAD4, and CDH1 Expression Profile and Regulatory miRNA-542-3p in Eutopic and Ectopic Endometrium of Women with Endometriosis. Int J Mol Sci 2023; 24:ijms24076637. [PMID: 37047609 PMCID: PMC10095043 DOI: 10.3390/ijms24076637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Alterations in the expression of numerous genes and the miRNAs that are recognized as their regulators in the endometrial cells of women with endometriosis may disrupt the intracellular signaling pathways associated with epithelial–mesenchymal transition (EMT). So far, the functional role of BMP7 in endometrial physiology has been confirmed, especially in the context of fertility, but the role of the activation of a specific mechanism operating through the BMP–SMAD–CDH1 axis in the formation of endometrial lesions remains unexplored. The aim of this study was to evaluate the expression profile of miR-542-3p and the EMT markers (BMP7, SMAD4, CDH1) in matched eutopic endometrium (EUE) and ectopic endometrium (ECE) samples from women with endometriosis in relation to healthy women. The levels of expression of the studied genes and miRNA in peripheral blood mononuclear cells (PBMCs) obtained from women diagnosed with endometriosis and those without the disease were also evaluated. Fifty-four patients (n = 54: with endometriosis—n = 29 and without endometriosis—n = 25) were included in the study. A comparative analysis of the relative mean expression values (RQ) of the studied mRNA and miRNA assessed by RT-qPCR demonstrated downregulation of BMP7, SMAD4, and CDH1 expression in ectopic lesions and upregulation in the eutopic endometrium compared with the control group. In the eutopic tissue of women with endometriosis, miR-542-3p expression was similar to that of the control but significantly lower than in endometrial lesions. We also confirmed a trend towards a negative correlation between miR-542-3p and BMP7 in ectopic tissue, and in PBMC, a significant negative correlation of miR-542-3p with further BMP signaling genes, i.e., SMAD4 and CDH1, was observed. These results indicate that the miRNA selected by us may be a potential negative regulator of BMP7-SMAD4-CDH1 signaling associated with EMT. The different patterns of BMP7, SMAD4, and CDH1 gene expression in ECE, EUE, and the control endometrium observed by us suggests the loss of the endometrial epithelium phenotype in women with endometriosis and demonstrates their involvement in the pathogenesis and pathomechanism of this disease.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, St. Pomorska 251, C-5, 92-213 Lodz, Poland
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, St. Pomorska 251, C-5, 92-213 Lodz, Poland
| | - Sławomir Jędrzejczyk
- Institute of Medical Expertises, St. Aleksandrowska 67/93, 91-205 Lodz, Poland
- Operative and Conservative Gynecology Ward, Dr. K. Jonscher Municipal Medical Centre, St. Milionowa 14, 93-113 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, St. Pomorska 251, C-5, 92-213 Lodz, Poland
| |
Collapse
|
14
|
Fan M, Zhang Y, Shi H, Xiang L, Yao H, Lin R. Bone mesenchymal stem cells promote gastric cancer progression through TGF-β1/Smad2 positive feedback loop. Life Sci 2023; 323:121657. [PMID: 37019301 DOI: 10.1016/j.lfs.2023.121657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
AIMS Bone marrow-derived mesenchymal stem cells (BMSCs) have been proven to be recruited into the tumor microenvironment and contribute to gastric cancer (GC) progression, but the underlying mechanism is still unclear. The purpose of this study is to explore the exact role and potential mechanism of BMSCs in the progression of GC. MATERIALS AND METHODS Bioinformatics analyzed were used to clarify the correlation between TGF-β1 and prognosis of gastric cancer. Cell co-culture were used to explore the interaction between gastric cancer cells (GCs) and BMSCs. Quantitative real time-PCR and Western blot assay were used to detect gene and protein expression, respectively. The biological characteristics of GCs and BMSCs were detected by immunofluorescence, Transwell migration, Elisa and invasion assay. Xenograft models in nude mice were constructed to evaluate GC development in vivo. KEY FINDINGS TGF-β1 was overexpressed in GC cells and tissues, and is positively related to the poor prognosis of patients. TGF-β1 from GCs activated the Smad2 pathway in BMSCs, promoting their differentiation into carcinoma-associated fibroblasts (CAFs) and TGF-β1 expression. Concomitantly, TGF-β1 secreted by CAFs activate Smad2 signaling in GC cells, thus inducing their epithelial-mesenchymal transition (EMT) and TGF-β1 secretion. BMSCs can dramatically promote the proliferation, migration, and invasion of GCs while blocking TGF-β1/Smad2 positive feedback loop can reverse these effects. SIGNIFICANCE The TGF-β1/Smad2 positive feedback loop between GCs and BMSCs, promotes the CAFs differentiation of BMSCs and the epithelial-mesenchymal transition of GCs, resulting in the progression of GC.
Collapse
|
15
|
Guzel S, Gurpinar Y, Altunok TH, Yalcin A. Increased expression of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase-3 is required for growth of mouse embryonic stem cells that are undergoing differentiation. Cytotechnology 2023; 75:27-38. [PMID: 36713065 PMCID: PMC9880118 DOI: 10.1007/s10616-022-00557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
The unlimited proliferation capacity of embryonic stem cells (ESCs) coupled with their capability to differentiate into several cell types makes them an attractive candidate for studying the molecular mechanisms regulating self-renewal and transition from pluripotent state. Although the roles of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase family (PFKFB1-4) in cell survival, proliferation, and differentiation in tumor cells have been studied, their role in mouse ESC (mESC) biology is currently unkown. In the current study, Pfkfb isoenzyme expressions were analyzed in R1 and J1 mESCs that were cultured in the presence and absence of leukemia inhibitory factor (LIF). We report that expression of the Pfkfb3 isoenzyme was markedly increased when mESCs were promoted to differentiate upon LIF removal. We then demonstrated that Pfkfb3 silencing induced the differentiation marker Brachyury suggesting that Pfkfb3 may be required for the regulation of mesodermal differentiation of mESCs. Furthermore, we show that the increase in Pfkfb3 expression is required for the growth of early differentiated mESCs. Although these results provide important insights into the early differentiation of mESCs with regard to Pfkfb expressions, further mechanistic studies will be needed for understanding the pathways and mechanisms involved in regulation of proliferation and early differentiation of mESCs through Pfkfb3.
Collapse
Affiliation(s)
- Saime Guzel
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Yunus Gurpinar
- Research Center for Translational Medicine, Koc University, 34010 Istanbul, Turkey
| | - Tugba Hazal Altunok
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Abdullah Yalcin
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
16
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
17
|
ArulJothi KN, Kumaran K, Senthil S, Nidhu AB, Munaff N, Janitri VB, Kirubakaran R, Singh SK, Gupt G, Dua K, Krishnan A. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. Med Oncol 2023; 40:43. [PMID: 36472716 PMCID: PMC9734980 DOI: 10.1007/s12032-022-01900-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer is the second (11.4%) most commonly diagnosed cancer and the first (18%) to cause cancer-related deaths worldwide. The incidence of lung cancer varies significantly among men, women, and high and low-middle-income countries. Air pollution, inhalable agents, and tobacco smoking are a few of the critical factors that determine lung cancer incidence and mortality worldwide. Reactive oxygen species are known factors of lung carcinogenesis resulting from the xenobiotics and their mechanistic paths are under critical investigation. Reactive oxygen species exhibit dual roles in cells, as a tumorigenic and anti-proliferative factor, depending on spatiotemporal context. During the precancerous state, ROS promotes cancer origination through oxidative stress and base-pair substitution mutations in pro-oncogenes and tumor suppressor genes. At later stages of tumor progression, they help the cancer cells in invasion, and metastases by activating the NF-kB and MAPK pathways. However, at advanced stages, when ROS exceeds the threshold, it promotes cell cycle arrest and induces apoptosis in cancer cells. ROS activates extrinsic apoptosis through death receptors and intrinsic apoptosis through mitochondrial pathways. Moreover, ROS upregulates the expression of beclin-1 which is a critical component to initiate autophagy, another form of programmed cell death. ROS is additionally involved in an intermediatory step in necroptosis, which catalyzes and accelerates this form of cell death. Various therapeutic interventions have been attempted to exploit this cytotoxic potential of ROS to treat different cancers. Growing body of evidence suggests that ROS is also associated with chemoresistance and cancer cell immunity. Considering the multiple roles of ROS, this review highlights the exploitation of ROS for various therapeutic interventions. However, there are still gaps in the literature on the dual roles of ROS and the involvement of ROS in cancer cell immunity and therapy resistance.
