1
|
Trujillo-Paez JV, Jacobo-Delgado YM, Felix-Arellano C, Rodriguez-Carlos A, Gonzalez-Curiel I, Gonzalez-Muñiz O, Rivas-Santiago B. Optimizing thrombospondin function through repositioning: Implications for injury and diabetic foot ulcer management. Tissue Cell 2025; 96:102987. [PMID: 40412107 DOI: 10.1016/j.tice.2025.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Diabetic foot ulcer (DFU) is a common and challenging complication of diabetes, characterized by impaired wound healing, chronic inflammation, poor tissue remodeling, and chronic inflammation. Thrombospondin 1 (TSP1) and thrombospondin 4 (TSP4) are key extracellular matrix proteins involved in wound healing. This study aimed to assess the levels and propose inducers of TSP1, TSP4, and SOD3 in diabetic foot ulcer. In this study, we first evaluated the expression of TSP1, TSP4, and superoxide dismutase 3 (SOD3) in DFU tissues using real-time PCR and immunohistochemistry. In DFU tissues using real-time PCR we found that TSP-4 expression was significantly reduced and confirmed by immunohistochemistry. TSP1 expression did not show similar alterations. Additionally, while SOD3 expression was decreased at the mRNA level in the diabetic population, no changes were observed in the protein levels by immunohistochemistry. To explore potential therapeutic approaches, we performed pharmacological repositioning and identified three drugs riboflavin, desloratadine, and chenodeoxycholic acid that selectively increased TSP-4 expression. These findings suggest that riboflavin, desloratadine, and chenodeoxycholic acid may promote wound healing in DFU by specifically upregulating TSP4, potentially enhancing tissue remodeling and angiogenesis.
Collapse
Affiliation(s)
- Juan Valentin Trujillo-Paez
- CONAHCYT-Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Zacatecas, Mexico; Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - Yolanda M Jacobo-Delgado
- Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - Camelia Felix-Arellano
- Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - Adrian Rodriguez-Carlos
- Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - Irma Gonzalez-Curiel
- Laboratorio de Inmunotoxicología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara km 6, Col. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Oscar Gonzalez-Muñiz
- Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Zacatecas, Mexico.
| |
Collapse
|
2
|
Włodarski A, Szymczak-Pajor I, Kasznicki J, Antanaviciute EM, Szymańska B, Śliwińska A. Dysregulated miR-21/SOD3, but Not miR-30b/CAT, Profile in Elderly Patients with Carbohydrate Metabolism Disorders: A Link to Oxidative Stress and Metabolic Dysfunction. Int J Mol Sci 2025; 26:4127. [PMID: 40362367 PMCID: PMC12071572 DOI: 10.3390/ijms26094127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Carbohydrate metabolism disorders (CMDs), including prediabetes and type 2 diabetes mellitus (T2DM), are increasingly prevalent in the aging population. Oxidative stress (OxS) plays a pivotal role in CMD pathogenesis, with extracellular superoxide dismutase (SOD3) and catalase (CAT) serving as critical antioxidant defenses. Additionally, microRNAs (miR-21 and miR-30b) regulate the oxidative and inflammatory pathways, yet their roles in elderly CMD patients remain unclear. This study evaluated miR-21 and miR-30b expression alongside SOD3 and CAT plasma levels in individuals aged ≥ 65 years (n = 126) categorized into control (n = 38), prediabetes (n = 37), and T2DM (n = 51) groups. Quantitative PCR assessed miRNA expression, while ELISA measured the enzyme levels. SOD3 levels were significantly reduced in CMDs, particularly in T2DM, whereas miR-21 was upregulated. A negative correlation between SOD3 and miR-21 was strongest in T2DM, suggesting a regulatory interplay. Neither CAT levels nor miR-30b expression differed among groups. Logistic regression indicated SOD3 as a protective biomarker, with each 1 ng/mL increase reducing the CMD risk by ~5-6%. The ROC analysis supported SOD3's diagnostic potential, while miR-21 showed a modest association. These findings highlight SOD3 downregulation and miR-21 upregulation as potential contributors to CMD progression in elderly patients, warranting further research into their mechanistic roles and therapeutic potential.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Egle Morta Antanaviciute
- Centre for Cellular Microenvironments, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bożena Szymańska
- CoreLab, Central Scientific Laboratory of the Medical University of Lodz, Mazowiecka 6/8 St., 92-215 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| |
Collapse
|
3
|
Zemski Berry KA, Garfield A, Jambal P, Zarini S, Perreault L, Bergman BC. Oxidised phosphatidylcholine induces sarcolemmal ceramide accumulation and insulin resistance in skeletal muscle. Diabetologia 2024; 67:2819-2832. [PMID: 39347985 DOI: 10.1007/s00125-024-06280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024]
Abstract
AIMS/HYPOTHESIS Intracellular ceramide accumulation in specific cellular compartments is a potential mechanism explaining muscle insulin resistance in the pathogenesis of type 2 diabetes. Muscle sarcolemmal ceramide accumulation negatively impacts insulin sensitivity in humans, but the mechanism explaining this localised accumulation is unknown. Previous reports revealed that circulating oxidised LDL is elevated in serum of individuals with obesity and type 2 diabetes. Oxidised phosphatidylcholine, which is present in oxidised LDL, has previously been linked to ceramide pathway activation, and could contribute to localised ceramide accumulation in skeletal muscle. We hypothesised that oxidised phosphatidylcholine inversely correlates with insulin sensitivity in serum, and induces sarcolemmal ceramide accumulation and decreases insulin sensitivity in muscle. METHODS We used LC-MS/MS to quantify specific oxidised phosphatidylcholine species in serum from a cross-sectional study of 58 well-characterised individuals spanning the physiological range of insulin sensitivity. We also performed in vitro experiments in rat L6 myotubes interrogating the role of specific oxidised phosphatidylcholine species in promoting sarcolemmal ceramide accumulation, inflammation and insulin resistance in skeletal muscle cells. RESULTS Human serum oxidised phosphatidylcholine levels are elevated in individuals with obesity and type 2 diabetes, inversely correlated with insulin sensitivity, and positively correlated with sarcolemmal C18:0 ceramide levels in skeletal muscle. Specific oxidised phosphatidylcholine species, particularly 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), increase total ceramide and dihydroceramide and decrease total sphingomyelin in the sarcolemma of L6 myotubes by de novo ceramide synthesis and sphingomyelinase activation. POVPC also increases inflammatory signalling and causes insulin resistance in L6 myotubes. CONCLUSIONS/INTERPRETATION These data suggest that circulating oxidised phosphatidylcholine species promote ceramide accumulation and decrease insulin sensitivity in muscle, help explain localised sphingolipid accumulation and muscle inflammatory response, and highlight oxidised phosphatidylcholine species as potential targets to combat insulin resistance.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Purevsuren Jambal
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Gallegos-Arreola MP, Garibaldi-Ríos AF, Magaña-Torres MT, Figuera LE, Gómez-Meda BC, Zúñiga-González GM, Puebla-Pérez AM, Carrillo-Dávila IA, Rosales-Reynoso MA, Dávalos-Rodríguez IP, Delgado-Saucedo JI, López-Monroy MU. Association Between the rs13306703 and rs8192288 Variants of the SOD3 Gene and Breast Cancer and an In Silico Analysis of the Variants' Impact. Diseases 2024; 12:276. [PMID: 39589950 PMCID: PMC11592857 DOI: 10.3390/diseases12110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: This study investigated the association between the rs13306703 and rs8192288 variants of the superoxide dismutase 3 (SOD3) gene and breast cancer (BC) in the Mexican population, conducting both genetic and in silico analyses. Methods: 357 healthy women and 386 BC patients were studied using TaqMan assays, qPCR, and RFLP-PCR. Results: The TT genotype and a recessive pattern of these variants were risk factors for BC (p < 0.05). Specifically, the TT genotype of rs13306703 was associated with metastatic lymph nodes, tumor progression (III-IV), luminal A, nonresponse to chemotherapy, and ki-67 ≥ 20% with diabetes mellitus (DM). Meanwhile, the GT genotype of rs8192288 was associated with menopause, luminal A, tumor progression (III-IV), ki-67 ≥ 20%, and a positive estrogen receptor with nonresponse to chemotherapy. Additionally, the TT genotype combined with DM was identified as a BC risk factor (p < 0.05). The TT haplotype was also found to be a risk factor for BC. In silico analysis suggested that these variants might influence SOD3 regulation by affecting transcription factors and active enhancer sites. Conclusions: The rs13306703 and rs8192288 variants of the SOD3 gene were associated with an increased risk of BC and may alter SOD3 regulation through effects on transcription factors, active enhancers, and transcription start sites, with modified motifs in breast epithelium cells.
