1
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Neurotrophic factor alpha 1 gene therapy in Alzheimer's disease: scope and advancements. Front Mol Neurosci 2025; 18:1518868. [PMID: 40235693 PMCID: PMC11996844 DOI: 10.3389/fnmol.2025.1518868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, accounting for 60-80% of all cases globally. Hallmark pathologies of AD include the accumulation of amyloid β peptide and phosphorylated tau, leading to neuronal circuit dysfunction, defective axonal transport, and neurotransmitter system (NTS) abnormalities. Disruptions in acetylcholine, GABA, dopamine, serotonin, and glutamate levels, as well as the loss of cholinergic, GABAergic, and monoaminergic neurons, contribute to the progression of AD. Additionally, neurotrophic factors like brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are significantly reduced in AD, impacting neuronal health and synaptic integrity. This review highlights the emerging role of neurotrophic factor alpha 1 (NF-α1), also known as carboxypeptidase E, in AD. NF-α1 shows neuroprotective and neurogenesis-promoting properties, offering potential for therapeutic interventions. The review compares NF-α1 gene therapy with other neurotrophin-based treatments, providing insights into its efficacy in AD management.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Panou T, Gouveri E, Popovic DS, Papazoglou D, Papanas N. The Role of Inflammation in the Pathogenesis of Diabetic Peripheral Neuropathy: New Lessons from Experimental Studies and Clinical Implications. Diabetes Ther 2025; 16:371-411. [PMID: 39928224 PMCID: PMC11868477 DOI: 10.1007/s13300-025-01699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most frequent complications of diabetes mellitus (DM). Its pathogenesis is still not entirely clear. Inflammation is increasingly being appreciated as a key factor in its development and progression. The aim of this review was to outline current evidence from experimental research on the role of inflammation in the pathogenesis of DPN and to suggest emerging clinical implications. Beyond commonly assessed interleukins, chemokines and tumour necrosis factor alpha (TNFα), several novel underlying mechanisms and potential therapeutic targets have been unravelled. Pathogenesis is also influenced by dietary patterns, such as iron supplementation. Furthermore, the impact of the inflammasome nucleotide-binding oligomerisation domain-like receptor pyrin domain-containing protein 3 (NLPR3) is gaining importance. The same holds true for inflammatory pathways, such as the Toll-like receptor (TLR)-associated pathways or the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. SIRTuins are also of importance. DPN is associated with changes in macrophage polarisation. In addition, several metalloproteinases are emerging as contributors, although data is still limited. Finally, miRNAs (e.g. miR146a) are strongly linked with DPN by acting in several inflammatory pathways. However, we still need confirmation of preliminary research findings. It is hoped that new knowledge will lead to new therapeutic approaches, including stem cell-based or exosome-based therapies.
Collapse
Affiliation(s)
- Theodoros Panou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evanthia Gouveri
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Dimitrios Papazoglou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
3
|
Tong L, Ozes B, Moss K, Myers M, Attia Z, Vetter TA, Trapp BD, Sahenk Z. AAV1.NT3 gene therapy mitigates the severity of autoimmune encephalomyelitis in the mouse model for multiple sclerosis. Gene Ther 2025:10.1038/s41434-025-00518-9. [PMID: 39972161 DOI: 10.1038/s41434-025-00518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Multiple sclerosis (MS) is an immune-mediated chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than 2.5 million patients worldwide. Chronic demyelination in the CNS has an important role in perpetuating axonal loss and increases difficulty in promoting remyelination. Therefore, regenerative, and neuroprotective strategies are essential to overcome this impediment to rescue axonal integrity and function. Neurotrophin 3 (NT-3) has immunomodulatory and anti-inflammatory properties, in addition to its well-recognized function in nervous system development, myelination, neuroprotection, and regeneration. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of experimental autoimmune encephalomyelitis (EAE) mice, the chronic relapsing mouse model of MS, at 3 weeks post EAE induction. Measurable NT-3 levels were found in serum at 7-weeks post gene delivery. The treated cohort showed improved clinical scores and performed significantly better in rotarod, and grip strength tests compared to their untreated counterparts. Histopathologic studies showed improved remyelination and axon protection. These data correlated with reduced expression of the pro-inflammatory cytokines in brain and spinal cord, and increased percentage of regulatory T cells in the spleens and lymph nodes. Collectively, these findings demonstrate the translational potential of AAV-delivered NT-3 for chronic progressive MS.
