1
|
Mathew RP, Ranya Raghavendra P, Disha B, Dalal A, Govindaraj P. A unique case of hyperammonemia due to CA5A deficiency: Impact of coexisting gene mutations, pseudogene, and microdeletion. Am J Med Genet A 2024; 194:e63809. [PMID: 38949089 DOI: 10.1002/ajmg.a.63809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Carbonic anhydrase 5A (CA5A) belongs to a family of carbonic anhydrases which are zinc metalloenzymes involved in the reversible hydration of CO2 to bicarbonate. Mutations in CA5A are very rare and known to cause Carbonic anhydrase 5A deficiency (CA5AD), an autosomal recessive inborn error of metabolism characterized clinically by acute onset of encephalopathy in infancy or early childhood. CA5A also has two very identical pseudogenes whose interference may result in compromised accuracy in targeted sequencing. We report a unique case of CA5AD caused by compound heterozygous variant (NM_001739.2: c.721G>A: p.Glu241Lys & NM_001739.2: c.619-3420_c.774 + 502del4078bp) in an infant in order to expand the phenotypic spectrum and underscore the impact of pseudogenes, which can introduce complexities in molecular genetic analysis.
Collapse
Affiliation(s)
- Rohan Peter Mathew
- BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | | | - Biradar Disha
- BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ashwin Dalal
- BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Periyasamy Govindaraj
- BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
2
|
Häberle J, Siri B, Dionisi‐Vici C. Quo vadis ureagenesis disorders? A journey from 90 years ago into the future. J Inherit Metab Dis 2024; 47:1120-1128. [PMID: 38837457 PMCID: PMC11586591 DOI: 10.1002/jimd.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
The pathway of ammonia disposal in the mammalian organism has been described in 1932 as a metabolic cycle present in the liver in different compartments. In 1958, the first human disorder affecting this pathway was described as a genetic condition leading to cognitive impairment and constant abnormalities of amino acid metabolism. Since then, defects in all enzymes and transporters of the urea cycle have been described, referring to them as primary urea cycle disorders causing primary hyperammonemia. In addition, there is a still increasing list of conditions that impact on the function of the urea cycle by various mechanisms, hereby leading to secondary hyperammonemia. Despite great advances in understanding the molecular background and the biochemical specificities of both primary and secondary hyperammonemias, there remain many open questions: we do not fully understand the pathophysiology in many of the conditions; we do not always understand the highly variable clinical course of affected patients; we clearly appreciate the need for novel and improved diagnostic and therapeutic approaches. This study does look back to the beginning of the urea cycle (hi)story, briefly describes the journey through past decades, hereby illustrating advancements and knowledge gaps, and gives examples for the extremely broad perspective imminent to some of the defects of ureagenesis and allied conditions.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Barbara Siri
- Division of Metabolic Diseases and HepatologyBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Carlo Dionisi‐Vici
- Division of Metabolic Diseases and HepatologyBambino Gesù Children's Hospital IRCCSRomeItaly
| |
Collapse
|
3
|
Al‐Thihli K, Al Hashmi N, Al Balushi A, Al‐Habsi A, Al‐Ajmi E, Al‐Jasmi F, Al‐Murshedi F. A founder mutation in CA5A causing intrafamilial and interfamilial phenotypic variability in a cohort of 18 patients with carbonic anhydrase VA deficiency. JIMD Rep 2024; 65:226-232. [PMID: 38974611 PMCID: PMC11224491 DOI: 10.1002/jmd2.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
Carbonic anhydrase VA (CA-VA) deficiency is a rare cause of hyperammonemia caused by biallelic mutations in CA5A. Most patients present with hyperammonemic encephalopathy in early infancy to early childhood, and patients usually have no further recurrence of hyperammonemia with a favorable outcome. This retrospective cohort study reports 18 patients with CA-VA deficiency caused by homozygosity for a founder mutation, c.59G>A p.(Trp20*) in CA5A. The reported patients show significant intrafamilial and interfamilial variability, and display atypical clinical features. Two adult patients were asymptomatic, 7/18 patients had recurrent hyperammonemia, 7/18 patients developed variable degree of developmental delay, 9/11 patients had hyperCKemia, and 7/18 patients had failure to thrive. Microcephaly was seen in three patients and one patient developed a metabolic stroke. The same variant had been reported already in a single South Asian patient presenting with neonatal hyperammonemic encephalopathy and subsequent development of seizures and developmental delay. This report highlights the limitations of current understanding of the pathomechanisms involved in this disorder, and calls for further evaluation of the possible role of genetic modifiers in this condition.