Collapse
Affiliation(s)
- K. N. ArulJothi
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - K. Kumaran
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - Sowmya Senthil
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - A. B. Nidhu
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - Nashita Munaff
- grid.412742.60000 0004 0635 5080Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - V. B. Janitri
- grid.262613.20000 0001 2323 3518Rochester Institute of Technology, Rochester, NY USA
| | - Rangasamy Kirubakaran
- grid.444708.b0000 0004 1799 6895Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Missions Research Foundation, Salem, Tamil Nadu India
| | - Sachin Kumar Singh
- grid.449005.cSchool of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab India ,grid.117476.20000 0004 1936 7611Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Gaurav Gupt
- grid.448952.60000 0004 1767 7579School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017 India ,grid.412431.10000 0004 0444 045XDepartment of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India ,grid.449906.60000 0004 4659 5193Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- grid.117476.20000 0004 1936 7611Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia ,grid.117476.20000 0004 1936 7611Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Anand Krishnan
- grid.412219.d0000 0001 2284 638XDepartment of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| |
Collapse
|
18
|
Lu ZR, Laney V, Li Y. Targeted Contrast Agents for Magnetic Resonance Molecular Imaging of Cancer. Acc Chem Res 2022; 55:2833-2847. [PMID: 36121350 DOI: 10.1021/acs.accounts.2c00346] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Magnetic resonance imaging (MRI) is a clinical imaging modality that provides high-resolution images of soft tissues, including cancerous lesions. Stable gadolinium(III) chelates have been used as contrast agents (CA) in MRI to enhance the contrast between the tissues of interest and surrounding tissues for accurate diagnostic imaging. Magnetic resonance molecular imaging (MRMI) of cancer requires targeted CA to specifically elucidate cancer-associated molecular processes and can provide high-resolution delineation and characterization of cancer for precision medicine. The main challenge for MRMI is the lack of sufficient sensitivity to detect the low concentration of the cellular oncogenic markers. In addition, targeted CA must satisfy regulatory safety requirements prior to clinical development. Up to now, there is no FDA-approved targeted CA for MRMI of cancer.In this Account, we discuss the latest developments in the design and development of clinically translatable targeted CA for MRMI of cancer, with an emphasis on our own research. The primary limitation of MRMI can be overcome by designing small molecular targeted CA to target abundant cancer-specific targets found in the tumor microenvironment (TME). For example, aggressive tumors have a unique extracellular matrix (ECM) composed of oncoproteins, which can be used as targetable markers for MRMI. We have designed and prepared small peptide conjugates of clinical contrast agents, including Gd-DTPA and Gd-DOTA, to target fibrin-fibronectin clots in tumors. These small molecular CA have been effective in enhancing MRMI detection of solid tumors and have demonstrated the ability to detect submillimeter cancer micrometastases in mouse tumor models, exceeding the detection limit of current clinical imaging modalities. We have also identified extradomain B fibronectin (EDB-FN), an oncofetal subtype of fibronectin, as a promising TME target to leverage in the design and development of small peptide targeted CA for clinical translation. The expression level of EDB-FN is correlated with invasiveness of cancer cells and poor patient survival of multiple cancer types. ZD2 peptide with a sequence of seven amino acids (TVRTSAD) was identified to specifically bind to the EDB protein fragment. Several ZD2 conjugates of macrocyclic GBCA, including Gd-DOTA and Gd(HP-DO3A), have been synthesized and tested in mouse tumor models. ZD2-N3-Gd(HP-DO3A) (MT218) with a high r1 relaxivity was selected as the lead agent for clinical translation. The physicochemical properties and preclinical assessments of MT218 are summarized in this Account. MRMI of EDB-FN with MT218 can effectively detect invasive tumors of multiple cancers with risk-stratification and monitor tumor response to anticancer therapies in mouse models. Currently, MT218 is in clinical trials for precision cancer MRMI. Herein, we will show that using targeted MRI contrast agents specific to abundant TME biomarkers is a pragmatic solution for effective precision cancer imaging in high spatial resolution. And thus, we illustrate a replicable approach for CA development that is vital for cancer MRMI.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Wickenden Building, Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, United States
| | - Victoria Laney
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Wickenden Building, Cleveland, Ohio 44106, United States
| | - Yajuan Li
- Molecular Theranostics, 7100 Euclid Ave, Suite 152, Cleveland, Ohio 44114, United States
| |
Collapse
|
19
|
Bartnik P, Kacperczyk-Bartnik J, Goławski K, Sierdziński J, Mańka G, Kiecka M, Lipa M, Warzecha D, Spaczyński R, Piekarski P, Banaszewska B, Jakimiuk AJ, Issat T, Rokita W, Młodawski J, Szubert M, Sieroszewski P, Raba G, Szczupak K, Kluz T, Kluza M, Czajkowski K, Wielgoś M, Koc-Żórawska E, Żórawski M, Laudański P. Plasma and Peritoneal Fluid ZEB Levels in Patients with Endometriosis and Infertility. Biomedicines 2022; 10:biomedicines10102460. [PMID: 36289723 PMCID: PMC9599446 DOI: 10.3390/biomedicines10102460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Zinc finger E-box-binding homeobox 1 (ZEB1) and zinc finger E-box-binding homeobox 2 (ZEB2) are transcription factors that regulate epithelial−mesenchymal transformation (EMT). The aim of this study was to compare levels of ZEB1 and ZEB2 in the peritoneal fluid and plasma between patients with and without endometriosis in order to assess their utility in the diagnostic process. Plasma and peritoneal fluid samples were collected from 50 patients with and 48 without endometriosis during planned surgical procedures in eight clinical centers. Quantitative ZEB1 and ZEB2 levels analyses were performed using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). No significant differences were observed in ZEB1 levels in any of the subanalyses nor any differences regarding ZEB2 levels between patients with and without endometriosis. Plasma ZEB2 levels were significantly higher among patients with infertility compared to fertile women (16.07 ± 12.70 ng/L vs. 12.07 ± 11.92 ng/L; p < 0.04). Both ZEB1 and ZEB2 do not seem to have a significant value in the initial diagnosis of endometriosis as a single marker. The differences in ZEB2 plasma levels between patients with and without infertility indicate the possibility of EMT dysregulation in the pathogenesis of adverse fertility outcomes.