Collapse
Affiliation(s)
- Lingying Tong
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Zayed Attia
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tatyana A Vetter
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA.
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
4
|
Sun X, Ni S, Zhou Q, Zou D. Exogenous NT-3 Promotes Phenotype Switch of Resident Macrophages and Improves Sciatic Nerve Injury through AMPK/NF-κB Signaling Pathway. Neurochem Res 2024; 49:2600-2614. [PMID: 38904909 DOI: 10.1007/s11064-024-04198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Neurotrophin-3 (NT-3) is an important family of neurotrophic factors with extensive neurotrophic activity, which can maintain the survival and regeneration of nerve cells. However, the mechanism of NT-3 on macrophage phenotype transformation after sciatic nerve injury is not clear. In this study, we constructed a scientific nerve compression injury animal model and administered different doses of NT-3 treatment through osmotic minipump. 7 days after surgery, we collected sciatic nerve tissue and observed the distribution of macrophage phenotype through iNOS and CD206 immunofluorescence. During the experiment, regular postoperative observations were conducted on rats. After the experiment, sciatic nerve tissue was collected for HE staining, myelin staining, immunofluorescence staining, and Western blot analysis. To verify the role of the AMPK/NF-κB pathway, we applied the AMPK inhibitor Compound C and the NF-κB inhibitor BAY11-7082 to repeat the above experiment. Our experimental results reveal that NT-3 promotes sciatic nerve injury repair and polarization of M2 macrophage phenotype, promotes AMPK activation, and inhibits NF-κB activation. The repair effect of high concentration NT-3 on sciatic nerve injury is significantly enhanced compared to low concentration. Compound C administration can weaken the effect of NT-3, while BAY 11-7082 can enhance the effect of NT-3. In short, NT-3 significantly improves sciatic nerve injury in rats, promotes sciatic nerve function repair, accelerates M2 macrophage phenotype polarization, and improves neuroinflammatory response. The protective effects of NT-3 mentioned above are partially related to the AMPK/NF-κB signal axis.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Shuqin Ni
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Qingsheng Zhou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Dexin Zou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China.
| |
Collapse
|
5
|
Tonyan S, Pospelova M, Krasnikova V, Fionik O, Alekseeva T, Samochernykh K, Ivanova N, Vavilova T, Vasilieva E, Makhanova A, Nikolaeva A, Bukkieva T, Combs S, Shevtsov M. Neurotrophin-3 (NT-3) as a Potential Biomarker of the Peripheral Nervous System Damage Following Breast Cancer Treatment. PATHOPHYSIOLOGY 2023; 30:110-122. [PMID: 37092524 PMCID: PMC10123681 DOI: 10.3390/pathophysiology30020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Damage to the peripheral nervous system (PNS) is a common complication of breast cancer (BC) treatment, with 60 to 80% of breast cancer survivors experiencing symptoms of PNS damage. In the current study, the levels of brain-derived neurotrophic factor (BDNF), galectin-3 (Gal-3), and neurotrophin-3 (NT-3) were measured in the blood serum of BC patients by ELISA as potential biomarkers that might indicate the PNS damage. Sixty-seven patients were enrolled in this multi-center trial and compared to the aged-matched healthy female volunteers (control group) (n = 25). Intergroup comparison of biomarker levels (i.e., Gal-3 and BDNF) did not show significant differences in any of the studied subgroups. However, intriguingly, NT-3 levels were significantly higher in BC patients as compared to healthy volunteers, constituting 14.85 [10.3; 18.0] and 5.74 [4.56; 13.7] pg/mL, respectively (p < 0.001). In conclusion, NT-3 might be employed as a potential biomarker in BC patients with clinical manifestations of PNS damage. However, further studies to validate its correlation to the degree of peripheral nervous system lesions are of high value.