Collapse
Affiliation(s)
- Khalid Al‐Thihli
- Genetic & Developmental Medicine Clinic, Department of GeneticsSultan Qaboos University HospitalMuscatOman
- Genetics Department, College of Medicine and Health SciencesSultan Qaboos UniversityMuscatOman
| | | | | | - Asila Al‐Habsi
- Department of NursingSultan Qaboos University HospitalMuscatOman
| | - Eiman Al‐Ajmi
- Department of Radiology and Molecular ImagingSultan Qaboos University HospitalMuscatOman
| | - Fatma Al‐Jasmi
- Department of Genetics and Genomics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Department of PediatricsTawam HospitalAl AinUnited Arab Emirates
| | - Fathiya Al‐Murshedi
- Genetic & Developmental Medicine Clinic, Department of GeneticsSultan Qaboos University HospitalMuscatOman
- Genetics Department, College of Medicine and Health SciencesSultan Qaboos UniversityMuscatOman
| |
Collapse
|
4
|
Juretić D, Bonačić Lošić Ž. Theoretical Improvements in Enzyme Efficiency Associated with Noisy Rate Constants and Increased Dissipation. ENTROPY (BASEL, SWITZERLAND) 2024; 26:151. [PMID: 38392406 PMCID: PMC10888251 DOI: 10.3390/e26020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Previous studies have revealed the extraordinarily large catalytic efficiency of some enzymes. High catalytic proficiency is an essential accomplishment of biological evolution. Natural selection led to the increased turnover number, kcat, and enzyme efficiency, kcat/KM, of uni-uni enzymes, which convert a single substrate into a single product. We added or multiplied random noise with chosen rate constants to explore the correlation between dissipation and catalytic efficiency for ten enzymes: beta-galactosidase, glucose isomerase, β-lactamases from three bacterial strains, ketosteroid isomerase, triosephosphate isomerase, and carbonic anhydrase I, II, and T200H. Our results highlight the role of biological evolution in accelerating thermodynamic evolution. The catalytic performance of these enzymes is proportional to overall entropy production-the main parameter from irreversible thermodynamics. That parameter is also proportional to the evolutionary distance of β-lactamases PC1, RTEM, and Lac-1 when natural or artificial evolution produces the optimal or maximal possible catalytic efficiency. De novo enzyme design and attempts to speed up the rate-limiting catalytic steps may profit from the described connection between kinetics and thermodynamics.
Collapse
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, Šetalište Ivana Meštrovića 45, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | | |
Collapse
|
5
|
Canepa E, Parodi-Rullan R, Vazquez-Torres R, Gamallo-Lana B, Guzman-Hernandez R, Lemon NL, Angiulli F, Debure L, Ilies MA, Østergaard L, Wisniewski T, Gutiérrez-Jiménez E, Mar AC, Fossati S. FDA-approved carbonic anhydrase inhibitors reduce amyloid β pathology and improve cognition, by ameliorating cerebrovascular health and glial fitness. Alzheimers Dement 2023; 19:5048-5073. [PMID: 37186121 PMCID: PMC10600328 DOI: 10.1002/alz.13063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Cerebrovascular pathology is an early and causal hallmark of Alzheimer's disease (AD), in need of effective therapies. METHODS Based on the success of our previous in vitro studies, we tested for the first time in a model of AD and cerebral amyloid angiopathy (CAA), the carbonic anhydrase inhibitors (CAIs) methazolamide and acetazolamide, Food and Drug Administration-approved against glaucoma and high-altitude sickness. RESULTS Both CAIs reduced cerebral, vascular, and glial amyloid beta (Aβ) accumulation and caspase activation, diminished gliosis, and ameliorated cognition in TgSwDI mice. The CAIs also improved microvascular fitness and induced protective glial pro-clearance pathways, resulting in the reduction of Aβ deposition. Notably, we unveiled that the mitochondrial carbonic anhydrase-VB (CA-VB) is upregulated in TgSwDI brains, CAA and AD+CAA human subjects, and in endothelial cells upon Aβ treatment. Strikingly, CA-VB silencing specifically reduces Aβ-mediated endothelial apoptosis. DISCUSSION This work substantiates the potential application of CAIs in clinical trials for AD and CAA.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Rebecca Parodi-Rullan
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Rafael Vazquez-Torres
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Begona Gamallo-Lana
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Roberto Guzman-Hernandez
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nicole L. Lemon
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Federica Angiulli
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ludovic Debure
- Department on Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Thomas Wisniewski
- Department on Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Eugenio Gutiérrez-Jiménez
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adam C. Mar
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
6
|