Collapse
Affiliation(s)
- Paweł Bartnik
- II Department of Obstetrics and Gynecology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Club 35. Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
| | - Joanna Kacperczyk-Bartnik
- II Department of Obstetrics and Gynecology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Club 35. Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
| | - Ksawery Goławski
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Janusz Sierdziński
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, 00-581 Warsaw, Poland
| | | | | | - Michał Lipa
- Club 35. Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Damian Warzecha
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Robert Spaczyński
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Piotr Piekarski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Beata Banaszewska
- Chair and Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Artur J. Jakimiuk
- Department of Obstetrics and Gynecology, Central Clinical Hospital of the Ministry of Interior, 02-507 Warsaw, Poland
- Center of Reproductive Health, Institute of Mother and Child in Warsaw, 01-211 Warsaw, Poland
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Central Clinical Hospital of the Ministry of Interior, 02-507 Warsaw, Poland
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, 01-211 Warsaw, Poland
| | - Wojciech Rokita
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
- Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Jakub Młodawski
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
- Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Maria Szubert
- Club 35. Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
- Department of Gynecology and Obstetrics, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Surgical Gynecology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Sieroszewski
- Department of Gynecology and Obstetrics, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Fetal Medicine and Gynecology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Grzegorz Raba
- Clinic of Obstetrics and Gynecology in Przemysl, 37-700 Przemysl, Poland
- Department of Obstetrics and Gynecology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Kamil Szczupak
- Clinic of Obstetrics and Gynecology in Przemysl, 37-700 Przemysl, Poland
- Department of Obstetrics and Gynecology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland
| | - Marek Kluza
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland
| | - Krzysztof Czajkowski
- II Department of Obstetrics and Gynecology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Mirosław Wielgoś
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Ewa Koc-Żórawska
- II Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Marcin Żórawski
- Department of Clinical Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Piotr Laudański
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
- OVIklinika Infertility Center, 01-377 Warsaw, Poland
- Correspondence:
| |
Collapse
|
20
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
21
|
The Contributions of Cancer-Testis and Developmental Genes to the Pathogenesis of Keratinocyte Carcinomas. Cancers (Basel) 2022; 14:cancers14153630. [PMID: 35892887 PMCID: PMC9367444 DOI: 10.3390/cancers14153630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In addition to mutations, ectopically-expressed genes are emerging as important contributors to cancer development. Efforts to characterize the expression patterns in cancers of gamete-restricted cancer-testis antigens and developmentally-restricted genes are underway, revealing these genes to be putative biomarkers and therapeutic targets for various malignancies. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are two highly-prevalent non-melanoma skin cancers that result in considerable burden on patients and our health system. To optimize disease prognostication and treatment, it is necessary to further classify the molecular complexity of these malignancies. This review describes the expression patterns and functions of cancer-testis antigens and developmentally-restricted genes in BCC and cSCC tumors. A large number of cancer-testis antigens and developmental genes exhibit substantial expression levels in BCC and cSCC. These genes have been shown to contribute to several aspects of cancer biology, including tumorigenesis, differentiation, invasion and responses to anti-cancer therapy. Abstract Keratinocyte carcinomas are among the most prevalent malignancies worldwide. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the two cancers recognized as keratinocyte carcinomas. The standard of care for treating these cancers includes surgery and ablative therapies. However, in recent years, targeted therapies (e.g., cetuximab for cSCC and vismodegib/sonidegib for BCC) have been used to treat advanced disease as well as immunotherapy (e.g., cemiplimab). These treatments are expensive and have significant toxicities with objective response rates approaching ~50–65%. Hence, there is a need to dissect the molecular pathogenesis of these cancers to identify novel biomarkers and therapeutic targets to improve disease management. Several cancer-testis antigens (CTA) and developmental genes (including embryonic stem cell factors and fetal genes) are ectopically expressed in BCC and cSCC. When ectopically expressed in malignant tissues, functions of these genes may be recaptured to promote tumorigenesis. CTAs and developmental genes are emerging as important players in the pathogenesis of BCC and cSCC, positioning themselves as attractive candidate biomarkers and therapeutic targets requiring rigorous testing. Herein, we review the current research and offer perspectives on the contributions of CTAs and developmental genes to the pathogenesis of keratinocyte carcinomas.
Collapse
|
22
|
Kot M, Mazurkiewicz E, Wiktor M, Wiertelak W, Mazur AJ, Rahalevich A, Olczak M, Maszczak-Seneczko D. SLC35A2 Deficiency Promotes an Epithelial-to-Mesenchymal Transition-like Phenotype in Madin–Darby Canine Kidney Cells. Cells 2022; 11:cells11152273. [PMID: 35892570 PMCID: PMC9331475 DOI: 10.3390/cells11152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In mammalian cells, SLC35A2 delivers UDP–galactose for galactosylation reactions that take place predominantly in the Golgi lumen. Mutations in the corresponding gene cause a subtype of a congenital disorder of glycosylation (SLC35A2-CDG). Although more and more patients are diagnosed with SLC35A2-CDG, the link between defective galactosylation and disease symptoms is not fully understood. According to a number of reports, impaired glycosylation may trigger the process of epithelial-to-mesenchymal transition (EMT). We therefore examined whether the loss of SLC35A2 activity would promote EMT in a non-malignant epithelial cell line. For this purpose, we knocked out the SLC35A2 gene in Madin–Darby canine kidney (MDCK) cells. The resulting clones adopted an elongated, spindle-shaped morphology and showed impaired cell–cell adhesion. Using qPCR and western blotting, we revealed down-regulation of E-cadherin in the knockouts, while the fibronectin and vimentin levels were elevated. Moreover, the knockout cells displayed reorganization of vimentin intermediate filaments and altered subcellular distribution of a vimentin-binding protein, formiminotransferase cyclodeaminase (FTCD). Furthermore, depletion of SLC35A2 triggered Golgi compaction. Finally, the SLC35A2 knockouts displayed increased motility and invasiveness. In conclusion, SLC35A2-deficient MDCK cells showed several hallmarks of EMT. Our findings point to a novel role for SLC35A2 as a gatekeeper of the epithelial phenotype.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Maciej Wiktor
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Andrei Rahalevich
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Dorota Maszczak-Seneczko
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
- Correspondence:
| |
Collapse
|
23
|
Rg3 and Rh2 ginsenosides suppress embryoid body formation by inhibiting the epithelial-mesenchymal transition. Arch Pharm Res 2022; 45:494-505. [PMID: 35759089 DOI: 10.1007/s12272-022-01395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Numerous active compounds derived from ginseng exhibit various pharmacological and therapeutic effects in humans. Despite the benefits of ginsenosides, little is known about their influence on embryonic development, especially in human embryonic models. In this study, we evaluated the effect of two ginsenosides (Rg3 and Rh2) on human embryonic development, using embryoid bodies and three-dimensional (3D) aggregates of pluripotent stem cells. We exposed embryoid bodies to varying concentrations of Rg3 and Rh2 (5, 10, and 25 μg/mL), and their embryotoxicity was evaluated by measuring the size of the embryoid body and the expression of epithelial-mesenchymal transition (EMT) markers. The growth rates of embryoid bodies were reduced upon treatment with a high concentration (25 μg/mL) of Rg3 and Rh2. In addition, Rg3 induced E-cadherin expression while inhibiting N-cadherin and vimentin expression, which implies the inhibition of EMT. Such a change in E-cadherin expression was not observed after Rh2 treatment, but the inhibition of N-cadherin and vimentin expression was observed to be consistent with that observed on treatment with Rg3. Taken together, using the human embryoid model, we found that the two active ginsenosides, Rg3 and Rh2, induce aberrant embryoid body formation and ablate normal EMT.
Collapse
|
24
|
Wang L, Shi Q, Chen S. FoxM1 contributes to progestin resistance and epithelial-to-mesenchymal transition in endometrial carcinoma. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Fan K, Ni X, Shen S, Gong Z, Wang J, Xin Y, Zheng B, Sun W, Liu H, Suo T, Ni X, Liu H. Acetylation stabilizes stathmin1 and promotes its activity contributing to gallbladder cancer metastasis. Cell Death Discov 2022; 8:265. [PMID: 35581193 PMCID: PMC9114396 DOI: 10.1038/s41420-022-01051-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/10/2021] [Accepted: 04/29/2022] [Indexed: 01/16/2023] Open
Abstract
Gallbladder cancer is the most common biliary tract malignant tumor with highly metastatic characters and poor prognosis. However, the underlying mechanism remains unclear. Stathmin1 is ubiquitous phosphoprotein, regulating microtubule stabilization. We identified the acetylation of stahtmin1 at lysine 9 (K9) in gallbladder cancer. K9 acetylation of stathmin1 was reversely regulated by the acetyltransferase PCAF and the deacetylases sirt2. K9 acetylation of stathmin1 inhibited the combining of stathmin1 to E3 ubiquitin ligase RLIM, thereby inhibiting its ubiquitination degradation. Moreover, K9 acetylation also promoted the activity of stahtmin1 interacting and destabilizing microtubule through the inhibition of stathmin1 phosphorylation. K9 acetylated stathmin1 significantly promoted gallbladder cancer cell migration and invasion viability in vitro and lung metastasis in vivo, and indicated poor prognosis of nude mice. IHC assay suggested the positive correlation of high levels of K9 acetylation and stathmin1 expression in gallbladder cancer. Our study revealed that K9 acetylation up-regulated stathmin1 protein stability and microtubule-destabilizing activity to promoted gallbladder cancer metastasis, which provides a potential target for gallbladder cancer therapy.
Collapse
Affiliation(s)
- Kun Fan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Yanlei Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Bohao Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Wentao Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China.
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Morin C, Moyret-Lalle C, Mertani HC, Diaz JJ, Marcel V. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188718. [PMID: 35304296 DOI: 10.1016/j.bbcan.2022.188718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence exposes translation and its translational machinery as key players in establishing and maintaining physiological and pathological biological processes. Examining translation may not only provide new biological insight but also identify novel innovative therapeutic targets in several fields of biology, including that of epithelial-to-mesenchymal transition (EMT). EMT is currently considered as a dynamic and reversible transdifferentiation process sustaining the transition from an epithelial to mesenchymal phenotype, known to be mainly driven by transcriptional reprogramming. However, it seems that the characterization of EMT plasticity is challenging, relying exclusively on transcriptomic and epigenetic approaches. Indeed, heterogeneity in EMT programs was reported to depend on the biological context. Here, by reviewing the involvement of translational control, translational machinery and ribosome biogenesis characterizing the different types of EMT, from embryonic and adult physiological to pathological contexts, we discuss the added value of integrating translational control and its machinery to depict the heterogeneity and dynamics of EMT programs.