Collapse
Affiliation(s)
- Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (M.T.M.-T.); (L.E.F.); (I.A.C.-D.); (I.P.D.-R.)
| | - Asbiel Felipe Garibaldi-Ríos
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (M.T.M.-T.); (L.E.F.); (I.A.C.-D.); (I.P.D.-R.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - María Teresa Magaña-Torres
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (M.T.M.-T.); (L.E.F.); (I.A.C.-D.); (I.P.D.-R.)
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (M.T.M.-T.); (L.E.F.); (I.A.C.-D.); (I.P.D.-R.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Belinda Claudia Gómez-Meda
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Guillermo Moisés Zúñiga-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (G.M.Z.-G.); (M.A.R.-R.)
| | - Ana María Puebla-Pérez
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (J.I.D.-S.)
| | - Irving Alejandro Carrillo-Dávila
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (M.T.M.-T.); (L.E.F.); (I.A.C.-D.); (I.P.D.-R.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mónica Alejandra Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (G.M.Z.-G.); (M.A.R.-R.)
| | - Ingrid Patricia Dávalos-Rodríguez
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (M.T.M.-T.); (L.E.F.); (I.A.C.-D.); (I.P.D.-R.)
| | - Jorge I. Delgado-Saucedo
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (J.I.D.-S.)
| | - Marco Uriel López-Monroy
- Maestría en Ciencias en Química, Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Química, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| |
Collapse
|
5
|
Maalmi H, Nguyen PBH, Strom A, Bönhof GJ, Rathmann W, Ziegler D, Menden MP, Roden M, Herder C, GDS Group. Prediction Model for Polyneuropathy in Recent-Onset Diabetes Based on Serum Neurofilament Light Chain, Fibroblast Growth Factor-19 and Standard Anthropometric and Clinical Variables. Diabetes Metab Res Rev 2024; 40:e70009. [PMID: 39601435 PMCID: PMC11601145 DOI: 10.1002/dmrr.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Diabetic sensorimotor polyneuropathy (DSPN) is often asymptomatic and remains undiagnosed. The ability of clinical and anthropometric variables to identify individuals likely to have DSPN might be limited. Here, we aimed to integrate protein biomarkers for reliably predicting present DSPN. METHODS Using the proximity extension assay, we measured 135 neurological and protein biomarkers of inflammation in blood samples of 423 individuals with recent-onset diabetes from the German Diabetes Study (GDS). DSPN was diagnosed based on the Toronto Consensus Criteria. We constructed (i) a protein-based prediction model using LASSO logistic regression, (ii) an optimised traditional risk model with age, sex, waist circumference, height and diabetes type and (iii) a model combining both. All models were bootstrapped to assess the robustness, and optimism-corrected AUCs (95% CI) were reported. RESULTS DSPN was present in 16% of the study population. LASSO logistic regression selected the neurofilament light chain (NFL) and fibroblast growth factor-19 (FGF-19) as the most predictive protein biomarkers for detecting DSPN in individuals with recent-onset diabetes. The protein-based model achieved an AUC of 0.66 (0.59, 0.73), while the traditional risk model had an AUC of 0.66 (0.61, 0.74). However, combined features boosted the model performance to an AUC of 0.72 (0.67, 0.79). CONCLUSION We developed a prediction model for DSPN in recent-onset diabetes based on two protein biomarkers and five standard anthropometric, demographic and clinical variables. The model has a fair discrimination performance and might be used to inform the referral of patients for further testing.
Collapse
Affiliation(s)
- Haifa Maalmi
- Institute for Clinical DiabetologyGerman Diabetes Center (Deutsches Diabetes‐Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Phong B. H. Nguyen
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Computational HealthHelmholtz Center MunichNeuherbergGermany
- Department of BiologyLudwig‐Maximilians University MunichMartinsriedGermany
| | - Alexander Strom
- Institute for Clinical DiabetologyGerman Diabetes Center (Deutsches Diabetes‐Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Gidon J. Bönhof
- Institute for Clinical DiabetologyGerman Diabetes Center (Deutsches Diabetes‐Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Endocrinology and DiabetologyMedical Faculty and University Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Institute for Biometrics and EpidemiologyGerman Diabetes Center (Deutsches Diabetes‐Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Dan Ziegler
- Institute for Clinical DiabetologyGerman Diabetes Center (Deutsches Diabetes‐Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Endocrinology and DiabetologyMedical Faculty and University Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Michael P. Menden
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Computational HealthHelmholtz Center MunichNeuherbergGermany
- Department of BiologyLudwig‐Maximilians University MunichMartinsriedGermany
| | - Michael Roden
- Institute for Clinical DiabetologyGerman Diabetes Center (Deutsches Diabetes‐Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Endocrinology and DiabetologyMedical Faculty and University Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Christian Herder
- Institute for Clinical DiabetologyGerman Diabetes Center (Deutsches Diabetes‐Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Endocrinology and DiabetologyMedical Faculty and University Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | | |
Collapse
|
6
|
Didangelos T, Karlafti E, Kotzakioulafi E, Giannoulaki P, Kontoninas Z, Kontana A, Evripidou P, Savopoulos C, Birkenfeld AL, Kantartzis K. Efficacy and Safety of the Combination of Palmitoylethanolamide, Superoxide Dismutase, Alpha Lipoic Acid, Vitamins B12, B1, B6, E, Mg, Zn and Nicotinamide for 6 Months in People with Diabetic Neuropathy. Nutrients 2024; 16:3045. [PMID: 39339645 PMCID: PMC11434759 DOI: 10.3390/nu16183045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AIM To investigate the efficacy of Palmitoylethanolamide (PEA, 300 mg), Superoxide Dismutase (SOD, 70 UI), Alpha Lipoic Acid (ALA, 300 mg), vitamins B6 (1.5 mg), B1 (1.1 mg), B12 (2.5 mcg), E (7.5 mg), nicotinamide (9 mg), and minerals (Mg 30 mg, Zn 2.5 mg) in one tablet in people with Diabetic Neuropathy (DN). PATIENTS-METHODS In the present pilot study, 73 people (age 63.0 ± 9.9 years, 37 women) with type 2 Diabetes Mellitus (DMT2) (duration 17.5 ± 7.3 years) and DN were randomly assigned to receive either the combination of ten elements (2 tablets/24 h) in the active group (n = 36) or the placebo (n = 37) for 6 months. We used the Michigan Neuropathy Screening Instrument Questionnaire and Examination (MNSIQ and MNSIE), measured vibration perception threshold (VPT) with biothesiometer, and Cardiovascular Autonomic Reflex Tests (CARTs). Nerve function was assessed by DPN Check [sural nerve conduction velocity (SNCV) and amplitude (SNAP)]. Sudomotor function was assessed with SUDOSCAN, which measures electrochemical skin conductance in hands and feet (ESCH and ESCF). Pain score (PS) was assessed with Pain DETECT questionnaire. Quality of life was assessed by questionnaire. RESULTS In the active group, there was a large improvement of pain (PS from 20.9 to 13.9, p < 0.001). There was also a significant improvement of vitamin B12 (B12) levels, MNSIQ, SNCV, VPT, and ESCF (222.1 vs. 576.3 pg/ mL, p < 0.001; 6.1 vs. 5.9, p = 0.017; 28.8 vs. 30.4, p = 0.001; 32.1 vs. 26.7, p = 0.001; and 72.2 vs. 74.8, p < 0.001 respectively). In the placebo group, neither pain (21.6 vs. 21.7, p = 0.870) or any other aforementioned parameters changed significantly, and MNSIE worsened (2.9 vs. 3.4, p < 0.001). As a result, changes from baseline to follow-up in pain, B12 levels, VPT, and MNSIQ differed significantly between the two groups (p < 0.001, 0.025, 0.009, and <0.001, respectively). CARTs, SNAP, ESCH did not significantly change in either of the two groups. CONCLUSIONS The combination of the ten elements in one tablet for 6 months at a daily dose of two tablets in people with DN significantly improves pain, vibration perception threshold, and B12 levels.
Collapse
Affiliation(s)
- Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Eleni Karlafti
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Parthena Giannoulaki
- Department of Clinical Nutrition and Dietetics, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | - Zisis Kontoninas
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Anastasia Kontana
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Polykarpos Evripidou
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Christos Savopoulos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany; (A.L.B.); (K.K.)