Shovlin CL, Vizcaychipi MP. Vascular inflammation and endothelial injury in SARS-CoV-2 infection: the overlooked regulatory cascades implicated by the ACE2 gene cluster. QJM 2023; 116:629-634. [PMID: 32777054 PMCID: PMC7454888 DOI: 10.1093/qjmed/hcaa241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has presented physicians with an unprecedented number of challenges and mortality. The basic question is why, in contrast to other 'respiratory' viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in such multi-systemic, life-threatening complications and a severe pulmonary vasculopathy. It is widely known that SARS-CoV-2 uses membrane-bound angiotensin-converting enzyme 2 (ACE2) as a receptor, resulting in internalization of the complex by the host cell. We discuss the evidence that failure to suppress coronaviral replication within 5 days results in sustained downregulation of ACE2 protein expression and that ACE2 is under negative-feedback regulation. We then expose openly available experimental repository data that demonstrate the gene for ACE2 lies in a novel cluster of inter-regulated genes on the X chromosome including PIR encoding pirin (quercetin 2,3-dioxygenase), and VEGFD encoding the predominantly lung-expressed vascular endothelial growth factor D. The five double-elite enhancer/promoters pairs that are known to be operational, and shared read-through lncRNA transcripts, imply that ongoing SARS-CoV-2 infection will reduce host defences to reactive oxygen species, directly generate superoxide O2·- and H2O2 (a ' ROS storm'), and impair pulmonary endothelial homeostasis. Published cellular responses to oxidative stress complete the loop to pathophysiology observed in severe COVID-19. Thus, for patients who fail to rapidly suppress viral replication, the newly appreciated ACE2 co-regulated gene cluster predicts delayed responses that would account for catastrophic deteriorations. We conclude that ACE2 homeostatic drives provide a unified understanding that should help optimize therapeutic approaches during the wait until safe, effective vaccines and antiviral therapies for SARS-CoV-2 are delivered.
Collapse
Affiliation(s)
- Claire L Shovlin
- NHLI Vascular Science, Imperial College London, UK
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London UK
| | | |
Collapse
|
7
|
Aspatwar A, Supuran CT, Waheed A, Sly WS, Parkkila S. Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease. J Physiol 2023; 601:257-274. [PMID: 36464834 PMCID: PMC10107955 DOI: 10.1113/jp283579] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Carbonic anhydrase V (CA V), a mitochondrial enzyme, was first isolated from guinea-pig liver and subsequently identified in mice and humans. Later, studies revealed that the mouse genome contains two mitochondrial CA sequences, named Car5A and Car5B. The CA VA enzyme is most highly expressed in the liver, whereas CA VB shows a broad tissue distribution. Car5A knockout mice demonstrated a predominant role for CA VA in ammonia detoxification, whereas the roles of CA VB in ureagenesis and gluconeogenesis were evident only in the absence of CA VA. Previous studies have suggested that CA VA is mainly involved in the provision of HCO3 - for biosynthetic processes. In children, mutations in the CA5A gene led to reduced CA activity, and the enzyme was sensitive to increased temperature. The metabolic profiles of these children showed a reduced supply of HCO3 - to the enzymes that take part in intermediary metabolism: carbamoylphosphate synthetase, pyruvate carboxylase, propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. Although the role of CA VB is still poorly understood, a recent study reported that it plays an essential role in human Sertoli cells, which sustain spermatogenesis. Metabolic disease associated with CA VA appears to be more common than other inborn errors of metabolism and responds well to treatment with N-carbamyl-l-glutamate. Therefore, early identification of hyperammonaemia will allow specific treatment with N-carbamyl-l-glutamate and prevent neurological sequelae. Carbonic anhydrase VA deficiency should therefore be considered a treatable condition in the differential diagnosis of hyperammonaemia in neonates and young children.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
8
|
Hyperammonemia in Russia Due to Carbonic Anhydrase VA Deficiency Caused by Homozygous Mutation p.Lys185Lys (c.555G>A) of the CA5A Gene. Int J Mol Sci 2022; 23:ijms232315026. [PMID: 36499355 PMCID: PMC9739189 DOI: 10.3390/ijms232315026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Hyperammonemia due to carbonic anhydrase VA deficiency (OMIM# 615751) is a rare, life-threatening hereditary disease caused by biallelic mutations in the CA5A gene, presenting as encephalopathic hyperammonemia of unexplained origin during the neonatal period and infancy. Here, we present a detailed description of a 5-year-old patient with the homozygous mutation p.Lys185Lys (c.555G>A) in the CA5A gene. This variant was previously described by van Karnebeek et al. in 2014 in a boy of Russian origin. We found a high frequency of carriers of this mutation in Russia; 1:213, which is 7 times higher than the expected frequency calculated based on data on Western European populations. Thus, targeted testing for the mutation p.Lys185Lys (c.555G>A) in the CA5A gene should be useful for early detection by selective screening in neonatal intensive care units.
