1
|
Delvaux NA, Rice KG. The Reduced-Charge Melittin Analogue MelP5 Improves the Transfection of Non-Viral DNA Nanoparticles. J Pept Sci 2022; 28:e3404. [PMID: 35001445 PMCID: PMC10069327 DOI: 10.1002/psc.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/07/2022]
Abstract
Melittin is a 26 amino acid amphiphilic alpha-helical peptide derived from honeybee venom. Prior studies have incorporated melittin into non-viral delivery systems to effect endosomal escape of DNA nanoparticles and improve transfection efficiency. Recent advances have led to the development of two newer melittin analogues, MelP5 and Macrolittin 70, with improved pore formation in lipid bilayers while possessing fewer positive charges relative to natural melittin. Consequently, MelP5 and Macrolittin 70 were conjugated through a disulfide bond to a DNA binding polyacridine peptide. The resulting peptide conjugates were used to prepare DNA nanoparticles to compare their relative endosomolytic potency by transfection of HepG2 cells. Melittin and MelP5 conjugates were equally potent at mediating in vitro gene transfer, whereas PEGylation of DNA nanoparticles revealed improved transfection with MelP5 relative to melittin. The results demonstrate the ability to substitute a potent, reduced charge analogue of melittin to improve overall DNA nanoparticle biocompatibility needed for in vivo testing.
Collapse
Affiliation(s)
- Nathan A Delvaux
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
2
|
Huang X, Wu G, Liu C, Hua X, Tang Z, Xiao Y, Chen W, Zhou J, Kong N, Huang P, Shi J, Tao W. Intercalation-Driven Formation of siRNA Nanogels for Cancer Therapy. NANO LETTERS 2021; 21:9706-9714. [PMID: 34723546 DOI: 10.1021/acs.nanolett.1c03539] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
RNA interference (RNAi) is a powerful approach in the treatment of various diseases including cancers. The clinical translation of small interfering RNA (siRNA)-based therapy requires safe and efficient delivery vehicles. Here, we report a siRNA nanogels (NG)-based delivery vehicle, which is driven directly by the intercalation between nucleic acid bis-intercalator and siRNA molecules. The intercalation-based siRNA NG exhibits good physiological stability and can enter cells efficiently via different endocytosis pathways. Furthermore, the siRNA NG can not only silence the target genes in vitro but also significantly inhibit the tumor growth in vivo. Therefore, this study provides an intercalation-based strategy for the development of a siRNA delivery platform for cancer therapy. To the best of our knowledge, this is the first report of the intercalation-driven siRNA NG.
Collapse
Affiliation(s)
- Xiangang Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xianwu Hua
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yufen Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Ramanathan R, Delvaux NA, Rice KG. Gene transfection of primary mouse hepatocytes in 384-well plates. Anal Biochem 2020; 644:113911. [PMID: 32910973 PMCID: PMC7936984 DOI: 10.1016/j.ab.2020.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022]
Abstract
We report the development of an improved in vitro transfection assay to test the efficiency of non-viral vector DNA nanoparticle transfection of primary hepatocytes. The protocol describes the isolation of viable hepatocytes from a mouse by collagenous perfusion. Primary mouse hepatocytes are plated in 384-well plates and cultured for 24 h prior to transfection with polyethylenimine (PEI) or peptide DNA nanoparticles. Luciferase expression is measured after 24 h following the addition of ONE-Glo substrate. The gene transfer assay for primary hepatocytes was optimized for cell plating number, DNA dose, and PEI to DNA ratio. The assay was applied to compare the expression mediated by mRNA relative to two plasmids possessing different promoters. The reported assay provides reliable in vitro expression results that allow direct comparison of the efficiency of different non-viral gene delivery vectors.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Nathan A Delvaux
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Duskey JT, Baraldi C, Gamberini MC, Ottonelli I, Da Ros F, Tosi G, Forni F, Vandelli MA, Ruozi B. Investigating Novel Syntheses of a Series of Unique Hybrid PLGA-Chitosan Polymers for Potential Therapeutic Delivery Applications. Polymers (Basel) 2020; 12:polym12040823. [PMID: 32260469 PMCID: PMC7249265 DOI: 10.3390/polym12040823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/23/2023] Open
Abstract
Discovering new materials to aid in the therapeutic delivery of drugs is in high demand. PLGA, a FDA approved polymer, is well known in the literature to form films or nanoparticles that can load, protect, and deliver drug molecules; however, its incompatibility with certain drugs (due to hydrophilicity or charge repulsion interactions) limits its use. Combining PLGA or other polymers such as polycaprolactone with other safe and positively-charged molecules, such as chitosan, has been sought after to make hybrid systems that are more flexible in terms of loading ability, but often the reactions for polymer coupling use harsh conditions, films, unpurified products, or create a single unoptimized product. In this work, we aimed to investigate possible innovative improvements regarding two synthetic procedures. Two methods were attempted and analytically compared using nuclear magnetic resonance (NMR), fourier-transform infrared spectroscopy (FT-IR), and dynamic scanning calorimetry (DSC) to furnish pure, homogenous, and tunable PLGA-chitosan hybrid polymers. These were fully characterized by analytical methods. A series of hybrids was produced that could be used to increase the suitability of PLGA with previously non-compatible drug molecules.