- Institute for Diabetes Research and Metabolic Diseases (IDM), Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Konstantinos Kantartzis
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany; (A.L.B.); (K.K.)
- Institute for Diabetes Research and Metabolic Diseases (IDM), Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
7
|
Mei J, Li Y, Niu L, Liang R, Tang M, Cai Q, Xu J, Zhang D, Yin X, Liu X, Shen Y, Liu J, Xu M, Xia P, Ling J, Wu Y, Liang J, Zhang J, Yu P. SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system. Transl Neurodegener 2024; 13:41. [PMID: 39123214 PMCID: PMC11312905 DOI: 10.1186/s40035-024-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
The rising prevalence of diabetes mellitus has casted a spotlight on one of its significant sequelae: cognitive impairment. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for diabetes management, are increasingly studied for their cognitive benefits. These benefits may include reduction of oxidative stress and neuroinflammation, decrease of amyloid burdens, enhancement of neuronal plasticity, and improved cerebral glucose utilization. The multifaceted effects and the relatively favorable side-effect profile of SGLT2 inhibitors render them a promising therapeutic candidate for cognitive disorders. Nonetheless, the application of SGLT2 inhibitors for cognitive impairment is not without its limitations, necessitating more comprehensive research to fully determine their therapeutic potential for cognitive treatment. In this review, we discuss the role of SGLT2 in neural function, elucidate the diabetes-cognition nexus, and synthesize current knowledge on the cognitive effects of SGLT2 inhibitors based on animal studies and clinical evidence. Research gaps are proposed to spur further investigation.
Collapse
Affiliation(s)
- Jiaqi Mei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Yi Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Liyan Niu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Ruikai Liang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyue Tang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiao Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Cheng Y, Chen Y, Li K, Liu S, Pang C, Gao L, Xie J, Wenjing LV, Yu H, Deng B. How inflammation dictates diabetic peripheral neuropathy: An enlightening review. CNS Neurosci Ther 2024; 30:e14477. [PMID: 37795833 PMCID: PMC11017439 DOI: 10.1111/cns.14477] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) constitutes a debilitating complication associated with diabetes. Although, the past decade has seen rapid developments in understanding the complex etiology of DPN, there are no approved therapies that can halt the development of DPN, or target the damaged nerve. Therefore, clarifying the pathogenesis of DPN and finding effective treatment are the crucial issues for the clinical management of DPN. AIMS This review is aiming to summary the current knowledge on the pathogenesis of DPN, especially the mechanism and application of inflammatory response. METHODS We systematically summarized the latest studies on the pathogenesis and therapeutic strategies of diabetic neuropathy in PubMed. RESULTS In this seminal review, the underappreciated role of immune activation in the progression of DPN is scrutinized. Novel insights into the inflammatory regulatory mechanisms of DPN have been unearthed, illuminating potential therapeutic strategies of notable clinical significance. Additionally, a nuanced examination of DPN's complex etiology, including aberrations in glycemic control and insulin signaling pathways, is presented. Crucially, an emphasis has been placed on translating these novel understandings into tangible clinical interventions to ameliorate patient outcomes. CONCLUSIONS This review is distinguished by synthesizing cutting-edge mechanisms linking inflammation to DPN and identifying innovative, inflammation-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yifan Cheng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yinuo Chen
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Kezheng Li
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shuwei Liu
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Chunyang Pang
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Lingfei Gao
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiali Xie
- Department of Neurology, Shanghai East HospitalTongji UniversityShanghaiP.R. China
| | - L. V. Wenjing
- Department of GeriatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandong ProvinceChina
| | - Huan Yu
- Department of PediatricsSecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Binbin Deng
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
9
|
Navasardyan I, Yeganyan S, Nguyen H, Vaghashia P, Subbian S, Venketaraman V. Role of Oxidative Stress in Tuberculosis Meningitis Infection in Diabetics. Biomedicines 2023; 11:2568. [PMID: 37761009 PMCID: PMC10526095 DOI: 10.3390/biomedicines11092568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Tuberculosis meningitis (TBM) is a result of the invasion of the meninges with the bacilli of Mycobacterium tuberculosis (Mtb), leading to inflammation of the meninges around the brain or spinal cord. Oxidative stress occurs when the body's cells become overwhelmed with free radicals, particularly reactive oxygen species (ROS). ROS plays a significant role in the pathogenesis of TBM due to their toxic nature, resulting in impairment of the body's ability to fight off infection. ROS damages the endothelial cells and impairs the defense mechanisms of the blood-brain barrier (BBB), which contributes to CNS susceptibility to the bacteria causing TBM. Diabetes mellitus (DM) is a common condition that is characterized by the impairment of the hormone insulin, which is responsible for modulating blood glucose levels. The increased availability of glucose in individuals with diabetes results in increased cellular activity and metabolism, leading to heightened ROS production and, in turn, increased susceptibility to TBM. In this review, we summarize our current understanding of oxidative stress and its role in both TBM and DM. We further discuss how increased oxidative stress in DM can contribute to the likelihood of developing TBM and potential therapeutic approaches that may be of therapeutic value.
Collapse
Affiliation(s)
- Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (I.N.); (S.Y.); (H.N.); (P.V.)
| | - Stephanie Yeganyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (I.N.); (S.Y.); (H.N.); (P.V.)
| | - Helena Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (I.N.); (S.Y.); (H.N.); (P.V.)
| | - Payal Vaghashia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (I.N.); (S.Y.); (H.N.); (P.V.)
| | - Selvakumar Subbian
- Public Health Research Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (I.N.); (S.Y.); (H.N.); (P.V.)
| |
Collapse
|
10
|
Phoswa WN, Mokgalaboni K. Comprehensive Overview of the Effects of Amaranthus and Abelmoschus esculentus on Markers of Oxidative Stress in Diabetes Mellitus. Life (Basel) 2023; 13:1830. [PMID: 37763234 PMCID: PMC10532493 DOI: 10.3390/life13091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The use of medicinal plants in the management of diabetes mellitus (DM) is extensively reported. However, there is still very limited information on the role of these plants as markers of oxidative stress in DM. This current review evaluated the effect of Amaranthus spinosus, Amaranthus hybridus, and Abelmoschus esculentus on markers of oxidative stress in rodent models of DM. Current findings indicate that these plants have the potential to reduce prominent markers of oxidative stress, such as serum malondialdehyde and thiobarbituric acid-reactive substances, while increasing enzymes that act as antioxidants, such as superoxide dismutase, catalase, glutathione, and glutathione peroxidase. This may reduce reactive oxygen species and further ameliorate oxidative stress in DM. Although the potential benefits of these plants are acknowledged in rodent models, there is still a lack of evidence showing their efficacy against oxidative stress in diabetic patients. Therefore, we recommend future clinical studies in DM populations, particularly in Africa, to evaluate the potential effects of these plants. Such studies would contribute to enhancing our understanding of the significance of incorporating these plants into dietary practices for the prevention and management of DM.
Collapse
Affiliation(s)
- Wendy N. Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa;
| | | |
Collapse
|
11
|
Duisenbek A, Lopez-Armas GC, Pérez M, Avilés Pérez MD, Aguilar Benitez JM, Pereira Pérez VR, Gorts Ortega J, Yessenbekova A, Ablaikhanova N, Escames G, Acuña-Castroviejo D, Rusanova I. Insights into the Role of Plasmatic and Exosomal microRNAs in Oxidative Stress-Related Metabolic Diseases. Antioxidants (Basel) 2023; 12:1290. [PMID: 37372020 DOI: 10.3390/antiox12061290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
A common denominator of metabolic diseases, including type 2 diabetes Mellitus, dyslipidemia, and atherosclerosis, are elevated oxidative stress and chronic inflammation. These complex, multi-factorial diseases are caused by the detrimental interaction between the individual genetic background and multiple environmental stimuli. The cells, including the endothelial ones, acquire a preactivated phenotype and metabolic memory, exhibiting increased oxidative stress, inflammatory gene expression, endothelial vascular activation, and prothrombotic events, leading to vascular complications. There are different pathways involved in the pathogenesis of metabolic diseases, and increased knowledge suggests a role of the activation of the NF-kB pathway and NLRP3 inflammasome as key mediators of metabolic inflammation. Epigenetic-wide associated studies provide new insight into the role of microRNAs in the phenomenon of metabolic memory and the development consequences of vessel damage. In this review, we will focus on the microRNAs related to the control of anti-oxidative enzymes, as well as microRNAs related to the control of mitochondrial functions and inflammation. The objective is the search for new therapeutic targets to improve the functioning of mitochondria and reduce oxidative stress and inflammation, despite the acquired metabolic memory.