Collapse
Affiliation(s)
- Chloé Morin
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Caroline Moyret-Lalle
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Hichem C Mertani
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France.
| |
Collapse
|
27
|
Sağraç D, Şenkal S, Hayal TB, Şahin F, Çobandede Z, Doğan A. Surface coating materials regulates the attachment and differentiation of mouse embryonic stem cell derived embryoid bodies into mesoderm at culture conditions. Cytotechnology 2022; 74:293-307. [PMID: 35464166 PMCID: PMC8976036 DOI: 10.1007/s10616-022-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Abstract Pluripotent stem cells as a promising cell source with unlimited proliferation and differentiation capacity hold great promise for cell-based therapies in regenerative medicine. Establishment of appropriate culture conditions might enable the control of cellular fate decision in cell culture. Transfer of three-dimensional (3D) embryoid bodies to two-dimensional (2D) monolayer culture systems for initiation of cell differentiation and specialization requires an adaptation of cells which can be managed by extracellular matrix (ECM) materials. Here we compare the characteristics of four different cell culture coating materials and their effect on attachment and differentiation of cells spreading from mouse embryonic stem cell (mESC) derived embryoid bodies (EBs) in mesoderm inducing culture conditions. Atomic force microscope (AFM) and scanning electron microscope (SEM) analysis along with Water Contact Angle technique were used to analyze physical properties of ECM materials and to evaluate cellular behavior on surfaces. Cell migration and differentiation were performed initially by using mesoderm inducing culture conditions and then three germ layer specification conditions. We investigated properties of coating materials such as roughness and wettability control cell attachment, migration and differentiation of mESCs. Matrigel-Gelatin combination is suitable for cell attachment and migration of cells spreading from 3D EBs followed by transfer onto coated surfaces. Matrigel-Gelatin coating enhanced differentiation of cells into mesoderm like cells via EMT process. Our data demonstrated that the Matrigel-Gelatin combination as a cell culture coating matrix might serve as a suitable platform to transfer EBs for differentiation and might influence pluripotent stem cell fate decision into mesoderm and further mesoderm derivative cell populations. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00529-z.
Collapse
|
28
|
Lu CH, Wu CH, Hsieh PF, Wu CY, Kuo WWT, Ou CH, Lin VCH. Small interfering RNA targeting N-cadherin regulates cell proliferation and migration in enzalutamide-resistant prostate cancer. Oncol Lett 2022; 23:90. [PMID: 35126732 PMCID: PMC8805176 DOI: 10.3892/ol.2022.13210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Enzalutamide is one of the options for treating patients with castration-resistant or metastatic prostate cancer. However, a substantial proportion of patients become resistant to enzalutamide after a period of treatment. Cells in these tumors typically exhibit increased proliferative and migratory capabilities, in which N-cadherin (CDH2) appear to serve an important role. In the present study, by up- and downregulating the expression of CDH2, the possible effects of CDH2 on the prostate cancer cell line LNCaP were investigated. Male sex hormone-sensitive LNCaP cells treated with 10 µM enzalutamide were named LNCaP enzalutamide-resistant (EnzaR) cells. Reverse transcription-PCR, western blotting and immunofluorescence staining were used to measure CDH2, E-cadherin, α-SMA, Snail and Slug expression. Transfection with the pCMV-CDH2 plasmid was performed for CDH2 upregulation, whilst transfection with small interfering RNA (siRNA)-CDH2 was performed for CDH2 downregulation. MTT and Cell Counting Kit-4 assays were used to evaluate the proportion of viable cancer cells. Subsequently, gap closure assay was performed to evaluate the migratory capability of both LNCaP and LNCaP EnzaR cell lines. CDH2 expression was found to be increased in LNCaP EnzaR cells compared with that in LNCaP cells. CDH2 overexpression increased cell viability and migration in both LNCaP and LNCaP EnzaR cell lines. By contrast, the opposite trend was observed after CDH2 expression was knocked down. CDH2 expression also showed a high association with that of four epithelial-mesenchymal transition markers, which was confirmed by western blotting. Based on these results, it was concluded that knocking down CDH2 expression using siRNA transfection mediated significant influence on LNCaP EnzaR cell physiology, which may be a potential therapeutic option for prostate cancer treatment.
Collapse
Affiliation(s)
- Cheng-Hsin Lu
- Division of Urology, Penghu Hospital, Penghu 880001, Taiwan, R.O.C.,Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,Division of Urology, Department of Surgery, E-Da Cancer Hospital, Kaohsiung 824005, Taiwan, R.O.C
| | - Chun-Hsien Wu
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, Kaohsiung 824005, Taiwan, R.O.C.,Department of Nursing, I-Shou University, Kaohsiung 824005, Taiwan, R.O.C
| | - Pei-Fang Hsieh
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan 717302, Taiwan, R.O.C
| | - Chen-Yu Wu
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan, R.O.C
| | - Wade Wei-Ting Kuo
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, Kaohsiung 824005, Taiwan, R.O.C
| | - Chien-Hui Ou
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan, R.O.C
| | - Victor Chia Hsiang Lin
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan, R.O.C
| |
Collapse
|
29
|
Epithelial and Neural Cadherin in Mammalian Fertilization: Studies in the Mouse Model. Cells 2021; 11:cells11010102. [PMID: 35011663 PMCID: PMC8750299 DOI: 10.3390/cells11010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Successful mammalian fertilization requires a well-orchestrated sequence of molecular events leading to gamete fusion. Since this interaction involves Ca2+-dependent adhesion events, the participation of the Ca+2-dependent cell-cell adhesion proteins Epithelial (E-cad) and Neural (N-cad) cadherin is envisaged. We have previously reported the expression of E-cad and N-cad in human gametes and showed evidence of their involvement in sperm-oocyte adhesion events leading to fertilization. To overcome ethical limitations associated with the use of human gametes in fertilization-related studies, the mouse has been selected worldwide as the experimental model for over 4 decades. Herein, we report a detailed study aimed at characterizing the expression of E-cad and N-cad in murine gametes and their involvement in murine fertilization using specific antibodies and blocking peptides towards both adhesion proteins. E-cad and N-cad protein forms, as well as other members of the adhesion complex, specifically β-catenin and actin, were identified in spermatozoa, cumulus cells and oocytes protein extracts by means of Western immunoblotting. In addition, subcellular localization of these proteins was determined in whole cells using optical fluorescent microscopy. Gamete pre-incubation with anti-E-cad (ECCD-1) or N-cad (H-63) antibodies resulted in decreased (p < 0.05) In Vitro Fertilization (IVF) rates, when using both cumulus-oocytes complexes and cumulus-free oocytes. Moreover, IVF assays done with denuded oocytes and either antibodies or blocking peptides against E-cad and N-cad led to lower (p < 0.05) fertilization rates. When assessing each step, penetration of the cumulus mass was lower (p < 0.05) when spermatozoa were pre-incubated with ECCD-1 or blocking peptides towards E-cad or towards both E- and N-cad. Moreover, sperm-oolemma binding was impaired (p < 0.0005) after sperm pre-incubation with E-cad antibody or blocking peptide towards E-cad, N-cad or both proteins. Finally, sperm-oocyte fusion was lower (p < 0.05) after sperm pre-incubation with either antibody or blocking peptide against E-cad or N-cad. Our studies demonstrate the expression of members of the adherent complex in the murine model, and the use of antibodies and specific peptides revealed E-cad and N-cad participation in mammalian fertilization.
