1
|
Wang M, Zhao J, Chen J, Long T, Xu M, Luo T, Che Q, He Y, Xu D. The role of sirtuin1 in liver injury: molecular mechanisms and novel therapeutic target. PeerJ 2024; 12:e17094. [PMID: 38563003 PMCID: PMC10984179 DOI: 10.7717/peerj.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Liver disease is a common and serious threat to human health. The progression of liver diseases is influenced by many physiologic processes, including oxidative stress, inflammation, bile acid metabolism, and autophagy. Various factors lead to the dysfunction of these processes and basing on the different pathogeny, pathology, clinical manifestation, and pathogenesis, liver diseases are grouped into different categories. Specifically, Sirtuin1 (SIRT1), a member of the sirtuin protein family, has been extensively studied in the context of liver injury in recent years and are confirmed the significant role in liver disease. SIRT1 has been found to play a critical role in regulating key processes in liver injury. Further, SIRT1 seems to cause divers outcomes in different types of liver diseases. Recent studies have showed some therapeutic strategies involving modulating SIRT1, which may bring a novel therapeutic target. To elucidate the mechanisms underlying the role of sirtuin1 in liver injury and its potentiality as a therapeutic target, this review outlines the key signaling pathways associated with sirtuin1 and liver injury, and discusses recent advances in therapeutic strategies targeting sirtuin1 in liver diseases.
Collapse
Affiliation(s)
- Mufei Wang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiuxia Chen
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Teng Long
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mengwei Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tingting Luo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingya Che
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yihuai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Cao SL, Luo HY, Gao YC, Lan XM, Liu SY, Li B, Bao L, E. J, Ma D, Zhang GQ, Yang LR, Bao X, Zheng YL. TFP5-Mediated CDK5 Activity Inhibition Improves Diabetic Nephropathy via NGF/Sirt1 Regulating Axis. Front Cell Dev Biol 2022; 10:829067. [PMID: 35874807 PMCID: PMC9301001 DOI: 10.3389/fcell.2022.829067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/27/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the leading causes of chronic kidney disease (CKD), during which hyperglycemia is composed of the major force for the deterioration to end-stage renal disease (ESRD). However, the underlying mechanism triggering the effect of hyperglycemia on DN is not very clear and the clinically available drug for hyperglycemia-induced DN is in need of urgent development. Here, we found that high glucose (HG) increased the activity of cyclin-dependent kinase 5 (CDK5) dependent on P35/25 and which upregulated the oxidative stress and apoptosis of mouse podocytes (MPC-5). TFP5, a 25-amino acid peptide inhibiting CDK5 activity, decreased the secretion of inflammation cytokines in serum and kidney, and effectively protected the kidney function in db/db mouse from hyperglycemia-induced kidney injuries. In addition, TFP5 treatment decreased HG-induced oxidative stress and cell apoptosis in MPC-5 cells and kidney tissue of db/db mouse. The principal component analysis (PCA) of RNA-seq data showed that MPC-5 cell cultured under HG, was well discriminated from that under low glucose (LG) conditions, indicating the profound influence of HG on the properties of podocytes. Furthermore, we found that HG significantly decreased the level of NGF and Sirt1, both of which correlated with CDK5 activity. Furthermore, knockdown of NGF was correlated with the decreased expression of Sirt1 while NGF overexpression leads to upregulated Sirt1 and decreased oxidative stress and apoptosis in MPC-5 cells, indicating the positive regulation between NGF and Sirt1 in podocytes. Finally, we found that K252a, an inhibitor of NGF treatment could undermine the protective role of TFP5 on hyperglycemia-induced DN in db/db mouse model. In conclusion, the CDK5-NGF/Sirt1 regulating axis may be the novel pathway to prevent DN progression and TFP5 may be a promising compound to improved hyperglycemia induced DN.