Collapse
|
9
|
Stockdale C, Bowron A, Appleton M, Richardson R, Anderson M. Recurrent hyperammonaemia in a patient with carbonic anhydrase VA deficiency. JIMD Rep 2022; 63:536-539. [PMID: 36341166 PMCID: PMC9626664 DOI: 10.1002/jmd2.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/08/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Carbonic anhydrase VA deficiency is a recently described inherited cause of paediatric hyperammonaemia. Most published cases describe patients with only one episode of hyperammonaemia whilst others report patients who had up to three metabolic crises with the first invariably being the most severe. We describe a patient with carbonic anhydrase VA deficiency who experienced 7 hyperammonemic episodes over a 3-year period, up to age 5 years 9 months. These episodes did not clearly decrease in severity over time. This report expands the clinical phenotype and the age window for metabolic crises associated with this condition.
Collapse
Affiliation(s)
- Christopher Stockdale
- Department of Blood SciencesNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Ann Bowron
- Department of Blood SciencesNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Marie Appleton
- Department of Blood SciencesNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Ruth Richardson
- Northern Genetics ServiceNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Mark Anderson
- Great North Children's HospitalNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
10
|
Mani Urmila N, Kewalramani D, Balakrishnan U, Kumar Manokaran R. A case of carbonic anhydrase type VA deficiency presenting as West Syndrome in an infant with a novel mutation in the CA-VA gene. Epilepsy Behav Rep 2022; 20:100573. [DOI: 10.1016/j.ebr.2022.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
|
11
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
12
|
Miller MJ, Luu SM, Graham BH. Acute Hyperammonemia, Lactic Acidosis, and Ketoacidosis in a Developmentally Normal Child. Clin Chem 2021; 67:1572-1574. [PMID: 34726698 DOI: 10.1093/clinchem/hvab112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Marcus J Miller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Sharon M Luu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
13
|
Tip60 might be a candidate for the acetylation of hepatic carbonic anhydrase I and III in mice. Mol Biol Rep 2021; 48:7397-7404. [PMID: 34651296 DOI: 10.1007/s11033-021-06753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) play a significant role in maintaining pH balance by catalyzing the conversion of carbon dioxide to bicarbonate. The regulation of pH is critical for all living organisms. Although there are many studies in the literature on the biochemical, functional, and structural features of CAs, there is not sufficient information about the epigenetic regulation of CAs. METHODS AND RESULTS The lysine acetyltransferase TIP60 (60 kDa Tat-interactive protein) was knocked out specifically in mouse liver using the Cre/loxP system, and knockout rate was shown as 83-88% by Southern blot analysis. The impact of Tip60 on the expression of Ca1, Ca3, and Ca7 was investigated at six Zeitgeber time (ZT) points in the control and liver-specific Tip60 knockout mice (mutant) groups by real-time PCR. In the control group, while Ca1 showed the highest expression at ZT8 and ZT12, the lowest expression profile was observed at ZT0 and ZT20. Hepatic Ca1 displayed robust circadian expression. However, hepatic Ca3 exhibited almost the same level of expression at all ZT points. The highest expression of Ca7 was observed at ZT12, and the lowest expression was determined at ZT4. Furthermore, hepatic Ca7 also showed robust circadian expression. The expression of Ca1 and Ca3 significantly decreased in mutant mice at all time periods, but the expression of Ca7 used as a negative control was not affected. CONCLUSIONS It was suggested for the first time that Tip60 might be considered a candidate protein in the regulation of the Ca1 and Ca3 genes, possibly by acetylation.