Collapse
|
30
|
Anticancer Effects of Midazolam on Lung and Breast Cancers by Inhibiting Cell Proliferation and Epithelial-Mesenchymal Transition. Life (Basel) 2021; 11:life11121396. [PMID: 34947927 PMCID: PMC8703822 DOI: 10.3390/life11121396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/15/2023] Open
Abstract
Despite improvements in cancer treatments resulting in higher survival rates, the proliferation and metastasis of tumors still raise new questions in cancer therapy. Therefore, new drugs and strategies are still needed. Midazolam (MDZ) is a common sedative drug acting through the γ-aminobutyric acid receptor in the central nervous system and also binds to the peripheral benzodiazepine receptor (PBR) in peripheral tissues. Previous studies have shown that MDZ inhibits cancer cell proliferation but increases cancer cell apoptosis through different mechanisms. In this study, we investigated the possible anticancer mechanisms of MDZ on different cancer cell types. MDZ inhibited transforming growth factor β (TGF-β)-induced cancer cell proliferation of both A549 and MCF-7 cells. MDZ also inhibited TGF-β-induced cell migration, invasion, epithelial-mesenchymal-transition, and Smad phosphorylation in both cancer cell lines. Inhibition of PBR by PK11195 rescued the MDZ-inhibited cell proliferation, suggesting that MDZ worked through PBR to inhibit TGF-β pathway. Furthermore, MDZ inhibited proliferation, migration, invasion and levels of mesenchymal proteins in MDA-MD-231 triple-negative breast cancer cells. Together, MDZ inhibits cancer cell proliferation both in epithelial and mesenchymal types and EMT, indicating an important role for MDZ as a candidate to treat lung and breast cancers.
Collapse
|
31
|
Cela V, Malacarne E, Obino MER, Marzi I, Papini F, Vergine F, Pisacreta E, Zappelli E, Pietrobono D, Scarfò G, Daniele S, Franzoni F, Martini C, Artini PG. Exploring Epithelial-Mesenchymal Transition Signals in Endometriosis Diagnosis and In Vitro Fertilization Outcomes. Biomedicines 2021; 9:biomedicines9111681. [PMID: 34829910 PMCID: PMC8615497 DOI: 10.3390/biomedicines9111681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/05/2023] Open
Abstract
Endometriosis (EMS) pathogenesis has been related to the release of inflammatory mediators in peritoneal fluid, creating an altered microenvironment that leads to low-grade oocyte/embryos and to the reduction of implantation rates. The Epithelial–Mesenchymal Transition (EMT), an inflammation-related process, can be a further contributing factor to EMS. This study aimed to investigate, among various cytokines and EMT markers (Cadherins, TGF-β, HIF-1α), diagnostic markers of EMS and prognostic factors of in vitro fertilization (IVF) outcomes. Herein, EMS patients manifested higher serum levels of the inflammatory molecules IL-6, IL-8, and IL-12 and a decrease in the concentrations of the anti-inflammatory IL-10. Moreover, biochemical markers associated with the EMT process were more elevated in serum and follicular fluid (FF) of EMS patients than in controls. At the end, the number of good-quality embryos was inversely related to serum IL-6 and EMT markers. Interestingly, serum IL-6 and FF IL-10 concentrations differentiated EMS patients from controls. Finally, serum IL-8 and E-Cadherin levels, as well as FF IL-10, predicted positive IVF outcome with great accuracy. Our data confirm the pivotal role of inflammatory mediators (i.e., IL-6 and IL-10) in EMS pathogenesis and suggest that EMT-related markers are elevated in EMS patients and can be predictive of IVF outcome.
Collapse
Affiliation(s)
- Vito Cela
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Elisa Malacarne
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Maria Elena Rosa Obino
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Ilaria Marzi
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Francesca Papini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Francesca Vergine
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Elena Pisacreta
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Elisa Zappelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.Z.); (D.P.); (S.D.); (C.M.)
| | - Deborah Pietrobono
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.Z.); (D.P.); (S.D.); (C.M.)
| | - Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (F.F.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.Z.); (D.P.); (S.D.); (C.M.)
| | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (F.F.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.Z.); (D.P.); (S.D.); (C.M.)
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
- Correspondence: ; Tel.: +39-050-554-104
| |
Collapse
|
32
|
Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov 2021; 7:271. [PMID: 34601500 PMCID: PMC8487429 DOI: 10.1038/s41420-021-00667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Many self-renewal-promoting factors of embryonic stem cells (ESCs) have been implicated in carcinogenesis, while little known about the genes that direct ESCs exit from pluripotency and regulate tumor development. Here, we show that the transcripts of Gadd45 family genes, including Gadd45a, Gadd45b, and Gadd45g, are gradually increased upon mouse ESC differentiation. Upregulation of Gadd45 members decreases cell proliferation and induces endodermal and trophectodermal lineages. In contrast, knockdown of Gadd45 genes can delay mouse ESC differentiation. Mechanistic studies reveal that Gadd45g activates MAPK signaling by increasing expression levels of the positive modulators of this pathway, such as Csf1r, Igf2, and Fgfr3. Therefore, inhibition of MAPK signaling with a MEK specific inhibitor is capable of eliminating the differentiation phenotype caused by Gadd45g upregulation. Meanwhile, GADD45G functions as a suppressor in human breast cancers. Enforced expression of GADD45G significantly inhibits tumor formation and breast cancer metastasis in mice through limitation of the propagation and invasion of breast cancer cells. These results not only expand our understanding of the regulatory network of ESCs, but also help people better treatment of cancers by manipulating the prodifferentiation candidates.
Collapse
|
33
|
Role of TGFβ1 and WNT6 in FGF2 and BMP4-driven endothelial differentiation of murine embryonic stem cells. Angiogenesis 2021; 25:113-128. [PMID: 34478025 PMCID: PMC8813801 DOI: 10.1007/s10456-021-09815-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022]
Abstract
Embryonic stem cells (ES) are a valuable source of endothelial cells. By co-culturing ES cells with the stromal PA6 cells, the endothelial commitment can be achieved by adding exogenous FGF2 or BMP4. In this work, the molecular pathways that direct the differentiation of ES cells toward endothelium in response to FGF2 are evaluated and compared to those activated by BMP4. To this purpose the genes expression profiles of both ES/PA6 co-cultures and of pure cultures of PA6 cells were obtained by microarray technique at different time points. The bioinformatics processing of the data indicated TGFβ1 as the most represented upstream regulator in FGF2-induced endothelial commitment while WNT pathway as the most represented in BMP4-activated endothelial differentiation. Loss of function experiments were performed to validate the importance of TGFβ1 and WNT6 respectively in FGF2 and BMP4-induced endothelial differentiation. The loss of TGFβ1 expression significantly impaired the accomplishment of the endothelial commitment unless exogenous recombinant TGFβ1 was added to the culture medium. Similarly, silencing WNT6 expression partially affected the endothelial differentiation of the ES cells upon BMP4 stimulation. Such dysfunction was recovered by the addition of recombinant WNT6 to the culture medium. The ES/PA6 co-culture system recreates an in vitro complete microenvironment in which endothelial commitment is accomplished in response to alternative signals through different mechanisms. Given the importance of WNT and TGFβ1 in mediating the crosstalk between tumor and stromal cells this work adds new insights in the mechanism of tumor angiogenesis and of its possible inhibition.
Collapse
|
34
|
Choudhury S, Surendran N, Das A. Recent advances in the induced pluripotent stem cell-based skin regeneration. Wound Repair Regen 2021; 29:697-710. [PMID: 33970525 DOI: 10.1111/wrr.12925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023]
Abstract
Skin regeneration has been a challenging clinical problem especially in cases of chronic wounds such as diabetic foot ulcers, and epidermolysis bullosa-related skin blisters. Prolonged non-healing wounds often lead to bacterial infections increasing the severity of wounds. Current treatment strategies for chronic wounds include debridement of wounds along with antibiotics, growth factors, and stem cell transplantation therapies. However, the compromised nature of autologous stem cells in patients with comorbidities such as diabetes limits the efficacy of the therapy. The discovery of induced pluripotent stem cell (iPSC) technology has immensely influenced the field of regenerative therapy. Enormous efforts have been made to develop integration-free iPSCs suitable for clinical therapies. This review focuses on recent advances in the methods and reprogramming factors for generating iPSCs along with the existing challenges such as genetic alterations, tumorigenicity, immune rejection, and regulatory hurdles for the clinical application of iPSCs. Furthermore, this review also highlights the benefits of using iPSCs for the generation of skin cells and skin disease modeling over the existing clinical therapies for skin regeneration in chronic wounds and skin diseases.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Science and Innovative Research (AcSIR), Ghaziabad, India
| | - Nidhi Surendran
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Science and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
35
|
Rashdan S, Iyengar P, Minna JD, Gerber DE. Narrative review: molecular and genetic profiling of oligometastatic non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:3351-3368. [PMID: 34430372 PMCID: PMC8350108 DOI: 10.21037/tlcr-21-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Objective The objectives of this review are to discuss: the definition, clinical and biologic features of oligometastatic non-small cell lung cancer (NSCLC), as well as the concept of treating oligoprogression in oligometastatic NSCLC. Background A substantial proportion of patients diagnosed with lung cancer present with metastatic disease, and a large portion of patients who present with localized disease later develop metastases. Oligometastatic NSCLC is defined as an intermediate state between localized and widespread metastatic disease, where there may be a role for curative localized therapy approach by treating the primary tumor and all metastases with radiotherapy or surgery. Despite the increasing application of this approach in patients with lung cancer, the identification of patients who might benefit from this approach is yet to be well characterized. Methods After a systematic review of the literature, a PubMed search was performed using the English language and the key terms: oligometastatic, non-small cell lung cancer (NSCLC), localized consolidative treatment (LCT), biomarkers, biologic features, clinical features. Over 500 articles were retrieved between 1889–2021. A total of 178 papers discussing the definition, clinical and biologic factors leading to oligometastatic NSCLC were reviewed and included in the discussion of this paper. Conclusions Oligometastatic NSCLC is a unique entity. Identifying patients who have oligometastatic NSCLC accurately using a combination of clinical and biologic features and treating them with localized consolidative approach appropriately results in improvement of outcome. Further understanding of the molecular mechanisms driving the formation of oligometastatic NSCLC is an important area of focus for future studies.