Collapse
Affiliation(s)
- Ayauly Duisenbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Gabriela C Lopez-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico
| | - Miguel Pérez
- Hospital de Alta Resolución de Alcalá la Real, 23680 Jaén, Spain
| | - María D Avilés Pérez
- Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), University Hospital Clínico San Cecilio, 18016 Granada, Spain
| | | | - Víctor Roger Pereira Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Juan Gorts Ortega
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
12
|
Maalmi H, Strom A, Petrera A, Hauck SM, Strassburger K, Kuss O, Zaharia OP, Bönhof GJ, Rathmann W, Trenkamp S, Burkart V, Szendroedi J, Ziegler D, Roden M, Herder C. Serum neurofilament light chain: a novel biomarker for early diabetic sensorimotor polyneuropathy. Diabetologia 2023; 66:579-589. [PMID: 36472640 PMCID: PMC9892145 DOI: 10.1007/s00125-022-05846-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS No established blood-based biomarker exists to monitor diabetic sensorimotor polyneuropathy (DSPN) and evaluate treatment response. The neurofilament light chain (NFL), a blood biomarker of neuroaxonal damage in several neurodegenerative diseases, represents a potential biomarker for DSPN. We hypothesised that higher serum NFL levels are associated with prevalent DSPN and nerve dysfunction in individuals recently diagnosed with diabetes. METHODS This cross-sectional study included 423 adults with type 1 and type 2 diabetes and known diabetes duration of less than 1 year from the prospective observational German Diabetes Study cohort. NFL was measured in serum samples of fasting participants in a multiplex approach using proximity extension assay technology. DSPN was assessed by neurological examination, nerve conduction studies and quantitative sensory testing. Associations of serum NFL with DSPN (defined according to the Toronto Consensus criteria) were estimated using Poisson regression, while multivariable linear and quantile regression models were used to assess associations with nerve function measures. In exploratory analyses, other biomarkers in the multiplex panel were also analysed similarly to NFL. RESULTS DSPN was found in 16% of the study sample. Serum NFL levels increased with age. After adjustment for age, sex, waist circumference, height, HbA1c, known diabetes duration, diabetes type, cholesterol, eGFR, hypertension, CVD, use of lipid-lowering drugs and use of non-steroidal anti-inflammatory drugs, higher serum NFL levels were associated with DSPN (RR [95% CI] per 1-normalised protein expression increase, 1.92 [1.50, 2.45], p<0.0001), slower motor (all p<0.0001) and sensory (all p≤0.03) nerve conduction velocities, lower sural sensory nerve action potential (p=0.0004) and higher thermal detection threshold to warm stimuli (p=0.023 and p=0.004 for hand and foot, respectively). There was no evidence for associations between other neurological biomarkers and DSPN or nerve function measures. CONCLUSIONS/INTERPRETATION Our findings in individuals recently diagnosed with diabetes provide new evidence associating higher serum NFL levels with DSPN and peripheral nerve dysfunction. The present study advocates NFL as a potential biomarker for DSPN.
Collapse
Affiliation(s)
- Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Agnese Petrera
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Düsseldorf, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Düsseldorf, Germany
- Centre for Health and Society, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC) & Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
13
|
Eglin CM, Wright J, Shepherd AI, Massey H, Hollis S, Towse J, Young JS, Maley MJ, Bailey SJ, Wilkinson C, Montgomery H, Tipton MJ. Plasma biomarkers of endothelial function, inflammation and oxidative stress in individuals with non-freezing cold injury. Exp Physiol 2023; 108:448-464. [PMID: 36808666 PMCID: PMC10988512 DOI: 10.1113/ep090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are biomarkers of endothelial function, oxidative stress and inflammation altered by non-freezing cold injury (NFCI)? What is the main finding and its importance? Baseline plasma [interleukin-10] and [syndecan-1] were elevated in individuals with NFCI and cold-exposed control participants. Increased [endothelin-1] following thermal challenges might explain, in part, the increased pain/discomfort experienced with NFCI. Mild to moderate chronic NFCI does not appear to be associated with either oxidative stress or a pro-inflammatory state. Baseline [interleukin-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosis of NFCI. ABSTRACT Plasma biomarkers of inflammation, oxidative stress, endothelial function and damage were examined in 16 individuals with chronic NFCI (NFCI) and matched control participants with (COLD, n = 17) or without (CON, n = 14) previous cold exposure. Venous blood samples were collected at baseline to assess plasma biomarkers of endothelial function (nitrate, nitrite and endothelin-1), inflammation [interleukin-6 (IL-6), interleukin-10 (IL-10), tumour necrosis factor alpha and E-selectin], oxidative stress [protein carbonyl, 4-hydroxy-2-nonenal (4-HNE), superoxide dismutase and nitrotyrosine) and endothelial damage [von Willebrand factor, syndecan-1 and tissue type plasminogen activator (TTPA)]. Immediately after whole-body heating and separately, foot cooling, blood samples were taken for measurement of plasma [nitrate], [nitrite], [endothelin-1], [IL-6], [4-HNE] and [TTPA]. At baseline, [IL-10] and [syndecan-1] were increased in NFCI (P < 0.001 and P = 0.015, respectively) and COLD (P = 0.033 and P = 0.030, respectively) compared with CON participants. The [4-HNE] was elevated in CON compared with both NFCI (P = 0.002) and COLD (P < 0.001). [Endothelin-1] was elevated in NFCI compared with COLD (P < 0.001) post-heating. The [4-HNE] was lower in NFCI compared with CON post-heating (P = 0.032) and lower than both COLD (P = 0.02) and CON (P = 0.015) post-cooling. No between-group differences were seen for the other biomarkers. Mild to moderate chronic NFCI does not appear to be associated with a pro-inflammatory state or oxidative stress. Baseline [IL-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosing NFCI, but it is likely that a combination of tests will be required.
Collapse
Affiliation(s)
- Clare M. Eglin
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Jennifer Wright
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Anthony I. Shepherd
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Heather Massey
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Sarah Hollis
- Regional Occupational Health Team (ROHT) CatterickCatterick GarrisonUK
| | - Jonathan Towse
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - John S. Young
- National Horizons CentreTeesside UniversityMiddlesbroughUK
| | - Matthew J. Maley
- Environmental Ergonomics Research CentreLoughborough School of Design and Creative ArtsLoughborough UniversityLoughboroughUK
| | - Stephen J. Bailey
- National Centre for Sport and Exercise MedicineSchool of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Chris Wilkinson
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | | | - Michael J. Tipton
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
14
|
Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G, Rocco M, Iadicicco I, Docimo G, Rinaldi L, Sardu C, Salvatore T, Marfella R, Sasso FC. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int J Mol Sci 2023; 24:ijms24043554. [PMID: 36834971 PMCID: PMC9967934 DOI: 10.3390/ijms24043554] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the main microvascular complications of both type 1 and type 2 diabetes mellitus. Sometimes, this could already be present at the time of diagnosis for type 2 diabetes mellitus (T2DM), while it appears in subjects with type 1 diabetes mellitus (T1DM) almost 10 years after the onset of the disease. The impairment can involve both somatic fibers of the peripheral nervous system, with sensory-motor manifestations, as well as the autonomic system, with neurovegetative multiorgan manifestations through an impairment of sympathetic/parasympathetic conduction. It seems that, both indirectly and directly, the hyperglycemic state and oxygen delivery reduction through the vasa nervorum can determine inflammatory damage, which in turn is responsible for the alteration of the activity of the nerves. The symptoms and signs are therefore various, although symmetrical painful somatic neuropathy at the level of the lower limbs seems the most frequent manifestation. The pathophysiological aspects underlying the onset and progression of DN are not entirely clear. The purpose of this review is to shed light on the most recent discoveries in the pathophysiological and diagnostic fields concerning this complex and frequent complication of diabetes mellitus.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Chiara Brin
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-1566-5010
| |
Collapse
|
15
|
L-carnitine Attenuates DNA Damage and Oxidative Stress in Diabetic Animals. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Diabetes is a metabolic disorder characterized by high plasma glucose levels. In this disease, increased production of reactive oxygen species (ROS) results in DNA damage and multiple complications. L-carnitine (LC) has shown a potent antioxidant activity that may reduce oxidative stress. Objectives: This study aims at assaying the effect of LC on DNA damage in streptozotocin-induced diabetic rats and evaluating the changes in antioxidant markers and liver function enzymes after the administration of LC . Methods: In the present study, for induction of diabetes, we injected a single dose of streptozotocin (65 mg/kg) by the intraperitoneal route, and diabetic rats were treated with LC 200, 300, and 400 mg/kg daily for 3 weeks. We detected the DNA damage at 7, 14, and 21 days after induction diabetes by the comet assay method. The blood glucose level, plasma alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were tested. Also, we measured the activity levels of superoxide dismutase (SOD) and intracellular glutathione (GSH). Results: The results of this study demonstrated the increasing amount of DNA damage with the amount and duration of hyperglycemia. L-carnitine treatment significantly decreased the parameters of genotoxicity such as % DNA in the tail, tail length, and tail moment over time. Moreover, the treatment of diabetic rats with LC 300 and 400 mg/kg/day after 21 days led to a remarkable decrease in blood glucose than diabetic rats. Also, we observed that LC can ameliorate enzyme liver function and reduce oxidative stress via enhancement of GSH and SOD levels. Conclusions: The results of this study indicated the protective effect of LC against DNA damage and oxidative stress in diabetic rats.