Collapse
Affiliation(s)
- Samvel Tonyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Olga Fionik
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Tatyana Alekseeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Nataliya Ivanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Tatyana Vavilova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Aleksandra Nikolaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Tatyana Bukkieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Stephanie Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
6
|
Ozes B, Tong L, Myers M, Moss K, Ridgley A, Sahenk Z. AAV1.NT-3 gene therapy prevents age-related sarcopenia. Aging (Albany NY) 2023; 15:1306-1329. [PMID: 36897179 PMCID: PMC10042697 DOI: 10.18632/aging.204577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Sarcopenia is progressive loss of muscle mass and strength, occurring during normal aging with significant consequences on the quality of life for elderly. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. NT-3 is involved in the maintenance of neuromuscular junction (NMJ) integrity, restoration of impaired radial growth of muscle fibers through activation of the Akt/mTOR pathway. We tested the efficacy of NT-3 gene transfer therapy in wild type (WT)-aged C57BL/6 mice, a model for natural aging and sarcopenia, via intramuscular injection 1 × 1011 vg AAV1.tMCK.NT-3, at 18 months of age. The treatment efficacy was assessed at 6 months post-injection using run to exhaustion and rotarod tests, in vivo muscle contractility assay, and histopathological studies of the peripheral nervous system, including NMJ connectivity and muscle. AAV1.NT-3 gene therapy in WT-aged C57BL/6 mice resulted in functional and in vivo muscle physiology improvements, supported by quantitative histology from muscle, peripheral nerves and NMJ. Hindlimb and forelimb muscles in the untreated cohort showed the presence of a muscle- and sex-dependent remodeling and fiber size decrease with aging, which was normalized toward values obtained from 10 months old WT mice with treatment. The molecular studies assessing the NT-3 effect on the oxidative state of distal hindlimb muscles, accompanied by western blot analyses for mTORC1 activation were in accordance with the histological findings. Considering the cost and quality of life to the individual, we believe our study has important implications for management of age-related sarcopenia.
Collapse
Affiliation(s)
- Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lingying Tong
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH 43205, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
7
|
Puhl DL, Funnell JL, Fink TD, Swaminathan A, Oudega M, Zha RH, Gilbert RJ. Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications. Acta Biomater 2023; 155:370-385. [PMID: 36423820 DOI: 10.1016/j.actbio.2022.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Aligned electrospun fibers provide topographical cues and local therapeutic delivery to facilitate robust peripheral nerve regeneration. mRNA delivery enables transient expression of desired proteins that promote axonal regeneration. However, no prior work delivers mRNA from electrospun fibers for peripheral nerve regeneration applications. Here, we developed the first aligned electrospun fibers to deliver pseudouridine-modified (Ψ) neurotrophin-3 (NT-3) mRNA (ΨNT-3mRNA) to primary Schwann cells and assessed NT-3 secretion and bioactivity. We first electrospun aligned poly(L-lactic acid) (PLLA) fibers and coated them with the anionic substrates dextran sulfate sodium salt (DSS) or poly(3,4-dihydroxy-L-phenylalanine) (pDOPA). Cationic lipoplexes containing ΨNT-3mRNA complexed to JetMESSENGER® were then immobilized to the fibers, resulting in detectable ΨNT-3mRNA release for 28 days from all fiber groups investigated (PLLA+mRNA, 0.5DSS4h+mRNA, and 2pDOPA4h+mRNA). The 2pDOPA4h+mRNA group significantly increased Schwann cell secretion of NT-3 for 21 days compared to control PLLA fibers (p < 0.001-0.05) and, on average, increased Schwann cell secretion of NT-3 by ≥ 2-fold compared to bolus mRNA delivery from the 1µgBolus+mRNA and 3µgBolus+mRNA groups. The 2pDOPA4h+mRNA fibers supported Schwann cell secretion of NT-3 at levels that significantly increased dorsal root ganglia (DRG) neurite extension by 44% (p < 0.0001) and neurite area by 64% (p < 0.001) compared to control PLLA fibers. The data show that the 2pDOPA4h+mRNA fibers enhance the ability of Schwann cells to promote neurite growth from DRG, demonstrating this platform's potential capability to improve peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers enhance axonal regeneration by providing structural