Collapse
Affiliation(s)
- Sawsan Rashdan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Puneeth Iyengar
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
Bannerman D, Pascual-Gil S, Floryan M, Radisic M. Bioengineering strategies to control epithelial-to-mesenchymal transition for studies of cardiac development and disease. APL Bioeng 2021; 5:021504. [PMID: 33948525 PMCID: PMC8068500 DOI: 10.1063/5.0033710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process that occurs in a wide range of tissues and environments, in response to numerous factors and conditions, and plays a critical role in development, disease, and regeneration. The process involves epithelia transitioning into a mobile state and becoming mesenchymal cells. The investigation of EMT processes has been important for understanding developmental biology and disease progression, enabling the advancement of treatment approaches for a variety of disorders such as cancer and myocardial infarction. More recently, tissue engineering efforts have also recognized the importance of controlling the EMT process. In this review, we provide an overview of the EMT process and the signaling pathways and factors that control it, followed by a discussion of bioengineering strategies to control EMT. Important biological, biomaterial, biochemical, and physical factors and properties that have been utilized to control EMT are described, as well as the studies that have investigated the modulation of EMT in tissue engineering and regenerative approaches in vivo, with a specific focus on the heart. Novel tools that can be used to characterize and assess EMT are discussed and finally, we close with a perspective on new bioengineering methods that have the potential to transform our ability to control EMT, ultimately leading to new therapies.
Collapse
|
37
|
Pla I, Sanchez A, Pors SE, Pawlowski K, Appelqvist R, Sahlin KB, Poulsen LLC, Marko-Varga G, Andersen CY, Malm J. Proteome of fluid from human ovarian small antral follicles reveals insights in folliculogenesis and oocyte maturation. Hum Reprod 2021; 36:756-770. [PMID: 33313811 PMCID: PMC7891813 DOI: 10.1093/humrep/deaa335] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)? SUMMARY ANSWER The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes. WHAT IS KNOWN ALREADY Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis. STUDY DESIGN, SIZE, DURATION Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected FF from hSAF of ovaries that had been surgically removed from 31 women (∼28.5 years old) undergoing unilateral ovariectomy for fertility preservation. MAIN RESULTS AND THE ROLE OF CHANCE In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation. LIMITATIONS, REASONS FOR CAUTION A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons. WIDER IMPLICATIONS OF THE FINDINGS This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation. STUDY FUNDING/COMPETING INTEREST(S) The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Krzysztof Pawlowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.,Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences SGGW, Warszawa 02-787, Poland
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - K Barbara Sahlin
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Liv La Cour Poulsen
- Fertility Clinic, Department of Gynaecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.,First Department of Surgery, Tokyo Medical University, Shinjiku-ku, Japan
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| |
Collapse
|
38
|
Li G, Liu B, Xu W, Li D, Ji W. Poriaic Acid Affecting Epithelial-Mesenchymal Transition and Apoptosis of A549/DDP Cells via Glycogen Synthesis Kinase-3 β/Snail Signaling Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: The paper explored the mechanism of Poriaic acid-containing serum interfering with EMT and apoptosis of A549/DDP cells. The aim is to find experimental evidence of Poriaic acid intervening cisplatin resistance in lung cancer, searching for effective targets, and to
explore the mechanism of cisplatin resistance in lung cancer. Material and methods: Immunochemistry and western blotting were employed to detect the effects of Poriaic acid-containing serum on the expressions of p-GSK-3β (ser9), Snail protein and mRNA in GSK-3β/Snail
signaling pathway, and the effects of Poriaic acid-containing serum on the expressions of EMT markers and related apop-totic factors. Results: The results of immunoblotting and immunocytochemistry rendered that the expressions of p-GSK-3β (ser9), Snail protein and mRNA decreased
in the administration group as contrast to the blank group. As to the effect of Poriaic acid-containing serum on EMT markers, the immunoblotting results showed that the E-cadherin protein and mRNA expressions increased while the expressions of N-cadherin protein and mRNA decreased. Poriaic
acid-containing serum can up-regulate the expressions of P53, Bax protein and mRNA, and down-regulate the expressions of Bcl-2 protein and mRNA. Conclusion: Poriaic acid-containing serum can affect EMT and apoptosis of A549/DDP cells by interfering with GSK-3β/Snail signaling
pathway.
Collapse
Affiliation(s)
- Gengyao Li
- Department of General Medicine, Qian Wei Hospital of Jilin Province, 1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| | - Bin Liu
- Department of Urology Surgery, Qian Wei Hospital of Jilin Province, 1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| | - Weiwei Xu
- Department of General Medicine, Qian Wei Hospital of Jilin Province, 1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| | - Dongmei Li
- Department of Medical, Qian Wei Hospital of Jilin Province,1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| | - Wei Ji
- Department of General Medicine, Qian Wei Hospital of Jilin Province, 1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| |
Collapse
|
39
|
Hussen BM, Shoorei H, Mohaqiq M, Dinger ME, Hidayat HJ, Taheri M, Ghafouri-Fard S. The Impact of Non-coding RNAs in the Epithelial to Mesenchymal Transition. Front Mol Biosci 2021; 8:665199. [PMID: 33842553 PMCID: PMC8033041 DOI: 10.3389/fmolb.2021.665199] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a course of action that enables a polarized epithelial cell to undertake numerous biochemical alterations that allow it to adopt features of mesenchymal cells such as high migratory ability, invasive properties, resistance to apoptosis, and importantly higher-order formation of extracellular matrix elements. EMT has important roles in implantation and gastrulation of the embryo, inflammatory reactions and fibrosis, and transformation of cancer cells, their invasiveness and metastatic ability. Regarding the importance of EMT in the invasive progression of cancer, this process has been well studies in in this context. Non-coding RNAs (ncRNAs) have been shown to exert critical function in the regulation of cellular processes that are involved in the EMT. These processes include regulation of some transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, modulation of chromatin configuration, alternative splicing, and protein stability and subcellular location of proteins. In the present paper, we describe the influence of ncRNAs including microRNAs and long non-coding RNAs in the EMT process and their application as biomarkers for this process and cancer progression and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Marcel E. Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Hu Y, Lou J, Jin Z, Yang X, Shan W, Du Q, Liao Q, Xu J, Xie R. Advances in research on the regulatory mechanism of NHE1 in tumors. Oncol Lett 2021; 21:273. [PMID: 33717270 PMCID: PMC7885159 DOI: 10.3892/ol.2021.12534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Tumors pose a major threat to human health and present with difficulties that modern medicine has yet to overcome. It has been demonstrated that the acid-base balance of the tumor microenvironment is closely associated with the dynamic balance in the human body and that it regulates several processes, such as cell proliferation and differentiation, intracellular enzyme activity, and cytoskeletal assembly and depolymerization. It has been well established that the regulation of intra- and extracellular pH depends on a series of functional ion transporters and hydrogen ion channels, such as the Na+/H+ exchanger (NHE) protein and thee Cl/HCO3- exchange protein, among which the NHE1 member of the NHE family has been attracting increasing attention in recent years, particularly in studies on the correlation between pH regulation and tumors. NHE1 is a housekeeping gene encoding a protein that is widely expressed on the surface of all plasma membranes. Due to its functional domain, which determines the pHi at its N-terminus and C-terminus, NHE1 is involved in the regulation of the cellular pH microenvironment. It has been reported in the literature that NHE1 can regulate cell volume, participate in the transmembrane transport of intracellular and extracellular ions, affect cell proliferation and apoptosis, and regulate cell behavior and cell cycle progression; however, research on the role of NHE1 in tumorigenesis and tumor development in various systems is at its early stages. The aim of the present study was to review the current research on the correlation between the NHE family proteins and various systemic tumors, in order to indicate a new direction for antitumor drug development with the pH microenvironment as the target.