Collapse
|
16
|
López-Armas GC, Yessenbekova A, González-Castañeda RE, Arellano-Arteaga KJ, Guerra-Librero A, Ablaikhanova N, Florido J, Escames G, Acuña-Castroviejo D, Rusanova I. Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants (Basel) 2022; 11:1675. [PMID: 36139749 PMCID: PMC9495876 DOI: 10.3390/antiox11091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The development of type 2 diabetes mellitus (T2DM) vascular complications (VCs) is associated with oxidative stress and chronic inflammation and can result in endothelial dysfunctions. Circulating microRNAs play an important role in epigenetic regulation of the etiology of T2DM. We studied 30 healthy volunteers, 26 T2DM patients with no complications, and 26 T2DM patients with VCs, to look for new biomarkers indicating a risk of developing VCs in T2DM patients. Peripheral blood samples were used to determine redox state, by measuring the endogenous antioxidant defense system (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; and glucose-6-phosphate dehydrogenase, G6DP) and markers of oxidative damage (advanced oxidation protein products, AOPP; lipid peroxidation, LPO). Additionally, inflammatory marker levels (IL-1, IL-6, IL-18, and TNF-α), c-miR-21, and c-miR-126 expression were analyzed. T2DM patients showed the highest oxidative damage with increased GSSG/GSH ratios, LPO, and AOPP levels. In both diabetic groups, we found that diminished SOD activity was accompanied by increased CAT and decreased GRd and G6PD activities. Diabetic patients presented with increased relative expression of c-miR-21 and decreased relative expression of c-miR-126. Overall, c-miR-21, SOD, CAT, and IL-6 had high predictive values for diabetes diagnoses. Finally, our data demonstrated that IL-6 exhibited predictive value for VC development in the studied population. Moreover, c-miR-21 and c-miR-126, along with GPx and AOPP levels, should be considered possible markers for VC development in future studies.
Collapse
Affiliation(s)
- Gabriela C. López-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Rocío E. González-Castañeda
- Laboratorio de Microscopia de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Kevin J. Arellano-Arteaga
- División de Medicina Interna, Nuevo Hospital Civil Juan I. Menchaca, Universidad de Guadalajara, Salvador Quevedo y Subieta 750, Guadalajara 44340, Mexico
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Javier Florido
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| |
Collapse
|
17
|
Mustapha S, Azemi AK, Wan Ahmad WAN, Rasool AHG, Mustafa MR, Mokhtar SS. Inhibition of Endoplasmic Reticulum Stress Improves Acetylcholine-Mediated Relaxation in the Aorta of Type-2 Diabetic Rats. Molecules 2022; 27:5107. [PMID: 36014347 PMCID: PMC9413505 DOI: 10.3390/molecules27165107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male Sprague-Dawley rats using a high-fat diet and low-dose streptozotocin. Rat aortic tissues were harvested to study endothelial-dependent relaxation. The mechanisms for acetylcholine-mediated relaxation were investigated using pharmacological blockers, Western blotting, oxidative stress, and inflammatory markers. Acetylcholine-mediated relaxation was diminished in the aorta of diabetic rats compared to control rats; supplementation with TUDCA improved relaxation. In the aortas of control and diabetic rats receiving TUDCA, the relaxation was mediated via eNOS/PI3K/Akt, NAD(P)H, and the KATP channel. In diabetic rats, acetylcholine-mediated relaxation involved eNOS/PI3K/Akt and NAD(P)H, but not the KATP channel. The expression of ER stress markers was upregulated in the aorta of diabetic rats and reduced with TUDCA supplementation. The expression of eNOS and Akt were lower in diabetic rats but were upregulated after supplementation with TUDCA. The levels of MDA, IL-6, and SOD activity were higher in the aorta of the diabetic rats compared to control rats. This study demonstrated that endothelial function was impaired in diabetes, however, supplementation with TUDCA improved the function via eNOS/Akt/PI3K, NAD(P)H, and the KATP channel. The improvement of endothelial function was associated with increased expressions of eNOS and Akt. Thus, ER stress plays a crucial role in the impairment of endothelial-dependent relaxation. Mitigating ER stress could be a potential strategy for improving endothelial dysfunction in type-2 diabetes.
Collapse
Affiliation(s)
- Sagir Mustapha
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| |
Collapse
|
18
|
Bönhof GJ, Sipola G, Strom A, Herder C, Strassburger K, Knebel B, Reule C, Wollmann JC, Icks A, Al-Hasani H, Roden M, Kuss O, Ziegler D. BOND study: a randomised double-blind, placebo-controlled trial over 12 months to assess the effects of benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes with symptomatic polyneuropathy. BMJ Open 2022; 12:e057142. [PMID: 35115359 PMCID: PMC8814806 DOI: 10.1136/bmjopen-2021-057142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetic sensorimotor polyneuropathy (DSPN) affects approximately 30% of people with diabetes, while around half of cases are symptomatic. Currently, there are only few pathogenetically oriented pharmacotherapies for DSPN, one of which is benfotiamine, a prodrug of thiamine with a high bioavailability and favourable safety profile. While benfotiamine has shown positive effects in preclinical and short-term clinical studies, no long-term clinical trials are available to demonstrate disease-modifying effects on DSPN using a comprehensive set of disease-related endpoints. METHODS AND ANALYSIS The benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes trial is a randomised double-blind, placebo-controlled parallel group monocentric phase II clinical trial to assess the effects of treatment with benfotiamine compared with placebo in participants with type 2 diabetes and mild to moderate symptomatic DSPN. Sixty participants will be 1:1 randomised to treatment with benfotiamine 300 mg or placebo two times a day over 12 months. The primary endpoint will be the change in corneal nerve fibre length assessed by corneal confocal microscopy (CCM) after 12 months of benfotiamine treatment compared with placebo. Secondary endpoints will include other CCM measures, skin biopsy and function indices, variables from somatic and autonomic nerve function tests, clinical examination and questionnaires, general health, health-related quality of life, cost, safety and blood tests. ETHICS AND DISSEMINATION The trial was approved by the competent authority and the local independent ethics committee. Trial results will be published in peer-reviewed journals, conference abstracts, and via online and print media. TRIAL REGISTRATION NUMBER DRKS00014832.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Gundega Sipola
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Andrea Icks
- Institute for Health Services Research and Health Economics, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf at Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Oliver Kuss
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Lima JEBF, Moreira NCS, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503437. [PMID: 35151421 DOI: 10.1016/j.mrgentox.2021.503437] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 12/12/2021] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a complex multifactorial disease that emerges from the combination of genetic and environmental factors, and obesity, lifestyle, and aging are the most relevant risk factors. Hyperglycemia is the main metabolic feature of T2D as a consequence of insulin resistance and β-cell dysfunction. Among the cellular alterations induced by hyperglycemia, the overproduction of reactive oxygen species (ROS) and consequently oxidative stress, accompanied by a reduced antioxidant response and impaired DNA repair pathways, represent essential mechanisms underlying the pathophysiology of T2D and the development of late complications. Mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation are also closely correlated with insulin resistance and β-cell dysfunction. This review focus on the mechanisms by which oxidative stress, mitochondrial dysfunction, ER stress, and inflammation are involved in the pathophysiology of T2D, highlighting the importance of the antioxidant response and DNA repair mechanisms counteracting the development of the disease. Moreover, we indicate evidence on how nutritional interventions effectively improve diabetes care. Additionally, we address key molecular characteristics and signaling pathways shared between T2D and Alzheimer's disease (AD), which might probably be implicated in the risk of T2D patients to develop AD.