Collapse
Affiliation(s)
- Jason Thomas Duskey
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Umberto Veronesi Foundation, 20121 Milano, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (C.B.); (M.C.G.)
| | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (C.B.); (M.C.G.)
| | - Ilaria Ottonelli
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Da Ros
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Giovanni Tosi
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Flavio Forni
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Maria Angela Vandelli
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Barbara Ruozi
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Correspondence:
| |
Collapse
|
5
|
Heat-shrinking DNA nanoparticles for in vivo gene delivery. Gene Ther 2020; 27:196-208. [PMID: 31900424 DOI: 10.1038/s41434-019-0117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
The particle size of a PEG-peptide DNA nanoparticle is a key determinant of biodistribution following i.v. dosing. DNA nanoparticles of <100 nm in diameter are sufficiently small to cross through fenestrated endothelial cells to target hepatocytes in the liver. In addition, DNA nanoparticles must be close to charge-neutral to avoid recognition and binding to scavenger receptors found on Kupffer cells and endothelial cells in the liver. In the present study, we demonstrate an approach to heat shrink DNA nanoparticles to reduce their size to <100 nm to target hepatocytes. An optimized protocol heated plasmid DNA at 100 °C for 10 min resulting in partial denaturation. The immediate addition of a polyacridine PEG-peptide followed by cooling to room temperature resulted in heat-shrunken DNA nanoparticles that were ~70 nm in diameter compared with 170 nm when heating was omitted. Heat shrinking resulted in the conversion of supercoiled DNA into open circular to remove strain during compaction. Heat-shrunken DNA nanoparticles were stable to freeze-drying and reconstitution in saline. Hydrodynamic dosing established that 70 nm heat-shrunken DNA nanoparticles efficiently expressed luciferase in mouse liver. Biodistribution studies revealed that 70 nm DNA nanoparticles are rapidly and transiently taken up by liver whereas 170 nm DNA nanoparticles avoid liver uptake due to their larger size. The results provide a new approach to decrease the size of polyacridine PEG-peptide DNA nanoparticles to allow penetration of the fenestrated endothelium of the liver for the purpose of transfecting hepatocytes in vivo.
Collapse
|
6
|
Uchida S, Kataoka K. Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA. J Biomed Mater Res A 2019; 107:978-990. [PMID: 30665262 DOI: 10.1002/jbm.a.36614] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Nonviral delivery of plasmid (p)DNA or messenger (m)RNA is a safe and promising therapeutic option to continuously supply therapeutic proteins into diseased tissues. In most cases of in vivo pDNA and mRNA delivery, these nucleic acids are loaded into carriers based on cationic polymers and/or lipids to prevent nuclease-mediated degradation before reaching target cells. The carriers should also evade host clearance mechanisms, including uptake by scavenger cells and filtration in the spleen. Installation of ligands onto the carriers can facilitate their rapid uptake into target cells. Meanwhile, carrier toxicity should be minimized not only for preventing undesirable adverse responses in patients, but also for preserving the function of transfected cells to exert therapeutic effects. Long-term progressive improvement of platform technologies has helped overcome most of these issues, though some still remain hindering the widespread clinical application of nonviral pDNA and mRNA delivery. This review discusses design concepts of nonviral carriers for in vivo delivery and the issues to be overcome, focusing especially on our own efforts using polyplex micelles. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 978-990, 2019.