Collapse
Affiliation(s)
- Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
41
|
Wang G, Cruz AS, Youker K, Marcos-Abdala HG, Thandavarayan RA, Cooke JP, Torre-Amione G, Chen K, Bhimaraj A. Role of Endothelial and Mesenchymal Cell Transitions in Heart Failure and Recovery Thereafter. Front Genet 2021; 11:609262. [PMID: 33584806 PMCID: PMC7874124 DOI: 10.3389/fgene.2020.609262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Mechanisms of myocardial recovery are not well elucidated. Methods: 3-month-old C57/BL6 mice were treated with Angiotensin-II infusion and N (w)-nitro-L-arginine methyl ester in drinking water to induce HF at 5 weeks. These agents were discontinued, and animals studied with echocardiographic, histological and genetic assessment every 2 weeks until week 19. mRNA was extracted from these samples and human pre-post LVAD samples. Results: Histologic and echo characteristics showed progressive worsening of cardiac function by week 5 and normalization by week 19 accompanied by normalization of the transcriptional profile. Expression of 1,350 genes were upregulated and 3,050 genes down regulated in HF compared to controls; during recovery, this altered gene expression was largely reversed. We focused on genes whose expression was altered during HF but reverted to control levels by Week 19. A gene ontology (GO) analysis of this cohort of genes implicated pathways involved in EndoMT and MEndoT. The cohort of genes that were differentially regulated in heart failure recovery in the murine model, were similarly regulated in human myocardial samples obtained pre- and post-placement of a left ventricular assist device (LVAD). Human end stage HF myocardial samples showed cells with dual expressed VE-Cadherin and FSP-1 consistent with cell fate transition. Furthermore, we observed a reduction in fibrosis, and an increase in endothelial cell density, in myocardial samples pre- and post-LVAD. Conclusions: Cell fate transitions between endothelial and mesenchymal types contribute to the pathophysiology of heart failure followed by recovery.
Collapse
Affiliation(s)
- Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, United States.,Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States
| | - Ana Sofia Cruz
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Keith Youker
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Hernan G Marcos-Abdala
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| | - John P Cooke
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States
| | - Guillermo Torre-Amione
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, Mexico
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, United States.,Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States
| | - Arvind Bhimaraj
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
42
|
Landeros N, Santoro PM, Carrasco-Avino G, Corvalan AH. Competing Endogenous RNA Networks in the Epithelial to Mesenchymal Transition in Diffuse-Type of Gastric Cancer. Cancers (Basel) 2020; 12:cancers12102741. [PMID: 32987716 PMCID: PMC7598708 DOI: 10.3390/cancers12102741] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The diffuse-type of gastric cancer is associated with epithelial to mesenchymal transition. Loss of E-cadherin expression is the hallmark of this process and is largely due to the upregulation of the transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, miRNA and lncRNAs can also participate through these transcription factors which directly target E-cadherin. The competing endogenous RNA (ceRNA) network hypothesis state that lncRNA can sponge the miRNA pool that targets these transcripts. Based on the lack of said networks in the epithelial to mesenchymal transition, we performed a prediction analysis that resulted in novel ceRNA networks which will expand our knowledge of the molecular basis of the diffuse-type of gastric cancer. Abstract The diffuse-type of gastric cancer (DGC), molecularly associated with epithelial to mesenchymal transition (EMT), is increasing in incidence. Loss of E-cadherin expression is the hallmark of the EMT process and is largely due to the upregulation of the EMT-inducing transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, ncRNA, such as miRNA and lncRNAs, can also participate in the EMT process through the direct targeting of E-cadherin and other EMT-inducing transcription factors. Additionally, lncRNA can sponge the miRNA pool that targets these transcripts through competing endogenous RNA (ceRNA) networks. In this review, we focus on the role of ncRNA in the direct deregulation of E-cadherin, as well as EMT-inducing transcription factors. Based on the relevance of the ceRNA network hypothesis, and the lack of said networks in EMT, we performed a prediction analysis for all miRNAs and lncRNAs that target E-cadherin, as well as EMT-inducing transcription factors. This analysis resulted in novel predicted ceRNA networks for E-cadherin and EMT-inducing transcription factors (EMT-TFs), as well as the expansion of the molecular basis of the DGC.
Collapse
Affiliation(s)
- Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Pablo M. Santoro
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Gonzalo Carrasco-Avino
- Department of Pathology, Hospital Clinico Universidad de Chile and Clinica Las Condes, Santiago 7550000, Chile;
| | - Alejandro H. Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-2235-48289
| |
Collapse
|
43
|
D'Angelo E, Lindoso RS, Sensi F, Pucciarelli S, Bussolati B, Agostini M, Collino F. Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment. Front Oncol 2020; 10:1122. [PMID: 32793478 PMCID: PMC7393251 DOI: 10.3389/fonc.2020.01122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine–REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Sensi
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Salvatore Pucciarelli
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Benedetta Bussolati
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marco Agostini
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda, IRCCS Policlinico di Milano, Milan, Italy
| |
Collapse
|
44
|
Differential regulation of lineage commitment in human and mouse primed pluripotent stem cells by the nucleosome remodelling and deacetylation complex. Stem Cell Res 2020; 46:101867. [PMID: 32535494 PMCID: PMC7347010 DOI: 10.1016/j.scr.2020.101867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Differentiation of mammalian pluripotent cells involves large-scale changes in transcription and, among the molecules that orchestrate these changes, chromatin remodellers are essential to initiate, establish and maintain a new gene regulatory network. The Nucleosome Remodelling and Deacetylation (NuRD) complex is a highly conserved chromatin remodeller which fine-tunes gene expression in embryonic stem cells. While the function of NuRD in mouse pluripotent cells has been well defined, no study yet has defined NuRD function in human pluripotent cells. Here we find that while NuRD activity is required for lineage commitment from primed pluripotency in both human and mouse cells, the nature of this requirement is surprisingly different. While mouse embryonic stem cells (mESC) and epiblast stem cells (mEpiSC) require NuRD to maintain an appropriate differentiation trajectory as judged by gene expression profiling, human induced pluripotent stem cells (hiPSC) lacking NuRD fail to even initiate these trajectories. Further, while NuRD activity is dispensable for self-renewal of mESCs and mEpiSCs, hiPSCs require NuRD to maintain a stable self-renewing state. These studies reveal that failure to properly fine-tune gene expression and/or to reduce transcriptional noise through the action of a highly conserved chromatin remodeller can have different consequences in human and mouse pluripotent stem cells.
Collapse
|
45
|
PTK7 promotes the malignant properties of cancer stem-like cells in esophageal squamous cell lines. Hum Cell 2020; 33:356-365. [PMID: 31894477 DOI: 10.1007/s13577-019-00309-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023]
Abstract
This study was performed to investigate the role of PTK7 in esophageal squamous cell carcinoma (ESCC) stem-like cells (CSCs). PTK7 expression in ESCCs identified by RT-qPCR, and CSC-like cells were isolated from populations of NEC and TE-1 cells. The CSC-like cells were verified by flow cytometric analyses performed using CD34 and CD133 antibodies, and RT-qPCR and western blot assays were used to examine the self-renewal capability of CSC-like cells. CSC-like cells treated with PTK7 siRNA or a P53-specific inhibitor (PFTα) were analyzed for their sphere formation capacity and their apoptosis and migration/invasion capabilities by sphere formation, flow cytometry, and transwell assay, respectively. Their levels of P53, MKK3, and cleaved caspase 3 expression were examined by western blot analysis. Our results revealed that a majority of the isolated CSC-like cells were CD34+/CD133+ double positive cells. Nango, Sox2, and OCT4 were dramatically increased in the separated CSC-like cells, which had the pluripotency and self-renewal properties of stem cells. Additional, PTK7 was dramatically upregulated in the ESCC tissues and CSC-like cells. An investigation of the function of CSC-like cells revealed that knockdown of PTK7 reduced their sphere formation, promoted apoptosis, and suppressed their migration and invasion abilities, all of which could be significantly reversed by PFTα. Mechanistic studies showed that PFTα could attenuate the upregulation of P53, MKK3, and cleaved caspase 3 expression that was induced by PTK7 knockdown in CSC-like cells. PTK7 increased the malignant behaviors of CSC-like cells derived from ESCC cells by regulating p53. Therefore, this study suggests PTK7 as an underlying target for therapy against ESCC.