Collapse
Affiliation(s)
- Shi-Lu Cao
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Hong-Yan Luo
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yong-Cai Gao
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
| | - Xiao-Mei Lan
- Department of Geriatrics, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shun-Yao Liu
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Li Bao
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Jing E.
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Danna Ma
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guo-Qing Zhang
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
| | - Li-Rong Yang
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
| | - Xi Bao
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ya-Li Zheng
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
- *Correspondence: Ya-Li Zheng,
| |
Collapse
|
3
|
Sv I, Ru O, Kn K, Ib A, Demorzhi MS, Ta G, Sb S. Low molecular weight NGF mimetic GK-2 normalizes the parameters of glucose and lipid metabolism and exhibits a hepatoprotective effect on a prediabetes model in obese Wistar rats. Clin Exp Pharmacol Physiol 2022; 49:1116-1125. [PMID: 35748804 DOI: 10.1111/1440-1681.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Signs of metabolic syndrome and prediabetes preceding type 2 diabetes are modelled in an experiment using a high-fat diet (HFD). The aim of this work was to study the effect of a low molecular weight systemically active nerve growth factor mimetic, compound GK-2 (hexamethylenediamide bis(N-monosuccinyl-L-glutamyl-L-lysine)), on indicators of abdominal obesity, basal blood glucose level, glucose tolerance, cholesterol and triglyceride blood levels, as well as the morphological structure of the liver in male Wistar rats fed a HFD. Rats were divided into three groups: one of them received standard food (control) and two others were fed a HFD containing 45% fat, 35% carbohydrates and 20% protein, with a total caloric value of 516 kcal/100 g, over 12 weeks. Starting from the 9th week, for the next 4 weeks, one of the HFD groups was treated orally with saline whilst the other group was treated orally with GK-2 at a dose of 5 mg/kg. GK-2 was found to reduce the basal glycemia level and improve glucose tolerance, as well as to reduce the blood level of cholesterol by 30% and that of triglycerides by 28% in comparison with the saline-treated HFD animals. GK-2 reduced the degree of abdominal obesity to the level of the healthy animals and eliminated morphological abnormalities in the liver caused by the HFD. The results of the study determine the feasibility of further GK-2 research as a potential agent for prediabetes treatment.
Collapse
Affiliation(s)
- Ivanov Sv
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Ostrovskaya Ru
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Kolyasnikova Kn
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Alchinova Ib
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M S Demorzhi
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Gudasheva Ta
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Seredenin Sb
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
4
|
Bae UJ, Ryu JH, Park BH, Bae EJ. Angelica keiskei Root Extract Attenuates Bile Duct Ligation-Induced Liver Injury in Mice. J Med Food 2022; 25:435-442. [PMID: 35438551 DOI: 10.1089/jmf.2021.k.0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although multiple studies have shown that Angelica keiskei of the Umbelliferae family has potent anti-inflammatory and antioxidative activities and that it reduces the serum bile acids in humans, whether A. keiskei has protective effects against cholestasis-induced liver injury remains unexplored until now. This study tests the hypothesis that Angelica keiskei root extract (AKE) alleviates liver injury, inflammation, and fibrosis in mouse models of acute cholestasis induced by bile duct ligation (BDL). Oral administration of AKE (200 or 500 mg/kg) attenuated hepatocellular necrosis and significantly reduced serum levels of bile acids and bilirubin in BDL mice. The critical enzyme of bile acid synthesis, CYP7A1, was repressed by AKE, suggesting that reduced bile acid production may contribute to liver protection. Moreover, we determined through gene expression and cytokine analysis and histological examination that AKE treatment decreased liver inflammation, oxidative stress, and fibrosis. AKE also suppressed the NF-κB pathway, suggesting this as a possible mediator of its anti-inflammatory effect. Our findings substantiate that AKE may be promising for treating cholestatic liver diseases in the future.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Korea
| | - Jae-Ha Ryu
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
5
|