Collapse
|
14
|
Singanamalla B, Saini AG, Attri SV, Suthar R, Mukhopadhyay K. Carbonic Anhydrase-VA Deficiency: A Close Mimicker of Urea Cycle Disorders. Ann Indian Acad Neurol 2021; 24:820-821. [PMID: 35002167 PMCID: PMC8680920 DOI: 10.4103/aian.aian_563_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Bhanudeep Singanamalla
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Savita Verma Attri
- Pediatric Biochemistry, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Kanya Mukhopadhyay
- Neonatology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
15
|
Sharma G, Bhattacharya R, Krishna S, Alomar SY, Alkhuriji AF, Warepam M, Kumari K, Rahaman H, Singh LR. Structural and Functional Characterization of Covalently Modified Proteins Formed By a Glycating Agent, Glyoxal. ACS OMEGA 2021; 6:20887-20894. [PMID: 34423196 PMCID: PMC8374913 DOI: 10.1021/acsomega.1c02300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
Glycation, the main consequence of hyperglycemia, is one of the major perpetrators of diabetes and several other conditions, including coronary and neurodegenerative complications. Such a hyperglycemic condition is represented by a large increase in levels of various glycation end products including glyoxal, methylglyoxal, and carboxymethyl-lysine among others. These glycation end products are known to play a crucial role in diabetic complications due to their ability to covalently modify important proteins and enzymes, specifically at lysine residues (a process termed as glycation), making them non-functional. Previous studies have largely paid attention on characterization and identification of these reactive glycating agents. Structural and functional consequences of proteins affected by glycation have not yet been critically investigated. We have made a systematic investigation on the early conformational changes and functional alterations brought about by a glycating agent, glyoxal, on different proteins. We found that the early event in glycation includes an increase in hydrodynamic diameter, followed by minor structural alterations sufficient to impair enzyme activity. The study indicates the importance of glyoxal-induced early structural alteration of proteins toward the pathophysiology of hyperglycemia/diabetes and associated conditions.
Collapse
Affiliation(s)
- Gurumayum
Suraj Sharma
- Department
of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110095, India
| | - Reshmee Bhattacharya
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Snigdha Krishna
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Suliman Y. Alomar
- Doping
Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afrah F. Alkhuriji
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11495, Saudi Arabia
| | - Marina Warepam
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | - Kritika Kumari
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Hamidur Rahaman
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | | |
Collapse
|
16
|
Trampert DC, van de Graaf SFJ, Jongejan A, Oude Elferink RPJ, Beuers U. Hepatobiliary acid-base homeostasis: Insights from analogous secretory epithelia. J Hepatol 2021; 74:428-441. [PMID: 33342564 DOI: 10.1016/j.jhep.2020.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Many epithelia secrete bicarbonate-rich fluid to generate flow, alter viscosity, control pH and potentially protect luminal and intracellular structures from chemical stress. Bicarbonate is a key component of human bile and impaired biliary bicarbonate secretion is associated with liver damage. Major efforts have been undertaken to gain insight into acid-base homeostasis in cholangiocytes and more can be learned from analogous secretory epithelia. Extrahepatic examples include salivary and pancreatic duct cells, duodenocytes, airway and renal epithelial cells. The cellular machinery involved in acid-base homeostasis includes carbonic anhydrase enzymes, transporters of the solute carrier family, and intra- and extracellular pH sensors. This pH-regulatory system is orchestrated by protein-protein interactions, the establishment of an electrochemical gradient across the plasma membrane and bicarbonate sensing of the intra- and extracellular compartment. In this review, we discuss conserved principles identified in analogous secretory epithelia in the light of current knowledge on cholangiocyte physiology. We present a framework for cholangiocellular acid-base homeostasis supported by expression analysis of publicly available single-cell RNA sequencing datasets from human cholangiocytes, which provide insights into the molecular basis of pH homeostasis and dysregulation in the biliary system.