Collapse
Affiliation(s)
- Jessica E B F Lima
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Natalia C S Moreira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Xu F, Zhao LH, Wang XH, Wang CH, Yu C, Zhang XL, Ning LY, Huang HY, Su JB, Wang XQ. Plasma 1,5-anhydro-D-glucitol is associated with peripheral nerve function and diabetic peripheral neuropathy in patients with type 2 diabetes and mild-to-moderate hyperglycemia. Diabetol Metab Syndr 2022; 14:24. [PMID: 35093139 PMCID: PMC8800300 DOI: 10.1186/s13098-022-00795-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Plasma 1,5-anhydro-D-glucitol (1,5-AG) may be a easily accessible marker for glycemic variability under mild-to-moderate hyperglycemia. The present study was to investigate the association of 1,5-AG with peripheral nerve function and diabetic peripheral neuropathy (DPN) in patients with T2D and mild-to-moderate hyperglycemia. METHODS We recruited 574 T2D patients with mild-to-moderate hyperglycemia (HbA1c < 8.0%) for this cross-sectional study, with plasma 1,5-AG synchronously detected. All patients were questioned for neurologic symptoms, examined for neurologic signs and screened for peripheral nerve function. Nerve function included the latency, amplitude and nerve conduction velocity (NCV) of limbs nerves (median, ulnar nerve, common peroneal, superficial peroneal, tibial and sural nerve). Besides, composite Z-score of latency, amplitude and NCV were calculated. DPN was identified as both at least a neurologic symptom/sign and an abnormality of peripheral nerve function. RESULTS Among the recruited patients, 23.9% (n = 137) were identified to be with DPN, and the prevalence of DPN decreased from 36.6%, 24.5%, 21.2%, 13.3% from first (Q1), second (Q2), and third (Q3) to fourth quartile (Q4) of 1,5-AG. Moreover, multivariable linear regression analysis showed 1,5-AG was associated with composite Z-score of nerve latency (β = - 0.18, t = - 3.84, p < 0.001), amplitude(β = 0.26, t = 5.35, p < 0.001) and NCV (β = 0.24, t = 5.61, p < 0.001), respectively. Furthermore, compared to Q4 of 1,5-AG as reference, the adjusted odds ratios and 95% CIs for DPN of Q3, Q2, and Q1 were 1.29(0.59-2.81), 1.85(0.87-3.97), and 2.72(1.16-6.34), respectively. Additionally, receiver operating characteristic analysis revealed that optimal cutoff value of 1,5-AG to indicate DPN was ≤ 30.8 μmol/L, with sensitivity of 56.20% and specificity of 66.36%. CONCLUSIONS Low plasma 1,5-AG is closely associated with impaired peripheral nerve function and DPN in T2D patients under mild-to-moderate hyperglycemia.
Collapse
Affiliation(s)
- Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Li-hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Xiao-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Chun-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Chao Yu
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Xiu-lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Li-yan Ning
- Department of Administration, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Hai-yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| |
Collapse
|
21
|
Bönhof GJ, Herder C, Ziegler D. Diagnostic Tools, Biomarkers, and Treatments in Diabetic polyneuropathy and Cardiovascular Autonomic Neuropathy. Curr Diabetes Rev 2022; 18:e120421192781. [PMID: 33845748 DOI: 10.2174/1573399817666210412123740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
The various manifestations of diabetic neuropathy, including distal symmetric sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN), are among the most prevalent chronic complications of diabetes. Major clinical complications of diabetic neuropathies, such as neuropathic pain, chronic foot ulcers, and orthostatic hypotension, are associated with considerable morbidity, increased mortality, and diminished quality of life. Despite the substantial individual and socioeconomic burden, the strategies to diagnose and treat diabetic neuropathies remain insufficient. This review provides an overview of the current clinical aspects and recent advances in exploring local and systemic biomarkers of both DSPN and CAN assessed in human studies (such as biomarkers of inflammation and oxidative stress) for better understanding of the underlying pathophysiology and for improving early detection. Current therapeutic options for DSPN are (I) causal treatment, including lifestyle modification, optimal glycemic control, and multifactorial risk intervention, (II) pharmacotherapy derived from pathogenetic concepts, and (III) analgesic treatment against neuropathic pain. Recent advances in each category are discussed, including non-pharmacological approaches, such as electrical stimulation. Finally, the current therapeutic options for cardiovascular autonomic complications are provided. These insights should contribute to a broader understanding of the various manifestations of diabetic neuropathies from both the research and clinical perspectives.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
22
|
Lima JEBF, Moreira NCS, Takahashi P, Xavier DJ, Sakamoto-Hojo ET. Oxidative Stress, DNA Damage, and Transcriptional Expression of DNA Repair and Stress Response Genes in Diabetes Mellitus. TRANSCRIPTOMICS IN HEALTH AND DISEASE 2022:341-365. [DOI: 10.1007/978-3-030-87821-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Baum P, Toyka KV, Blüher M, Kosacka J, Nowicki M. Inflammatory Mechanisms in the Pathophysiology of Diabetic Peripheral Neuropathy (DN)-New Aspects. Int J Mol Sci 2021; 22:10835. [PMID: 34639176 PMCID: PMC8509236 DOI: 10.3390/ijms221910835] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of diabetic neuropathy is complex, and various pathogenic pathways have been proposed. A better understanding of the pathophysiology is warranted for developing novel therapeutic strategies. Here, we summarize recent evidence from experiments using animal models of type 1 and type 2 diabetes showing that low-grade intraneural inflammation is a facet of diabetic neuropathy. Our experimental data suggest that these mild inflammatory processes are a likely common terminal pathway in diabetic neuropathy associated with the degeneration of intraepidermal nerve fibers. In contrast to earlier reports claiming toxic effects of high-iron content, we found the opposite, i.e., nutritional iron deficiency caused low-grade inflammation and fiber degeneration while in normal or high non-heme iron nutrition no or only extremely mild inflammatory signs were identified in nerve tissue. Obesity and dyslipidemia also appear to trigger mild inflammation of peripheral nerves, associated with neuropathy even in the absence of overt diabetes mellitus. Our finding may be the experimental analog of recent observations identifying systemic proinflammatory activity in human sensorimotor diabetic neuropathy. In a rat model of type 1 diabetes, a mild neuropathy with inflammatory components could be induced by insulin treatment causing an abrupt reduction in HbA1c. This is in line with observations in patients with severe diabetes developing a small fiber neuropathy upon treatment-induced rapid HbA1c reduction. If the inflammatory pathogenesis could be further substantiated by data from human tissues and intervention studies, anti-inflammatory compounds with different modes of action may become candidates for the treatment or prevention of diabetic neuropathy.
Collapse
Affiliation(s)
- Petra Baum
- Department of Neurology, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany;
| | - Klaus V. Toyka
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany;
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany;
| | - Joanna Kosacka
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig, D-04103 Leipzig, Germany;
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, D-04103 Leipzig, Germany
| |
Collapse
|
24
|
Sasaki T, Abe Y, Takayama M, Adachi T, Okano H, Hirose N, Arai Y. Association among extracellular superoxide dismutase genotype, plasma concentration, and comorbidity in the very old and centenarians. Sci Rep 2021; 11:8539. [PMID: 33879836 PMCID: PMC8058336 DOI: 10.1038/s41598-021-87982-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Superoxide dismutase 3 (SOD3), an antioxidant enzyme, is known as extracellular SOD (EC-SOD) because it is the predominant form in extracellular fluids. The diversity of plasma EC-SOD concentration is associated with the SOD3 p.R231G missense variant genotype. To clarify the association among SOD3 genotype, plasma EC-SOD concentration, and comorbidity in Oldest Old, we analyzed genome-wide associations with plasma EC-SOD concentration and associations between EC-SOD concentration and medical history classified by the SOD3 genotype in the Very Old (85–99 years old, n = 505) and Centenarians (over 100 years old, n = 595). The results revealed that SOD3 p.R231G was the most significant variant associated with plasma EC-SOD concentration. Although no significant difference was observed in medical histories between the SOD3 p.R231G variant non-carriers and carriers, higher EC-SOD concentration in plasma of SOD3 p.R231G variant non-carriers was associated with a high odds ratio for chronic kidney disease (OR = 2.70, 95% CI = 1.98–3.72) and low odds ratio for diabetes mellitus (DM) (OR = 0.61, 95% CI = 0.39–0.95). Comparison with 11 plasma biomarkers for age-related disease showed that plasma EC-SOD concentration correlated with adiponectin and estimated glomerular filtration rate with creatinine correction; therefore, we deduced that EC-SOD co-operates with adiponectin and possesses beneficial functions for DM in the Oldest Old.