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.,Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Metabolically stabilized double-stranded mRNA polyplexes. Gene Ther 2018; 25:473-484. [PMID: 30154525 DOI: 10.1038/s41434-018-0038-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The metabolic instability of mRNA currently limits its utility for gene therapy. Compared to plasmid DNA, mRNA is significantly more susceptible to digestion by RNase in the circulation following systemic dosing. To increase mRNA metabolic stability, we hybridized a complementary reverse mRNA with forward mRNA to generate double-stranded mRNA (dsmRNA). RNase A digestion of dsmRNA established a 3000-fold improved metabolic stability compared to single-stranded mRNA (ssmRNA). Formulation of a dsmRNA polyplex using a PEG-peptide further improved the stability by 3000-fold. Hydrodynamic dosing and quantitative bioluminescence imaging of luciferase expression in the liver of mice established the potent transfection efficiency of dsmRNA and dsmRNA polyplexes. However, hybridization of the reverse mRNA against the 5' and 3' UTR of forward mRNA resulted in UTR denaturation and a tenfold loss in expression. Repeat dosing of dsmRNA polyplexes produced an equivalent transient expression, suggesting the lack of an immune response in mice. Co-administration of excess uncapped dsmRNA with a dsmRNA polyplex failed to knock down expression, suggesting that dsmRNA is not a Dicer substrate. Maximal circulatory stability was achieved using a fully complementary dsmRNA polyplex. The results established dsmRNA as a novel metabolically stable and transfection-competent form of mRNA.
Collapse
|
8
|
Allen RJ, Mathew B, Rice KG. PEG-Peptide Inhibition of Scavenger Receptor Uptake of Nanoparticles by the Liver. Mol Pharm 2018; 15:3881-3891. [PMID: 30052459 DOI: 10.1021/acs.molpharmaceut.8b00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PEGylated polylysine peptides represent a new class of scavenger receptor inhibitors that may find utility at inhibiting DNA nanoparticle uptake by Kupffer cells in the liver. PEG-peptides inhibit scavenger receptors in the liver by a novel mechanism involving in situ formation of albumin nanoparticles. The present study developed a new in vivo assay used to explore the structure-activity-relationships of PEG-peptides to find potent scavenger receptor inhibitors. Radio-iodinated PEG-peptides were dosed i.v. in mice and shown to saturate liver uptake in a dose-dependent fashion. The inhibition potency (IC50) was dependent on both the length of a polylysine repeat and PEG molecular weight. PEG30kda-Cys-Tyr-Lys25 was confirmed to be a high molecular weight (33.5 kDa) scavenger receptor inhibitor with an IC50 of 18 μM. Incorporation of multiple Leu residues improved potency, allowing a decrease in PEG MW and Lys repeat, resulting in PEG5kda-Cys-Tyr-Lys-(Leu-Lys4)3-Leu-Lys that inhibited scavenger receptors with an IC50 = 20 μM. A further decrease in PEG MW to 2 kDa increased potency further, resulting in a low molecular weight (4403 g/mol) PEG-peptide with an IC50 of 3 μM. Optimized low molecular weight PEG-peptides also demonstrated potency when inhibiting the uptake of radio-iodinated DNA nanoparticles by the liver. This study demonstrates an approach to discover low molecular weight PEG-peptides that serve as potent scavenger receptor inhibitors to block nanoparticle uptake by the liver.
Collapse
Affiliation(s)
- Rondine J Allen
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Basil Mathew
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy , University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
9
|
Chertok B, Langer R, Anderson DG. Spatial Control of Gene Expression by Nanocarriers Using Heparin Masking and Ultrasound-Targeted Microbubble Destruction. ACS NANO 2016; 10:7267-7278. [PMID: 27472268 PMCID: PMC5240524 DOI: 10.1021/acsnano.6b01199] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We developed a method to spatially control gene expression following nonviral delivery of DNA. This method includes surface-modifying DNA nanocarriers with heparin to inhibit passive gene transfer in both the target and the off-target tissues and using ultrasound-targeted microbubble destruction (UTMD) to selectively activate heparin-inhibited gene transfer at the target site. We observed that the engraftment of heparin onto the surface of cationic liposomes reduced off-target gene expression in the liver, a major site of nanoplex accumulation, by more than 700-fold compared to the nonheparinized PEGylated liposomes. We further observed that tumor-directed UTMD increased gene transfer with heparin-modified nanoplexes by more than 10-fold. This method augmented tumor-to-liver selectivity of gene expression by 4000-fold compared to controls. We conclude that heparinization of DNA nanocarriers in conjunction with localized activation of gene transfer by UTMD may enable greater spatial control over genetic therapy.