Hsiao CC, Chang YC, Hsiao YT, Chen PH, Hsieh MC, Wu WC, Kao YH. Triamcinolone acetonide modulates TGF‑β2‑induced angiogenic and tissue‑remodeling effects in cultured human retinal pigment epithelial cells. Mol Med Rep 2021; 24:802. [PMID: 34523693 PMCID: PMC8456346 DOI: 10.3892/mmr.2021.12442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β2 (TGF-β2) has been implicated in the pathogenesis of proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR), due to its ability to stimulate the overproduction of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), and remodeling of the extracellular matrix (ECM). Although intravitreal triamcinolone acetonide (TA) is clinically useful in the treatment of PVR and PDR, its molecular mechanism has yet to be fully elucidated. The present study investigated whether TA treatment altered TGF-β2-driven biological effects on the behavior of cultured human retinal pigment epithelial (RPE) cells, in order to determine which signaling pathway may be essential for the pharmacological action of TA. The R-50 human RPE cell line was treated with TA in the presence of TGF-β2, followed by analyses of cell viability and contraction using cell viability and collagen gel contraction assays. VEGF mRNA expression and protein production were measured using reverse transcription-quantitative PCR and ELISA, respectively. The phosphorylation status of signaling mediators and the protein expression of type I collagen (COL1A1), α-smooth muscle actin (α-SMA), and ECM-remodeling enzymes, including MMP-2 and MMP-9, were analyzed using western blotting. The gelatinolytic activity of MMPs was detected using gelatin zymography. TA treatment exhibited no prominent cytotoxicity but markedly antagonized TGF-β2-induced cytostatic effects on RPE cell viability and TGF-β2-enhanced contractility in collagen gels. In the context of TGF-β2-related signaling, TA significantly attenuated TGF-β2-elicited Smad2, extracellular-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Moreover, TA markedly mitigated TGF-β2-induced VEGF upregulation through ablation of p38 signaling activity. TA also partially attenuated TGF-β2-elicted expression of COL1A1, α-SMA, MMP-2, and MMP-9, but only suppressed TGF-β2-induced MMP-9 gelatinolytic activity. Mechanistically, the MEK/ERK signaling pathway may have a critical role in the TGF-β2-induced upregulation of COL1A1, α-SMA and MMP-9. In conclusion, TA may be considered a useful therapeutic agent for treating TGF-β2-associated intraocular angiogenesis and tissue remodeling, the underlying mechanism of which may involve the ERK and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Yo-Chen Chang
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yu-Ting Hsiao
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Po-Han Chen
- Department of Medical Research, E‑Da Hospital, Kaohsiung 82445, Taiwan, R.O.C
| | - Ming-Chu Hsieh
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80761, Taiwan, R.O.C
| | - Wen-Chuan Wu
- Department of Ophthalmology, China Medical University Hospital, Taichung 404332, Taiwan, R.O.C
| | - Ying-Hsien Kao
- Department of Medical Research, E‑Da Hospital, Kaohsiung 82445, Taiwan, R.O.C
| |
Collapse
|
6
|
You DG, Oh BH, Nguyen VQ, Lim GT, Um W, Jung JM, Jeon J, Choi JS, Choi YC, Jung YJ, Lee J, Jo DG, Cho YW, Park JH. Vitamin A-coupled stem cell-derived extracellular vesicles regulate the fibrotic cascade by targeting activated hepatic stellate cells in vivo. J Control Release 2021; 336:285-295. [PMID: 34174353 DOI: 10.1016/j.jconrel.2021.06.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Allogeneic transplantation of mesenchymal stem cell-derived extracellular vesicles (EVs) offers great potential for treating liver fibrosis. However, owing to their intrinsic surface characteristics, bare EVs are non-specifically distributed in the liver tissue after systemic administration, leading to limited therapeutic efficacy. To target activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis, vitamin A-coupled small EVs (V-EVs) were prepared by incorporating vitamin A derivative into the membrane of bare EVs. No significant differences were found in the particle size and morphology between bare and V-EVs. In addition, surface engineering of EVs did not affect the expression of surface marker proteins (e.g., CD63 and CD9), as demonstrated by flow cytometry. Owing to the surface incorporation of vitamin A, V-EVs were selectively taken up by activated HSCs via receptor-mediated endocytosis. When systemically administered to mice with liver fibrosis, V-EVs effectively targeted activated HSCs in the liver tissue, resulting in reversal of the fibrotic cascade. Consequently, even at a 10-fold lower dose, V-EVs exhibited comparable anti-fibrotic effects to those of bare EVs, substantiating their therapeutic potential for liver fibrosis.