support and guidance cues, but further therapeutic stimulation is necessary to improve functional outcomes. mRNA delivery enables the transient expression of therapeutic proteins, yet achieving local, sustained delivery remains challenging. Previous work shows that genetic material delivery from electrospun fibers improves regeneration; however, mRNA delivery has not been explored. Here, we examine mRNA delivery from aligned electrospun fibers to enhance neurite outgrowth. We show that immobilization of NT-3mRNA/JetMESSENGER® lipoplexes to aligned electrospun fibers functionalized with pDOPA enables local, sustained NT-3mRNA delivery to Schwann cells, increasing Schwann cell secretion of NT-3 and enhancing DRG neurite outgrowth. This study displays the potential benefits of electrospun fiber-mediated mRNA delivery platforms for neural tissue engineering.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tanner D Fink
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Anuj Swaminathan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Department of Neuroscience, Northwestern University, Chicago, IL, USA; Edward Hines Jr VA Hospital, Hines, IL, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
8
|
Ozes B, Myers M, Moss K, Mckinney J, Ridgley A, Chen L, Bai S, Abrams CK, Freidin MM, Mendell JR, Sahenk Z. AAV1.NT-3 gene therapy for X-linked Charcot-Marie-Tooth neuropathy type 1. Gene Ther 2022; 29:127-137. [PMID: 33542455 PMCID: PMC9013664 DOI: 10.1038/s41434-021-00231-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
X-linked Charcot-Marie-Tooth neuropathy (CMTX) is caused by mutations in the gene encoding Gap Junction Protein Beta-1 (GJB1)/Connexin32 (Cx32) in Schwann cells. Neurotrophin-3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. Improvements in these parameters have been shown previously in a CMT1 model, TremblerJ mouse, with NT-3 gene transfer therapy. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 3-month-old Cx32 knockout (KO) mice. Measurable levels of NT-3 were found in the serum at 6-month post gene delivery. The outcome measures included functional, electrophysiological and histological assessments. At 9-months of age, NT-3 treated mice showed no functional decline with normalized compound muscle action potential amplitudes. Myelin thickness and nerve conduction velocity significantly improved compared with untreated cohort. A normalization toward age-matched wildtype histopathological parameters included increased number of Schmidt-Lanterman incisures, and muscle fiber diameter. Collectively, these findings suggest a translational application to CMTX1.
Collapse
Affiliation(s)
- Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jennifer Mckinney
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lei Chen
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shasha Bai
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, OH, USA
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, USA
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, USA
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA.
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
9
|
Lai BQ, Bai YR, Han WT, Zhang B, Liu S, Sun JH, Liu JL, Li G, Zeng X, Ding Y, Ma YH, Zhang L, Chen ZH, Wang J, Xiong Y, Wu JH, Quan Q, Xing LY, Zhang HB, Zeng YS. Construction of a niche-specific spinal white matter-like tissue to promote directional axon regeneration and myelination for rat spinal cord injury repair. Bioact Mater 2021; 11:15-31. [PMID: 34938909 DOI: 10.1016/j.bioactmat.2021.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022] Open
Abstract
Directional axon regeneration and remyelination are crucial for repair of spinal cord injury (SCI), but existing treatments do not effectively promote those processes. Here, we propose a strategy for construction of niche-specific spinal white matter-like tissue (WMLT) using decellularized optic nerve (DON) loaded with neurotrophin-3 (NT-3)-overexpressing oligodendrocyte precursor cells. A rat model with a white matter defect in the dorsal spinal cord of the T10 segment was used. The WMLT transplantation group showed significant improvement in coordinated motor functions compared with the control groups. WMLT transplants integrated well with host spinal cord white matter, effectively addressing several barriers to directional axonal regeneration and myelination during SCI repair. In WMLT, laminin was found to promote development of oligodendroglial lineage (OL) cells by binding to laminin receptors. Interestingly, laminin could also guide linear axon regeneration via interactions with specific integrins on the axon surface. The WMLT developed here utilizes the unique microstructure and bioactive matrix of DON to create a niche rich in laminin, NT-3 and OL cells to achieve significant structural repair of SCI. Our protocol can help to promote research on repair of nerve injury and construction of neural tissues and organoids that form specific cell niches.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Rong Bai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China