Collapse
Affiliation(s)
- David C Trampert
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Ulrich Beuers
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Bernal AC, Tubio MC, Crespo C, Eiroa HD. Clinical and Genetic Characterization and Biochemical Correlation at Presentation in 48 Patients Diagnosed with Urea Cycle Disorders at the Hospital Juan P Garrahan, Argentina. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
18
|
Marwaha A, Ibrahim J, Rice T, Hamwi N, Rupar CA, Cresswell D, Prasad C, Schulze A. Two cases of carbonic anhydrase VA deficiency-An ultrarare metabolic decompensation syndrome presenting with hyperammonemia, lactic acidosis, ketonuria, and good clinical outcome. JIMD Rep 2021; 57:9-14. [PMID: 33473334 PMCID: PMC7802620 DOI: 10.1002/jmd2.12171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/03/2022] Open
Abstract
The combination of neonatal hyperammonemia, lactic acidosis, ketonuria, and hypoglycemia is pathognomonic for carbonic anhydrase VA (CA-VA) deficiency. We present two cases of this rare inborn error of metabolism. Both newborns with South Asian ancestry presented with a metabolic decompensation characterized by hyperammonemia, lactic acidosis and ketonuria; one also had hypoglycemia. Standard metabolic investigations (plasma amino acids, acylcarnitine profile, and urine organic acids) were not indicative of a specific organic aciduria or fatty acid oxidation defect but had some overlapping features with a urea cycle disorder (elevated glutamine, orotic acid, and low arginine). Hyperammonemia was treated initially with nitrogen scavenger therapy and carglumic acid. One patient required hemodialysis. Both have had a favorable long-term prognosis after their initial metabolic decompensation. Genetic testing confirmed the diagnosis of carbonic anhydrase VA (CA-VA) deficiency due to biallelic pathogenic variants in CA5A. These cases are in line with 15 cases previously described in the literature, making the phenotypic presentation pathognomonic for this ultrarare (potentially underdiagnosed) inborn error of metabolism with a good prognosis.
Collapse
Affiliation(s)
- Ashish Marwaha
- Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Judy Ibrahim
- Department of Academic AffairsTawam HospitalAl AinAbu DhabiUnited Arab Emirates
| | - Taylor Rice
- Schulich School of Medicine & DentistryLondonOntarioCanada
| | - Nadia Hamwi
- Department of Academic AffairsTawam HospitalAl AinAbu DhabiUnited Arab Emirates
| | - Charles Anthony Rupar
- Department of BiochemistryWestern UniversityLondonOntarioCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
- Department of PediatricsWestern UniversityLondonOntarioCanada
| | - David Cresswell
- Department of PediatricsGrand River HospitalKitchenerOntarioCanada
| | - Chitra Prasad
- Department of PediatricsWestern UniversityLondonOntarioCanada
| | - Andreas Schulze
- Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
19
|
Smit IA, Afzal AM, Allen CHG, Svensson F, Hanser T, Bender A. Systematic Analysis of Protein Targets Associated with Adverse Events of Drugs from Clinical Trials and Postmarketing Reports. Chem Res Toxicol 2020; 34:365-384. [PMID: 33351593 DOI: 10.1021/acs.chemrestox.0c00294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adverse drug reactions (ADRs) are undesired effects of medicines that can harm patients and are a significant source of attrition in drug development. ADRs are anticipated by routinely screening drugs against secondary pharmacology protein panels. However, there is still a lack of quantitative information on the links between these off-target proteins and the reporting of ADRs in humans. Here, we present a systematic analysis of associations between measured and predicted in vitro bioactivities of drugs and adverse events (AEs) in humans from two sources of data: the Side Effect Resource, derived from clinical trials, and the Food and Drug Administration Adverse Event Reporting System, derived from postmarketing surveillance. The ratio of a drug's therapeutic unbound plasma concentration over the drug's in vitro potency against a given protein was used to select proteins most likely to be relevant to in vivo effects. In examining individual target bioactivities as predictors of AEs, we found a trade-off between the positive predictive value and the fraction of drugs with AEs that can be detected. However, considering sets of multiple targets for the same AE can help identify a greater fraction of AE-associated drugs. Of the 45 targets with statistically significant associations to AEs, 30 are included on existing safety target panels. The remaining 15 targets include 9 carbonic anhydrases, of which CA5B is significantly associated with cholestatic jaundice. We include the full quantitative data on associations between measured and predicted in vitro bioactivities and AEs in humans in this work, which can be used to make a more informed selection of safety profiling targets.