Collapse
Affiliation(s)
- Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Byeong Hoon Oh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyeong Taek Lim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Min Jung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Young Chan Choi
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Youn Jae Jung
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Dong-Gyu Jo
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), , Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), , Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
GDI2 is a target of paclitaxel that affects tumorigenesis of prostate cancer via the p75NTR signaling pathway. Biochem Biophys Res Commun 2021; 562:119-126. [PMID: 34051575 DOI: 10.1016/j.bbrc.2021.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate cancer (PCa) refers to malignant tumors derived from prostate epithelial cells, whose morbidity and mortality rates have been increasing every year. Although new drugs for treating prostate cancer continue to emerge, the unclear mechanism underlying drug targets limits this therapy, thereby constraining identification of effective therapeutic targets. Although GDP dissociation inhibitor 2(GDI2) is highly expressed and closely associated with occurrence and development of many tumors, its role in prostate cancer remains unclear. In this study, we investigated the role of GDI2 and elucidated its underlying mechanism of action in prostate cancer. Moreover, we screened chemotherapeutic drugs that affect GDI2 expression with a view of identifying novel targets for diagnosis and treatment of prostate cancer. METHODS We performed sequence analyses and functional assays to precisely elucidate the GDI2 role in prostate cancer. Moreover, we induced tumorigenesis in nude mice to verify the role of GDI2 in vivo. Finally, we used the CCK8 assay to ascertain the most suitable IC50 across the three drugs and performed quantitative real time polymerase chain reaction (qRT-PCR) and Western Blot to analyze the effects of drugs on expression of GDI2, p75NTR, and p-NFκB. RESULTS GDI2 was up-regulated in prostate cancer cells and tissues. Knocking down GDI2 suppressed cell proliferation but promoted cell apoptosis. Interestingly, knocking down GDI2 activated the p75NTR signaling pathway, indicating, for the first time, that p75NTR is negatively correlated with GDI2 expression. CONCLUSION Taken together, these results indicate that GDI2 is a therapeutic target of paclitaxel. Knocking down of GDI2 inhibits cell proliferation and promotes cell apoptosis via the p75NTR signaling pathway in prostate cancer. Notably, paclitaxel inhibits GDI2 expression, implying that GDI2 may be a promising therapeutic target in prostate cancer.
Collapse
|
8
|
Nerve growth factor regulates liver cancer cell polarity and motility. Mol Med Rep 2021; 23:288. [PMID: 33649819 PMCID: PMC7905331 DOI: 10.3892/mmr.2021.11927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve growth factor (NGF), a prototypical neurotrophic factor essential for neuronal cell proliferation and survival, has been implicated as a marker of tumor progression, as well as a potential target for novel therapeutic approaches in cancer. To investigate the functional potential of NGF in liver cancer in the present study, a stable NGF-overexpressing HepG2 cell line was generated. The scratch-wound assay was used to investigate cell motility and polarity. Western blotting was performed to evaluate the expression levels of epithelial-mesenchymal transition (EMT)-related proteins, including E-cadherin, N-cadherin and vimentin. Moreover, immunofluorescence was performed to investigate the arrangement of the actin cytoskeleton. Cell anoikis resistance was examined using a suspension culture model and cell apoptosis was examined via flow cytometry. The present results indicated that NGF overexpression in HepG2 cells disrupted HepG2 cell polarity and promoted cell motility. Furthermore, NGF overexpression induced EMT and actin cytoskeleton rearrangement in HepG2 cells, as well as enhanced anoikis resistance and prevented cellular apoptosis. Notably, a tropomyosin receptor kinase A receptor inhibitor blocked NGF-induced cell motility and apoptosis. Therefore, it was suggested that NGF serves a critical role in the invasion and metastasis of liver cancer. The use of NGF as a biomarker or potential new target could lead to the development of novel factors for diagnosis or for improving therapeutic strategies in liver cancer.