| | - Bao Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China
| | - Shu Liu
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Jia-Lin Liu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ling Zhang
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zheng-Hong Chen
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Wang
- Physiotherapy Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Yuan Xiong
- Physiotherapy Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Jin-Hua Wu
- Physiotherapy Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Qi Quan
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 4th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ling-Yan Xing
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Bo Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
10
|
Sydney-Smith JD, Spejo AB, Warren PM, Moon LDF. Peripherally delivered Adeno-associated viral vectors for spinal cord injury repair. Exp Neurol 2021; 348:113945. [PMID: 34896114 DOI: 10.1016/j.expneurol.2021.113945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Via the peripheral and autonomic nervous systems, the spinal cord directly or indirectly connects reciprocally with many body systems (muscular, intengumentary, respiratory, immune, digestive, excretory, reproductive, cardiovascular, etc). Accordingly, spinal cord injury (SCI) can result in catastrophe for multiple body systems including muscle paralysis affecting movement and loss of normal sensation, as well as neuropathic pain, spasticity, reduced fertility and autonomic dysreflexia. Treatments and cure for an injured spinal cord will likely require access of therapeutic agents across the blood-CNS (central nervous system) barrier. However, some types of repair within the CNS may be possible by targeting treatment to peripherally located cells or by delivering Adeno-Associated Viral vectors (AAVs) by peripheral routes (e.g., intrathecal, intravenous). This review will consider some future possibilities for SCI repair generated by therapeutic peripheral gene delivery. There are now six gene therapies approved worldwide as safe and effective medicines of which three were created by modification of the apparently nonpathogenic Adeno-Associated Virus. One of these AAVs, Zolgensma, is injected intrathecally for treatment of spinal muscular atrophy in children. One day, delivery of AAVs into peripheral tissues might improve recovery after spinal cord injury in humans; we discuss experiments by us and others delivering transgenes into nerves or muscles for sensorimotor recovery in animal models of SCI or of stroke including human Neurotrophin-3. We also describe ongoing efforts to develop AAVs that are delivered to particular targets within and without the CNS after peripheral administration using capsids with improved tropisms, promoters that are selective for particular cell types, and methods for controlling the dose and duration of expression of a transgene. In conclusion, in the future, minimally invasive administration of AAVs may improve recovery after SCI with minimal side effects.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Aline B Spejo
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Philippa M Warren
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom.
| |
Collapse
|
11
|
Yang Y, Xu HY, Deng QW, Wu GH, Zeng X, Jin H, Wang LJ, Lai BQ, Li G, Ma YH, Jiang B, Ruan JW, Wang YQ, Ding Y, Zeng YS. Electroacupuncture facilitates the integration of a grafted TrkC-modified mesenchymal stem cell-derived neural network into transected spinal cord in rats via increasing neurotrophin-3. CNS Neurosci Ther 2021; 27:776-791. [PMID: 33763978 PMCID: PMC8193704 DOI: 10.1111/cns.13638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Aims This study was aimed to investigate whether electroacupuncture (EA) would increase the secretion of neurotrophin‐3 (NT‐3) from injured spinal cord tissue, and, if so, whether the increased NT‐3 would promote the survival, differentiation, and migration of grafted tyrosine kinase C (TrkC)‐modified mesenchymal stem cell (MSC)‐derived neural network cells. We next sought to determine if the latter would integrate with the host spinal cord neural circuit to improve the neurological function of injured spinal cord. Methods After NT‐3‐modified Schwann