Collapse
|
46
|
Wang L, Xu C, Liu X, Yang Y, Cao L, Xiang G, Liu F, Wang S, Liu J, Meng Q, Jiao J, Niu Y. TGF-β1 stimulates epithelial-mesenchymal transition and cancer-associated myoepithelial cell during the progression from in situ to invasive breast cancer. Cancer Cell Int 2019; 19:343. [PMID: 31889895 PMCID: PMC6923856 DOI: 10.1186/s12935-019-1068-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
Background The progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC) is prevented by normal breast myoepithelial cells. Studies have suggested that EMT-associated genes were enriched in IDC in contrast to DCIS. This paper explored the relationship and potential mechanism between myoepithelial cells and EMT-associated genes in facilitating the transformation from DCIS to breast cancer. Methods EMT markers and myoepithelial phenotypic markers in IDC, DCIS, and healthy breast tissue were characterized using immunohistochemical assay. Both in vivo and in vitro models were created to mimic the various cell–cell interactions in the development of invasive breast cancer. Results We found that EMT markers were more abundant in invasive carcinomas than DCIS and adjacent normal breast tissue. Meanwhile, TGF-β1 regulated the morphology of MCF-7 (epithelial cells substitute) migration and EMT markers during the transformation from DCIS to invasive breast cancer. Additionally, TGF-β1 also regulated invasion, migration and cytokines secretion of MDA-MB-231 (myoepithelial cells substitute) and epithelial cells when co-cultured with MCF-7 both in vitro and in vivo. Conclusions In conclusion, these findings demonstrated that both EMT phenotypes and cancer-associated myoepithelial cells may have an impact on the development of invasive breast cancer.
Collapse
Affiliation(s)
- Li Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,2The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Cong Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Xia Liu
- 5Department of Oncology, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Yang Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Lu Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Guomin Xiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Fang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Shuling Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,4Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Jing Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Qingxiang Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Jiao Jiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Yun Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| |
Collapse
|
47
|
Lin CL, Jou IM, Wu CY, Kuo YR, Yang SC, Lee JS, Tu YK, Chen SC, Huang YH. Topically Applied Cross-Linked Hyaluronan Attenuates the Formation of Spinal Epidural Fibrosis in a Swine Model of Laminectomy. Sci Rep 2019; 9:14613. [PMID: 31601849 PMCID: PMC6787060 DOI: 10.1038/s41598-019-50882-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Epidural fibrosis is an inevitable aspect of the postoperative healing process which is one of the causes of failed back surgery syndrome following spinal surgery. The aim of the present study was to examine the inhibitory effect of 1,4-butanediol diglycidyl ether-crosslinked hyaluronan (cHA) on spinal epidural fibrosis in a swine model. Epidural fibrosis was induced through conduction of hemi-laminotomy (L2 and L3) or laminectomy (L4 and L5), while L1 was assigned as the control group in six pigs. The cHA was applied to L3 and L5 surgical sites. MRI evaluation, histologic examination, expressions of matrix metalloproteinases (MMPs), and cytokines in scar tissue were assessed four months after surgery. cHA treatment significantly decreased the scar formation in both hemi-laminotomy and laminectomy sites. cHA also significantly increased MMP-3 and MMP-9 expression in scar tissue. Further, the epithelial-mesenchymal transition -related factors (transforming growth factor-β and vimentin) were suppressed and the anti-inflammatory cytokines (CD44 and interleukin-6) were increasingly expressed in cHA-treated sites. The current study demonstrated that cHA may attenuate spinal epidural fibrosis formation after laminectomy surgery by enhancing the expression of MMPs and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Skeleton Materials and Bio-compatibility Core Lab, Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Yi Wu
- Department of Orthopedics, Chia Yi Christian Hospital, Chia Yi, Taiwan
| | - Yuh-Ruey Kuo
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Yang
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | | | - Yi-Hung Huang
- Department of Orthopedics, Chia Yi Christian Hospital, Chia Yi, Taiwan. .,Department of sports management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan.
| |
Collapse
|
48
|
Liu H, Wan J, Chu J. Long non-coding RNAs and endometrial cancer. Biomed Pharmacother 2019; 119:109396. [PMID: 31505425 DOI: 10.1016/j.biopha.2019.109396] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies. In spite of the advance in chemotherapy, radiotherapy or surgical techniques for EC in recent years, the survival rate of advanced stage EC patients remains unsatisfactory. Long non-coding RNAs (lncRNAs) are known as transcripts longer than 200 nucleotides exhibiting no or limited protein-coding potential. Growing evidence suggested lncRNAs may be a critical class of pervasive genes involved in cancer progression. However, the function and biological relevance between lncRNAs and EC remain not yet fully understood. Accumulating evidence has indicated that lncRNAs are dysregulated in EC, and closely related to tumorigenesis, metastasis and chemoresistance. In this review, we summarize the known regulation and functional roles of lncRNAs in EC. Besides, we will discuss the potential of lncRNAs as diagnostic biomarkers and therapeutic targets in EC.
Collapse
Affiliation(s)
- Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Jie Chu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| |
Collapse
|
49
|
Su YK, Bamodu OA, Tzeng YM, Hsiao M, Yeh CT, Lin CM. Ovatodiolide inhibits the oncogenicity and cancer stem cell-like phenotype of glioblastoma cells, as well as potentiate the anticancer effect of temozolomide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152840. [PMID: 31035045 DOI: 10.1016/j.phymed.2019.152840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/08/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ovatodiolide (Ova), a major bioactive diterpenoid isolate of Anisomeles indica has drawn considerable attention lately as an effective anticancer agent with several published works demonstrating its tumor-inhibitory activity in various cancer types. PURPOSE In this study, we examined the modulatory effect of Ova on the oncogenicity, proliferation, and cancer stem cell-like traits of glioblastoma (GBM) cells, as well as investigated the underlying molecular mechanism for the anticancer activity of Ova in GBM cell lines, U-87MG and GBM8401. METHODS The antiproliferative, apoptotic, and stemness-attenuating effects of Ova were evaluated using the sulforhodamine B (SRB) colorimetric assay, western blot and fluorescent immunocytochemistry. Cell apoptosis was analyzed based on variation in the expression levels of Bcl-2 family of regulator proteins Bax, Bak, Bcl-2 and Bcl-xL. RESULTS Ova induced the apoptosis of the U-87MG and GBM8401 cells, as well as effectively inhibited the proliferation and motility of the GBM cell lines in a dose- and time-dependent manner. Ova-induced apoptosis correlated with increased Bax/Bcl-2 ratio, while inhibition of tumor cell migration and colony formation was associated with reduced Slug, Vimentin, NCadherin and β-catenin protein expression and increased E-Cadherin. In addition, exposure to Ova inhibited tumorsphere formation, elicited downregulation of CD44, CD133, Sox2, and Oct4, as well as correlated with dysregulation of the JAK2-STAT3 signaling pathway. Furthermore, we showed for the first time to the best of our knowledge that Ova potentiate the chemotherapeutic effect of Temozolomide. CONCLUSION Taken together, our findings demonstrate the anticancer potential of Ova in GBM and its efficacy in the treatment of GBM as monotherapy and in combination with Temozolomide.
Collapse
Affiliation(s)
- Yu-Kai Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Yew-Min Tzeng
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Chien-Min Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Wang H, Zhu Y, Chi Y, Dong S. A human embryonic stem cell-based model for benzo[a]pyrene-induced embryotoxicity. Reprod Toxicol 2019; 85:26-33. [DOI: 10.1016/j.reprotox.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|