Collapse
|
9
|
Li Y, Xi Y, Tao G, Xu G, Yang Z, Fu X, Liang Y, Qian J, Cui Y, Jiang T. Sirtuin 1 activation alleviates primary biliary cholangitis via the blocking of the NF-κB signaling pathway. Int Immunopharmacol 2020; 83:106386. [PMID: 32193100 DOI: 10.1016/j.intimp.2020.106386] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
This report sought to establish the mechanistic role of sirtuin-1 (Sirt1), a NAD+-dependent deacetylase in the modulation of primary biliary cholangitis (PBC) pathogenesis. 64 PBC patients (diagnosed based on practice guidelines for American Association for the Study of Liver Diseases) and 60 healthy controls were included in this study. Clinically, the mRNA expression level of Sirt1 in macrophages differentiated from peripheral blood mononuclear cells (PBMCs) of PBC subjects substantially decreased when compared with the healthy controls but not in other Sirt family genes (Sirt2-7). Consistent with clinical results, a PBC murine model showed that levels of Sirt1 significantly decreased in the liver and Kupffer cells of mice treated with polyinosinic/polycytidylic acid (poly I:C) for 16 weeks. A TAK1 inhibitor (NG25) prevented the poly I:C-induced Sirt1 protein level decreasing in Kupffer cells but not MAPK inhibitor. Sirt1 activators resveratrol (RSV) and SRT1720 (SRT) ameliorated poly I:C-induced hepatic injury observed via histopathologic analysis and decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the PBC murine model. Furthermore, Sirt1 activators significantly reduced pro-inflammatory cytokines levels such as interleukin-1 beta (IL-1β), IL-6, interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in serum in poly I:C-induced mice. In addition, Sirt1 activators significantly inhibited the phosphorylated and acetylated levels of the RelA/p65 subunit of the nuclear transcription factor (NF-κB) but not the interferon regulatory factor (IRF) 3 in poly I:C-injured mice livers. Significantly, RSV improved the interaction between Sirt1 and p65, which may contribute to the decreased activity of NF-κB. In summary, the Sirt1 signaling pathway plays an essential role in the development of PBC and this may represent a novel approach and target for the treatment of PBC.
Collapse
Affiliation(s)
- Yong Li
- Department of Laboratory Medicine, First People's Hospital of Taicang, Taicang Hospital Affiliated to Suzhou University, Taicang 215400, Jiangsu, China
| | - Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guohua Tao
- Department of Laboratory Medicine, First People's Hospital of Nantong, 226001 Jiangsu, China
| | - Guohua Xu
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Zaixing Yang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Zhejiang, China
| | - Xingli Fu
- Jiangsu University Health Science Center, Zhenjiang, Jiangsu, China
| | - Yan Liang
- Department of Laboratory Diagnostics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianping Qian
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Yanhong Cui
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China.