Collapse
Affiliation(s)
- Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Michiyo Takayama
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Adachi
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideyuki Okano
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
25
|
Didangelos T, Karlafti E, Kotzakioulafi E, Kontoninas Z, Margaritidis C, Giannoulaki P, Kantartzis K. Efficacy and Safety of the Combination of Superoxide Dismutase, Alpha Lipoic Acid, Vitamin B12, and Carnitine for 12 Months in Patients with Diabetic Neuropathy. Nutrients 2020; 12:nu12113254. [PMID: 33114210 PMCID: PMC7690794 DOI: 10.3390/nu12113254] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Aim: To investigate the efficacy of Superoxide Dismutase, Alpha Lipoic Acid, Acetyl L-Carnitine, and Vitamin B12 (B12) in one tablet in Diabetic Neuropathy (DN). Patients–methods: In this prospective, double-blind, placebo-controlled study, 85 patients with Diabetes Mellitus Type 2 (DMT2) were randomly assigned, either to receive the combination of four elements (active group, n = 43), or placebo (n = 42) for 12 months. We used the Michigan Neuropathy Screening Instrument Questionnaire and Examination (MNSIQ and MNSIE), measured the vibration perception threshold (BIO), and Cardiovascular Autonomic Reflex Tests (CARTs). Nerve function was assessed by DPN Check [sural nerve conduction velocity (SNCV) and amplitude (SNAP)]. Pain (PS) and quality of life (QL) questionnaires were administered. Results: At follow-up, BIO, MNSIQ, QL, PAIN, and SNCV, SNAP, and B12 levels had significantly improved inactive group (p < 0.001, p < 0.001, p < 0.001, p < 0.001, p = 0.027, p = 0.031, and p < 0.001 respectively), whereas the inplacebo group MCR (mean circular resultant) and PAIN deteriorated (p < 0.001, p < 0.001). The changes in MNSIQ, QL, SNCV, BIO, and PAIN differed significantly between groups (p < 0.001, p < 0.001, p = 0.031, p < 0.001, and p < 0.001 respectively). Conclusions: The combination of the four elements in one tablet for 12 months in patients with DMT2 improved all indices of peripheral neuropathy, including SNAP and SNCV, pain, and Quality of Life perception, except CARTs and MNSIE.
Collapse
Affiliation(s)
- Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (C.M.)
- Correspondence: or ; Tel.: +30-6944863803
| | - Eleni Karlafti
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (C.M.)
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (C.M.)
| | - Zisis Kontoninas
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (C.M.)
| | - Charalampos Margaritidis
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (C.M.)
| | - Parthena Giannoulaki
- Department of Nutrition and Dietetics, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece;
| | - Konstantinos Kantartzis
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany;
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| |
Collapse
|
26
|
Vodošek Hojs N, Bevc S, Ekart R, Hojs R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants (Basel) 2020; 9:925. [PMID: 32992565 PMCID: PMC7600946 DOI: 10.3390/antiox9100925] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes prevalence is increasing worldwide, especially through the increase of type 2 diabetes. Diabetic nephropathy occurs in up to 40% of diabetic patients and is the leading cause of end-stage renal disease. Various factors affect the development and progression of diabetic nephropathy. Hyperglycaemia increases free radical production, resulting in oxidative stress, which plays an important role in the pathogenesis of diabetic nephropathy. Free radicals have a short half-life and are difficult to measure. In contrast, oxidation products, including lipid peroxidation, protein oxidation, and nucleic acid oxidation, have longer lifetimes and are used to evaluate oxidative stress. In recent years, different oxidative stress biomarkers associated with diabetic nephropathy have been found. This review summarises current evidence of oxidative stress biomarkers in patients with diabetic nephropathy. Although some of them are promising, they cannot replace currently used clinical biomarkers (eGFR, proteinuria) in the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| |
Collapse
|
27
|
The Role of Oxidative Stress in Peripheral Neuropathy. J Mol Neurosci 2020; 70:1009-1017. [PMID: 32103400 DOI: 10.1007/s12031-020-01495-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathy (PN) is a common disease affecting about 5% of the general population after the age of 50. Causes of PN are numerous and include genetic, diabetes, alcohol, vitamin deficiencies, and gluten sensitivity among others. This systematic review aimed to study the association between oxidative stress and PN in an attempt to better understand PN pathogenesis. A computer-based, systematic search was conducted on the PubMed database, and ensuing data from included articles was analyzed and discussed in this review. Sixty-nine papers were eligible and were used for this review. Peripheral neuropathy is associated with an increase of reactive oxygen species and a decrease in endogenous antioxidants. Genetic predisposition to oxidative damage may be a factor. Antioxidant treatment is promising regarding treatment. Though further research is necessary to better understand the underlying mechanism, it is evident that oxidative stress is implicated in the pathogenesis of - or is at least systematically present in - PN.
Collapse
|
28
|
Etienne I, Magalhães LVB, Cardoso SA, de Freitas RB, de Oliveira GP, Palotás A, Lima LM. Oxidative stress markers in cognitively intact patients with diabetic neuropathy. Brain Res Bull 2019; 150:196-200. [PMID: 31175898 DOI: 10.1016/j.brainresbull.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/26/2023]
Abstract
Various forms of vascular injury are frequently associated with type-2 diabetes mellitus (DM2). Macro-angiopathy has alarming signs and symptoms such as those seen with stroke or heart attack, however the presentation of small vessel disease is generally more subtle and therefore usually unnoticed for a long period of time. While it may affect any organ, complications involving the nervous system such as diabetic poly-neuropathy (DPN) are especially debilitating, and it may also be a risk factor for other brain disorders such as dementia. The underlying mechanisms are likely to be multi-faceted, but piling evidence indicates oxidative stress as one of the crucial factors. Here we evaluate the oxidative profile of patients with DM2. The total anti-oxidant capacity appears to be reduced in DM2 with or without complications. Of the specific bio-markers studied, the levels of tissue-damage indicator malon-dialdehyde (MDA) were significantly lower in the DM2 + DPN population only. These results suggest that diabetic patients present with wavering oxidative status, and the low MDA concentrations in patients with complications such as DPN may represent either an exhausted anti-oxidative defense system or a response to anti-inflammatory medications. The findings may also support the use of anti-oxidants such as vitamins A and E.
Collapse
Affiliation(s)
- Isaac Etienne
- Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), Szeged, Hungary; Kazan Federal University, Kazan, Russia.
| | | |
Collapse
|
29
|
Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5953685. [PMID: 31214280 PMCID: PMC6535859 DOI: 10.1155/2019/5953685] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2DM) and its complications constitute a major worldwide public health problem, with high rates of morbidity and mortality. Biomarkers for predicting the occurrence and development of the disease may therefore offer benefits in terms of early diagnosis and intervention. This review provides an overview of human studies on circulating biomarkers of oxidative stress and antioxidant defence systems and discusses their usefulness from a clinical perspective. Most case-control studies documented an increase in biomarkers of oxidative lipid, protein, and nucleic acid damage in patients with prediabetes and in those with a diagnosis of T2DM compared to controls, and similar findings were reported in T2DM with micro- and macrovascular complications compared to those without. The inconsistence of the results regarding antioxidant defence systems renders difficulty to draw a general conclusion. The clinical relevance of biomarkers of oxidative lipid and protein damage for T2DM progression is uncertain, but prospective studies suggest that markers of oxidative nucleic acid damage such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxyguanosine are promising for predicting macrovascular complications of T2DM. Emerging evidence also points out the relationship between serum PON1 and serum HO1 in T2DM and its complications. Overall, enhanced oxidative damage represents an underlying mechanism of glucose toxicity in T2DM and its related micro- and macrovascular complications suggesting that it may be considered as a potential additional target for pharmacotherapy. Therefore, further studies are needed to understand whether targeting oxidative stress may yield clinical benefits. In this view, the measurement of oxidative stress biomarkers in clinical trials deserves to be considered as an additional tool to currently used parameters to facilitate a more individualized treatment of T2DM in terms of drug choice and patient selection.