Collapse
Affiliation(s)
- Ines A Smit
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Avid M Afzal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Chad H G Allen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Fredrik Svensson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thierry Hanser
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Andreas Bender
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
20
|
Kenneson A, Singh RH. Presentation and management of N-acetylglutamate synthase deficiency: a review of the literature. Orphanet J Rare Dis 2020; 15:279. [PMID: 33036647 PMCID: PMC7545900 DOI: 10.1186/s13023-020-01560-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND N-Acetylglutamate synthase (NAGS) deficiency is an extremely rare autosomal recessive metabolic disorder affecting the urea cycle, leading to episodes of hyperammonemia which can cause significant morbidity and mortality. Since its recognition in 1981, NAGS deficiency has been treated with carbamylglutamate with or without other measures (nutritional, ammonia scavengers, dialytic, etc.). We conducted a systematic literature review of NAGS deficiency to summarize current knowledge around presentation and management. METHODS Case reports and case series were identified using the Medline database, as well as references from other articles and a general internet search. Clinical data related to presentation and management were abstracted by two reviewers. RESULTS In total, 98 cases of NAGS deficiency from 79 families, in 48 articles or abstracts were identified. Of these, 1 was diagnosed prenatally, 57 were neonatal cases, 34 were post-neonatal, and 6 did not specify age at presentation or were asymptomatic at diagnosis. Twenty-one cases had relevant family history. We summarize triggers of hyperammonemic episodes, diagnosis, clinical signs and symptoms, and management strategies. DNA testing is the preferred method of diagnosis, although therapeutic trials to assess response of ammonia levels to carbamylglutamate may also be helpful. Management usually consists of treatment with carbamylglutamate, although the reported maintenance dose varied across case reports. Protein restriction was sometimes used in conjunction with carbamylglutamate. Supplementation with citrulline, arginine, and sodium benzoate also were reported. CONCLUSIONS Presentation of NAGS deficiency varies by age and symptoms. In addition, both diagnosis and management have evolved over time and vary across clinics. Prompt recognition and appropriate treatment of NAGS deficiency with carbamylglutamate may improve outcomes of affected individuals. Further research is needed to assess the roles of protein restriction and supplements in the treatment of NAGS deficiency, especially during times of illness or lack of access to carbamylglutamate.
Collapse
Affiliation(s)
- Aileen Kenneson
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| | - Rani H Singh
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Mitochondrial carbonic anhydrase VA deficiency in three Indian infants manifesting early metabolic crisis. Brain Dev 2020; 42:534-538. [PMID: 32381389 DOI: 10.1016/j.braindev.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/04/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hyperammonemia and hyperlactatemia in neonates and young children with non-specific biochemical markers poses a diagnostic challenge. An accurate diagnosis is essential for effective management. CASE REPORTS We present three infants from unrelated families, one with infantile and two with neonatal hyperammonemic encephalopathy, hypoglycaemia, and hyperlactatemia. The underlying cause was confirmed following whole exome sequencing as biochemical markers were not conclusive of a definite diagnosis. CONCLUSION The combination of hyperammonemic encephalopathy, hyperlactatemia and hypoglycemia in neonates and infants should prompt physicians to suspect Carbonic anhydrase VA deficiency. Majority of these children can have a favourable long-term outcome with symptomatic treatment.