| |
Collapse
|
10
|
Wei X, Sun C, Zhou RP, Ma GG, Yang Y, Lu C, Hu W. Nerve growth factor promotes ASIC1a expression via the NF-κB pathway and enhances acid-induced chondrocyte apoptosis. Int Immunopharmacol 2020; 82:106340. [PMID: 32146316 DOI: 10.1016/j.intimp.2020.106340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Nerve growth factor (NGF) is a neurotrophic factor that is thought to have a broad role in the nervous system and tumors, and has recently been described as a mediator of inflammation. It is not clear whether or not NGF participates in apoptosis of articular chondrocytes. In this study, we determined if NGF affects ASIC1a expression and NF-κB P65 activation in rat chondrocytes, and measured the effectiveness of NGF on apoptotic protein expression in acid-induced chondrocytes. NGF was shown to up-regulate the level of ASIC1a in a dose- and time-dependent fashion. Simultaneously, NGF activated NF-κB P65 in chondrocytes. Additionally, the elevated ASIC1a expression induced by NGF was eliminated by the NF-κB inhibitor (PDTC) in chondrocytes. Moreover, NGF reduced cell viability and induced LDH release under the premise of acid-induced articular chondrocytes. Furthermore, NGF could enhance cleaved-caspase 9 and cleaved-PARP expression in acid-pretreated chondrocytes, and which could be inhibited by using psalmotoxin 1(PcTX1) or PDTC. Together, these results indicated that NGF may up-regulate ASIC1a expression through the NF-κB signaling pathway, and further promote acid-induced apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Sun
- Department of Pharmacology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
11
|
Pereira LMS, da Silva Graça Amoras E, da Silva Conde SRS, Demachki S, dos Santos EJM, Lima SS, Ishak R, Rosário Vallinoto AC. NGF (-198C > T, Ala35Val) and p75 NTR (Ser205Leu) gene mutations are associated with liver function in different histopathological profiles of the patients with chronic viral hepatitis in the Brazilian Amazon. Mol Med 2020; 26:12. [PMID: 31996124 PMCID: PMC6990582 DOI: 10.1186/s10020-019-0134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDS Neural growth factor (NGF) is a neurotrophin that can interact with the p75NTR receptor and initiate a cascade of reactions that determines cell survival or death, and both are associated with the physiology of liver tissue. Single nucleotide polymorphisms (SNPs) in the NGF and p75NTR genes have been investigated in different pathologies; however, there are no studies that have analyzed their biological roles in the hepatic microenvironment. In the present study, we evaluated the impact of SNPs in these genes on the maintenance of liver function at different stages of inflammation and fibrosis in patients with chronic viral liver disease in the Brazilian Amazon. METHODS The SNPs -198C > T, Arg80Gln, Val72Met, Ala35Val, Ala18Ala and Ser205Leu were genotyped by real-time PCR in samples from patients with chronic viral hepatitis stratified by stage of inflammation and liver fibrosis. Histopathological, viral load (VL), liver enzyme and comorbidities data were obtained from updated medical records. Other aspects were highlighted by applied epidemiological questionnaires. RESULTS The -198C/T and Ala35Val polymorphisms in NGF were associated with changes in histopathological profiles, VL and liver enzymes. Ser205Leu polymorphism in p75NTR was associated only with changes in VL and liver enzymes. Polymorphic frequencies were variable among different ethnic populations, mainly for biologically relevant polymorphisms. A multifactorial network of interactions has been established based on genetic, virological, behavioral and biochemical aspects. CONCLUSION Mutations in the NGF (-198C > T, Ala35Val) and p75NTR (Ser205Leu) genes, within the list of multifactorial aspects, are associated with liver function in different histopathological profiles of patients with chronic viral liver disease in the Brazilian Amazon.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | | | | | - Sâmia Demachki
- School of Medicine, Health Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Eduardo José Melo dos Santos
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Laboartory of Human and Medical Genetics, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Sandra Souza Lima
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Ricardo Ishak
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| |
Collapse
|
12
|