cells (SCs) and TrkC‐modified MSCs were co‐cultured in a gelatin sponge scaffold for 14 days, the MSCs differentiated into neuron‐like cells that formed a MSC‐derived neural network (MN) implant. On this basis, we combined the MN implantation with EA in a rat model of spinal cord injury (SCI) and performed immunohistochemical staining, neural tracing, electrophysiology, and behavioral testing after 8 weeks. Results Electroacupuncture application enhanced the production of endogenous NT‐3 in damaged spinal cord tissues. The increase in local NT‐3 production promoted the survival, migration, and maintenance of the grafted MN, which expressed NT‐3 high‐affinity TrkC. The combination of MN implantation and EA application improved cortical motor‐evoked potential relay and facilitated the locomotor performance of the paralyzed hindlimb compared with those of controls. These results suggest that the MN was better integrated into the host spinal cord neural network after EA treatment compared with control treatment. Conclusions Electroacupuncture as an adjuvant therapy for TrkC‐modified MSC‐derived MN, acted by increasing the local production of NT‐3, which accelerated neural network reconstruction and restoration of spinal cord function following SCI.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qing-Wen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guo-Hui Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Jin
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lai-Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wen Ruan
- Department of Acupuncture, The 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Qiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Namjoo E, Shekari M, Piruozi A, Forouzandeh H, Khalafkhany D, Vahedi A, Ahmadi I. Haloperidol's Effect on the Expressions of TGFB, NT-3, and BDNF genes in Cultured Rat Microglia. Basic Clin Neurosci 2020; 11:49-58. [PMID: 32483475 PMCID: PMC7253822 DOI: 10.32598/bcn.11.1.1272.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/05/2018] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction: Microglia, small glial cells, i.e. mesodermal in origin and found in the brain and spinal cord, play a key role in the maintenance of neurons and immune defense. Haloperidol, an antipsychotic drug, is used to treat numerous neurological and neurodegenerative disorders. Its mechanism is not understood; however, haloperidol may result in Wnt signaling pathway activation. This study aimed to activate the Wnt signaling pathway using haloperidol and determining the effect of GSK3 inhibition on the expression of TGFB, NT-3, and BDNF genes in cultured rat microglia. Methods: Microglia isolation was conducted, and the immunohistochemistry technique was performed to confirm microglia purity. The RNA extraction was followed by cDNA synthesis. Real-time RT-PCR was used to evaluate any significant changes in the expression level of these genes. Results: The three gene expressions in microglia were proportional to the different concentrations of the drug. More concentration of drugs resulted in higher levels of expression of these genes. Besides, the haloperidol did not affect the expression of the beta-actin gene as the reference gene. Conclusion: The obtained results supported the beneficial use of haloperidol in targeted microglia therapy. This study can be a breakthrough in neurology research.
Collapse
Affiliation(s)
- Elham Namjoo
- Department of Biology, Faculty of Science, Arsenjan Branch, Islamic Azad University, Fars, Iran
| | - Mohammad Shekari
- Genetics and Molecular Biology, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aliyar Piruozi
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Hossein Forouzandeh
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Davod Khalafkhany
- Molecular Biology and Genetics Department, Bogazic University, Istanbul, Turkey
| | - Abdolvahid Vahedi
- Genetics and Molecular Biology, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Iraj Ahmadi
- Molecular Biology and Genetics Department, Bogazic University, Istanbul, Turkey
| |
Collapse
|
13
|