Collapse
|
22
|
Häberle J, Rüfenacht V. Response to Baertling et al. Genet Med 2020; 22:656. [DOI: 10.1038/s41436-019-0678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022] Open
|
23
|
Fatal metabolic decompensation in carbonic anhydrase VA deficiency despite early treatment and control of hyperammonemia. Genet Med 2019; 22:654-655. [PMID: 31641285 DOI: 10.1038/s41436-019-0677-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
|
24
|
Kumar V, Athreya R, Achuta SK, Sundarraju S. Case 3: An Unusual Case of Transient Neonatal Encephalopathy. Neoreviews 2019; 20:e472-e474. [PMID: 31371557 DOI: 10.1542/neo.20-8-e472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Vijay Kumar
- Department of Neonatology, Rainbow Children's Hospital, Marathahalli, Bengaluru, India
| | - Rajath Athreya
- Department of Neonatology, Rainbow Children's Hospital, Marathahalli, Bengaluru, India
| | - Sushma Kalyan Achuta
- Department of Neonatology, Rainbow Children's Hospital, Marathahalli, Bengaluru, India
| | - Sahana Sundarraju
- Department of Neonatology, Rainbow Children's Hospital, Marathahalli, Bengaluru, India
| |
Collapse
|
25
|
Jakubowski M, Szahidewicz-Krupska E, Doroszko A. The Human Carbonic Anhydrase II in Platelets: An Underestimated Field of Its Activity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4548353. [PMID: 30050931 PMCID: PMC6046183 DOI: 10.1155/2018/4548353] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
Carbonic anhydrases constitute a group of enzymes that catalyse reversible hydration of carbon dioxide leading to the formation of bicarbonate and proton. The platelet carbonic anhydrase II (CAII) was described for the first time in the '80s of the last century. Nevertheless, its direct role in platelet physiology and pathology still remains poorly understood. The modulation of platelet CAII action as a therapeutic approach holds promise as a novel strategy to reduce the impact of cardiovascular diseases. This short review paper summarises the current knowledge regarding the role of human CAII in regulating platelet function. The potential future directions considering this enzyme as a potential drug target and important pathophysiological chain in platelet-related disorders are described.
Collapse
Affiliation(s)
- Maciej Jakubowski
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Ewa Szahidewicz-Krupska
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Adrian Doroszko
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
26
|
van Karnebeek CDM, Wortmann SB, Tarailo-Graovac M, Langeveld M, Ferreira CR, van de Kamp JM, Hollak CE, Wasserman WW, Waterham HR, Wevers RA, Haack TB, Wanders RJA, Boycott KM. The role of the clinician in the multi-omics era: are you ready? J Inherit Metab Dis 2018; 41:571-582. [PMID: 29362952 PMCID: PMC5959952 DOI: 10.1007/s10545-017-0128-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
Since Garrod's first description of alkaptonuria in 1902, and newborn screening for phenylketonuria introduced in the 1960s, P4 medicine (preventive, predictive, personalized, and participatory) has been a reality for the clinician serving patients with inherited metabolic diseases. The era of high-throughput technologies promises to accelerate its scale dramatically. Genomics, transcriptomics, epigenomics, proteomics, glycomics, metabolomics, and lipidomics offer an amazing opportunity for holistic investigation and contextual pathophysiologic understanding of inherited metabolic diseases for precise diagnosis and tailored treatment. While each of the -omics technologies is important to systems biology, some are more mature than others. Exome sequencing is emerging as a reimbursed test in clinics around the world, and untargeted metabolomics has the potential to serve as a single biochemical testing platform. The challenge lies in the integration and cautious interpretation of these big data, with translation into clinically meaningful information and/or action for our patients. A daunting but exciting task for the clinician; we provide clinical cases to illustrate the importance of his/her role as the connector between physicians, laboratory experts and researchers in the basic, computer, and clinical sciences. Open collaborations, data sharing, functional assays, and model organisms play a key role in the validation of -omics discoveries. Having all the right expertise at the table when discussing the diagnostic approach and individualized management plan according to the information yielded by -omics investigations (e.g., actionable mutations, novel therapeutic interventions), is the stepping stone of P4 medicine. Patient participation and the adjustment of the medical team's plan to his/her and the family's wishes most certainly is the capstone. Are you ready?
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Department of Pediatrics and Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands.
- Departments of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, BC, Canada.
- Deparment of Pediatrics (Room H7-224), Emma Children's Hospital, Academic Medical Centre, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Saskia B Wortmann
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Maja Tarailo-Graovac
- Departments of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, BC, Canada
- Departments of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, Vancouver, BC, Canada
- Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, CA, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, CA, Canada
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Academic Medical Centre, Amsterdam, The Netherlands
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiddeke M van de Kamp
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Carla E Hollak
- Department of Endocrinology and Metabolism, Academic Medical Centre, Amsterdam, The Netherlands
| | - Wyeth W Wasserman
- Departments of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, BC, Canada
- Departments of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, Vancouver, BC, Canada
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Laboratory Division & Department of Pediatrics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Laboratory Division & Department of Pediatrics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|