Tsai MS, Lee HM, Huang SC, Sun CK, Chiu TC, Chen PH, Lin YC, Hung TM, Lee PH, Kao YH. Nerve growth factor induced farnesoid X receptor upregulation modulates autophagy flux and protects hepatocytes in cholestatic livers. Arch Biochem Biophys 2020; 682:108281. [PMID: 32001246 DOI: 10.1016/j.abb.2020.108281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Upregulation of nerve growth factor (NGF) in parenchymal hepatocytes has been shown to exert hepatoprotective function during cholestatic liver injury. However, the modulatory role of NGF in regulation of liver autophagy remains unclear. This study aimed to scrutinize the regulatory role of NGF in hepatic expression of farnesoid X receptor (FXR), a bile acid (BA)-activated nuclear receptor, and to determine its cytoprotective effect on BA-induced autophagy and cytotoxicity. Livers of human hepatolithiasis and bile duct ligation (BDL)-induced mouse cholestasis were used for histopathological and molecular detection. The regulatory roles of NGF in autophagy flux and FXR expression, as well as its hepatoprotection against BA cytotoxicity were examined in cultured hepatocytes. FXR downregulation in human hepatolithiasis livers showed positive correlation with hepatic NGF levels. NGF administration upregulated hepatic FXR levels, while neutralization of NGF decreased FXR expression in BDL-induced cholestatic mouse livers. In vitro studies demonstrated that NGF upregulated FXR expression, increased cellular LC3 levels, and exerted hepatoprotective effect in cultured primary rat hepatocytes. Conversely, autophagy inhibition abrogated NGF-driven cytoprotection under BA exposure, suggesting involvement of NGF-modulated auophagy flux. Although FXR agonistic GW4064 stimulation did not affect auophagic LC3 levels, FXR activity inhibition significantly potentiated BA-induced cytotoxicity and increased cellular p62/SQSTM1 and Rab7 protein in SK-Hep1 hepatocytes. Moreover, FXR gene silencing abolished the protective effect of NGF under BA exposure. These findings support that NGF modulates autophagy flux via FXR upregulation and protects hepatocytes against BA-induced cytotoxicity. NGF/FXR axis is a novel therapeutic target for treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Ming-Shian Tsai
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Body Health and Beauty Center, Jiann-Ren Hospital, Kaohsiung, Taiwan
| | - Hui-Ming Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Shih-Che Huang
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | | | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Tzu-Min Hung
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
da Silva Meirelles L, Marson RF, Solari MIG, Nardi NB. Are Liver Pericytes Just Precursors of Myofibroblasts in Hepatic Diseases? Insights from the Crosstalk between Perivascular and Inflammatory Cells in Liver Injury and Repair. Cells 2020; 9:cells9010188. [PMID: 31940814 PMCID: PMC7017158 DOI: 10.3390/cells9010188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis, a late form of liver disease, is characterized by extensive scarring due to exacerbated secretion of extracellular matrix proteins by myofibroblasts that develop during this process. These myofibroblasts arise mainly from hepatic stellate cells (HSCs), liver-specific pericytes that become activated at the onset of liver injury. Consequently, HSCs tend to be viewed mainly as myofibroblast precursors in a fibrotic process driven by inflammation. Here, the molecular interactions between liver pericytes and inflammatory cells such as macrophages and neutrophils at the first moments after injury and during the healing process are brought into focus. Data on HSCs and pericytes from other tissues indicate that these cells are able to sense pathogen- and damage-associated molecular patterns and have an important proinflammatory role in the initial stages of liver injury. On the other hand, further data suggest that as the healing process evolves, activated HSCs play a role in skewing the initial proinflammatory (M1) macrophage polarization by contributing to the emergence of alternatively activated, pro-regenerative (M2-like) macrophages. Finally, data suggesting that some HSCs activated during liver injury could behave as hepatic progenitor or stem cells will be discussed.
Collapse
Affiliation(s)
- Lindolfo da Silva Meirelles
- PPGBioSaúde and School of Medicine, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Renan Fava Marson
- PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Maria Inês Gonzalez Solari
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
- Correspondence: ; Tel.: +55-51-3230-3600
| |
Collapse
|
14
|
Andrographolide impairs alpha-naphthylisothiocyanate-induced cholestatic liver injury in vivo. J Nat Med 2019; 73:388-396. [DOI: 10.1007/s11418-018-01275-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|