Collapse
|
30
|
Herder C, Roden M, Ziegler D. Novel Insights into Sensorimotor and Cardiovascular Autonomic Neuropathy from Recent-Onset Diabetes and Population-Based Cohorts. Trends Endocrinol Metab 2019; 30:286-298. [PMID: 30935671 DOI: 10.1016/j.tem.2019.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
The most prevalent chronic complications of diabetes are diabetic neuropathies, among which distal sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN) are the best studied. Their major clinical sequelae such as foot ulcers, neuropathic pain, and orthostatic hypotension are associated with lower quality of life and increased risk of mortality. Here we discuss the recent insights into DSPN and CAN focusing on two prospective cohorts; that is, the German Diabetes Study (GDS) including recent-onset diabetes patients and the population-based Cooperative Health Research in the Region of Augsburg, Germany (KORA) surveys. The insights from these studies investigating novel tools for early detection and prediction of (pre)diabetic neuropathy as well as biomarkers of oxidative stress and inflammation should ultimately culminate in improving the health care of patients affected by this serious condition.
Collapse
Affiliation(s)
- Christian Herder
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; These authors contributed equally.
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dan Ziegler
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; These authors contributed equally.
| |
Collapse
|
31
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev 2019; 40:153-192. [PMID: 30256929 DOI: 10.1210/er.2018-00107] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy, with its major clinical sequels, notably neuropathic pain, foot ulcers, and autonomic dysfunction, is associated with substantial morbidity, increased risk of mortality, and reduced quality of life. Despite its major clinical impact, diabetic neuropathy remains underdiagnosed and undertreated. Moreover, the evidence supporting a benefit for causal treatment is weak at least in patients with type 2 diabetes, and current pharmacotherapy is largely limited to symptomatic treatment options. Thus, a better understanding of the underlying pathophysiology is mandatory for translation into new diagnostic and treatment approaches. Improved knowledge about pathogenic pathways implicated in the development of diabetic neuropathy could lead to novel diagnostic techniques that have the potential of improving the early detection of neuropathy in diabetes and prediabetes to eventually embark on new treatment strategies. In this review, we first provide an overview on the current clinical aspects and illustrate the pathogenetic concepts of (pre)diabetic neuropathy. We then describe the biomarkers emerging from these concepts and novel diagnostic tools and appraise their utility in the early detection and prediction of predominantly distal sensorimotor polyneuropathy. Finally, we discuss the evidence for and limitations of the current and novel therapy options with particular emphasis on lifestyle modification and pathogenesis-derived treatment approaches. Altogether, recent years have brought forth a multitude of emerging biomarkers reflecting different pathogenic pathways such as oxidative stress and inflammation and diagnostic tools for an early detection and prediction of (pre)diabetic neuropathy. Ultimately, these insights should culminate in improving our therapeutic armamentarium against this common and debilitating or even life-threatening condition.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
32
|
Asano S, Himeno T, Hayami T, Motegi M, Inoue R, Nakai-Shimoda H, Miura-Yura E, Morishita Y, Kondo M, Tsunekawa S, Kato Y, Kato K, Naruse K, Nakamura J, Kamiya H. Ranirestat Improved Nerve Conduction Velocities, Sensory Perception, and Intraepidermal Nerve Fiber Density in Rats with Overt Diabetic Polyneuropathy. J Diabetes Res 2019; 2019:2756020. [PMID: 31828158 PMCID: PMC6885776 DOI: 10.1155/2019/2756020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 01/24/2023] Open
Abstract
Distal sensory-motor polyneuropathy is one of the most frequent diabetic complications. However, few therapies address the etiology of neurodegeneration in the peripheral nervous systems of diabetic patients. Several metabolic mechanisms have been proposed as etiologies of this polyneuropathy. In this study, we revisited one of those mechanisms, the polyol pathway, and investigated the curative effects of a novel strong aldose reductase inhibitor, ranirestat, in streptozotocin-induced diabetic rats with preexisting polyneuropathy. Twelve weeks after the onset of diabetes, rats which had an established polyneuropathy were treated once daily with a placebo, ranirestat, or epalrestat, over 6 weeks. Before and after the treatment, nerve conduction velocities and thermal perception threshold of hindlimbs were examined. After the treatment, intraepidermal fiber density was evaluated. As an ex vivo assay, murine dorsal root ganglion cells were dispersed and cultured with or without 1 μmol/l ranirestat for 48 hours. After the culture, neurite outgrowth was quantified using immunological staining. Sensory nerve conduction velocity increased in diabetic rats treated with ranirestat (43.3 ± 3.6 m/s) compared with rats treated with placebo (39.8 ± 2.3). Motor nerve conduction velocity also increased in the ranirestat group (45.6 ± 3.9) compared with the placebo group (38.9 ± 3.5). The foot withdrawal latency to noxious heating was improved in the ranirestat group (17.7 ± 0.6 seconds) compared with the placebo group (20.6 ± 0.6). The decrease in the intraepidermal fiber density was significant in the diabetic placebo group (21.6 ± 1.7/mm) but not significant in the diabetic ranirestat group (26.2 ± 1.2) compared with the nondiabetic placebo group (30.3 ± 1.5). Neurite outgrowth was promoted in the neurons supplemented with ranirestat (control 1446 ± 147 μm/neuron, ranirestat 2175 ± 149). Ranirestat improved the peripheral nervous dysfunctions in rats with advanced diabetic polyneuropathy. Ranirestat could have potential for regeneration in the peripheral nervous system of diabetic rats.
Collapse
Affiliation(s)
- Saeko Asano
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tomohide Hayami
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Mikio Motegi
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rieko Inoue
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiromi Nakai-Shimoda
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Emiri Miura-Yura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Koichi Kato
- Department of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya, Japan
| | - Keiko Naruse
- Department of Internal Medicine, Aichi Gakuin University School of Dentistry, Nagoya, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
33
|
Herder C, Kannenberg JM, Huth C, Carstensen-Kirberg M, Rathmann W, Koenig W, Strom A, Bönhof GJ, Heier M, Thorand B, Peters A, Roden M, Meisinger C, Ziegler D. Myeloperoxidase, superoxide dismutase-3, cardiometabolic risk factors, and distal sensorimotor polyneuropathy: The KORA F4/FF4 study. Diabetes Metab Res Rev 2018; 34:e3000. [PMID: 29577557 DOI: 10.1002/dmrr.3000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Oxidative stress has been proposed as important pathomechanism of cardiometabolic diseases and distal sensorimotor polyneuropathy (DSPN). However, the relevance of biomarkers of oxidative stress has not been investigated in this context. Therefore, this study aimed to assess the association of the prooxidant myeloperoxidase (MPO) and the antioxidant extracellular superoxide dismutase (SOD3) with cardiometabolic risk factors and with prevalence and incidence of DSPN. METHODS Cross-sectional analyses comprised 1069 participants (40.3% with prediabetes and 20.5% with type 2 diabetes) of the population-based Cooperative Health Research in the Region of Augsburg (KORA) F4 study (2006-2008), 181 of whom had DSPN at baseline. Prospective analyses included 524 individuals without DSPN at baseline who also participated in the KORA FF4 study (2013-2014), 132 of whom developed DSPN during the 6.5-year follow-up. Serum MPO and SOD3 were measured by ELISA, and their association with cardiometabolic risk factors and DSPN were estimated by using linear and logistic regression analyses. RESULTS Higher MPO and SOD levels showed multiple positive associations with cardiometabolic risk factors including age, indices of obesity, insulin resistance, serum lipids, renal dysfunction, and biomarkers of inflammation. Higher MPO levels were associated with prevalent DSPN (fully adjusted OR 1.38 [95% CI 1.10; 1.72] per doubling of MPO). Higher baseline SOD3 levels were related to incident DSPN (age and sex-adjusted OR 2.14 [1.02; 4.48] per doubling of SOD3), which was partially explained by cardiometabolic risk factors. CONCLUSIONS Systemic levels of both pro- and antioxidant enzymes appear involved in cardiometabolic risk and development of DSPN.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia M Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christa Meisinger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Ludwig-Maximilian-Universität München, UNIKA-T Augsburg, Augsburg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|