Collapse
Affiliation(s)
- Beata Chertok
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Robert Langer
- Department of Chemical Engineering, MIT , Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, MIT , Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering & Science, MIT , Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel G Anderson
- Department of Chemical Engineering, MIT , Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, MIT , Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering & Science, MIT , Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Baumhover NJ, Duskey JT, Khargharia S, White CW, Crowley ST, Allen RJ, Rice KG. Structure-Activity Relationship of PEGylated Polylysine Peptides as Scavenger Receptor Inhibitors for Non-Viral Gene Delivery. Mol Pharm 2015; 12:4321-8. [PMID: 26485572 DOI: 10.1021/acs.molpharmaceut.5b00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PEGylated polylysine peptides of the general structure PEG30 kDa-Cys-Trp-LysN (N = 10 to 30) were used to form fully condensed plasmid DNA (pGL3) polyplexes at a ratio of 1 nmol of peptide per μg of DNA (ranging from N:P 3:1 to 10:1 depending on Lys repeat). Co-administration of 5 to 80 nmols of excess PEG-peptide with fully formed polyplexes inhibited the liver uptake of (125)I-pGL3-polyplexes. The percent inhibition was dependent on the PEG-peptide dose and was saturable, consistent with inhibition of scavenger receptors. The scavenger receptor inhibition potency of PEG-peptides was dependent on the length of the Lys repeat, which increased 10-fold when comparing PEG30 kDa-Cys-Trp-Lys10 (IC50 of 20.2 μM) with PEG30 kDa-Cys-Trp-Lys25 (IC50 of 2.1 μM). We hypothesize that PEG-peptides inhibit scavenger receptors by spontaneously forming small 40 to 60 nm albumin nanoparticles that bind to and saturate the receptor. Scavenger receptor inhibition delayed the metabolism of pGL3-polyplexes, resulting in efficient gene expression in liver hepatocytes following delayed hydrodynamic dosing. PEG-peptides represent a new class of scavenger inhibitors that will likely have broad utility in blocking unwanted liver uptake and metabolism of a variety of nanoparticles.
Collapse
Affiliation(s)
- Nicholas J Baumhover
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Jason T Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Sanjib Khargharia
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Christopher W White
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Rondine J Allen
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
11
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
12
|
Efficient expression of stabilized mRNA PEG-peptide polyplexes in liver. Gene Ther 2015; 22:993-9. [PMID: 26125604 PMCID: PMC4670273 DOI: 10.1038/gt.2015.68] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/14/2015] [Accepted: 06/23/2015] [Indexed: 12/17/2022]
Abstract
The expression efficiency in liver following hydrodynamic delivery of in vitro transcribed mRNA was improved 2000-fold using a codon-optimized mRNA luciferase construct with flanking 3' and 5' human β-globin untranslated regions (UTR mRNA) over an un-optimized mRNA without β-globin UTRs. Nanoparticle UTR mRNA polyplexes were formed using a novel polyacridine PEG-peptide, resulting in an additional 15-fold increase in expression efficiency in the liver. The combined increase in expression for UTR mRNA PEG-peptide polyplexes was 3500-fold over mRNA lacking UTRs and PEG-peptide. The expression efficiency of UTR mRNA polyplex was 10-fold greater than the expression from an equivalent 1 µg dose of pGL3. Maximal expression was maintained from 4 to 24 hours. Serum incubation established the unique ability of the polyacridine PEG-peptide to protect UTR mRNA polyplexes from RNase metabolism by binding to double stranded regions. UTR mRNA PEG-peptide polyplexes are efficient non-viral vectors that circumvent the need for nuclear uptake, representing an advancement toward the development of a targeted gene delivery system to transfect liver hepatocytes.
Collapse
|
13
|
Allen R, Baumhover N, Duskey J, Rice K. 271. Improved Gene Transfer with a New Class of PEG-Peptide Scavenger Receptor Inhibitors. Mol Ther 2015. [DOI: 10.1016/s1525-0016(16)33880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Crowley ST, Poliskey JA, Rice KG. 153. Efficient Expression of mRNA PEG-Peptide Polyplexes in Mouse Liver. Mol Ther 2015. [DOI: 10.1016/s1525-0016(16)33758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|