Sahenk Z, Yalvac ME, Amornvit J, Arnold WD, Chen L, Shontz KM, Lewis S. Efficacy of exogenous pyruvate in Trembler J mouse model of Charcot-Marie-Tooth neuropathy. Brain Behav 2018; 8:e01118. [PMID: 30239155 PMCID: PMC6192403 DOI: 10.1002/brb3.1118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Classic Charcot-Marie-Tooth (CMT) neuropathies including those with Schwann cell genetic defects exhibit a length-dependent process affecting the distal axon. Energy deprivation in the distal axon has been the proposed mechanism accounting for length-dependent distal axonal degeneration. We hypothesized that pyruvate, an intermediate glycolytic product, could restore nerve function, supplying lost energy to the distal axon. METHODS To test this possibility, we supplied pyruvate to the drinking water of the Trembler-J (TrJ ) mouse and assessed efficacy based on histology, electrophysiology, and functional outcomes. Pyruvate outcomes were compared with untreated TrJ controls alone or adeno-associated virus mediated NT-3 gene therapy (AAV1.NT-3)/pyruvate combinatorial approach. RESULTS Pyruvate supplementation resulted increased myelinated fiber (MF) densities and myelin thickness in sciatic nerves. Combining pyruvate with proven efficacy from AAV1.tMCK.NT-3 gene therapy provided additional benefits showing improved compound muscle action potential amplitudes and nerve conduction velocities compared to pyruvate alone cohort. The end point motor performance of both the pyruvate and the combinatorial therapy cohorts was better than untreated TrJ controls. In a unilateral sciatic nerve crush paradigm, pyruvate supplementation improved myelin-based outcomes in both regenerating and the contralateral uncrushed nerves. CONCLUSIONS This proof of principle study demonstrates that exogenous pyruvate alone or as adjunct therapy in TrJ may have clinical implications and is a candidate therapy for CMT neuropathies without known treatment.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
- Department of Pediatrics and NeurologyNationwide Children’s Hospital and The Ohio State UniversityColumbusOhio
- Department of Pathology and Laboratory MedicineNationwide Children’s HospitalColumbusOhio
- Department of NeurologyThe Ohio State UniversityColumbusOhio
| | - Mehmet E. Yalvac
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Jakkrit Amornvit
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
- King Chulalongkorn Memorial HospitalChulalongkorn UniversityBangkokThailand
- Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - William David Arnold
- Department of NeurologyThe Ohio State UniversityColumbusOhio
- Department of Physical Medicine and RehabilitationThe Ohio State University ColumbusOhio
| | - Lei Chen
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Kimberly M. Shontz
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Sarah Lewis
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| |
Collapse
|
14
|
Ko KR, Lee J, Lee D, Nho B, Kim S. Hepatocyte Growth Factor (HGF) Promotes Peripheral Nerve Regeneration by Activating Repair Schwann Cells. Sci Rep 2018; 8:8316. [PMID: 29844434 PMCID: PMC5973939 DOI: 10.1038/s41598-018-26704-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/17/2018] [Indexed: 01/12/2023] Open
Abstract
During the peripheral nerve regeneration process, a variety of neurotrophic factors play roles in nerve repair by acting on neuronal or non-neuronal cells. In this report, we investigated the role(s) of hepatocyte growth factor (HGF) and its receptor, c-met, in peripheral nerve regeneration. When mice were subjected to sciatic nerve injury, the HGF protein level was highly increased at the injured and distal sites. The level of both total and phosphorylated c-met was also highly upregulated, but almost exclusively in Schwann cells (SCs) distal from the injury site. When mice were treated with a c-met inhibitor, PHA-665752, myelin thickness and axon regrowth were decreased indicating that re-myelination was hindered. HGF promoted the migration and proliferation of cultured SCs, and also induced the expression of various genes such as GDNF and LIF, presumably by activating ERK pathways. Furthermore, exogenous supply of HGF around the injury site, by intramuscular injection of a plasmid DNA expressing human HGF, enhanced the myelin thickness and axon diameter in injured nerves. Taken together, our results indicate that HGF and c-met play important roles in Schwann cell-mediated nerve repair, and also that HGF gene transfer may provide a useful tool for treating peripheral neuropathy.
Collapse
Affiliation(s)
- Kyeong Ryang Ko
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Viro Med, Co., Ltd, Seoul, 08826, Korea
| | | | | | - Boram Nho
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea. .,Viro Med, Co., Ltd, Seoul, 08826, Korea.
| |
Collapse
|
15
|
Systemic IGF-1 gene delivery by rAAV9 improves spontaneous autoimmune peripheral polyneuropathy (SAPP). Sci Rep 2018; 8:5408. [PMID: 29615658 PMCID: PMC5883061 DOI: 10.1038/s41598-018-23607-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 02/01/2023] Open
Abstract
Spontaneous autoimmune peripheral polyneuropathy (SAPP) is a mouse model of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) in non-obese diabetic (NOD) mice null for costimulatory molecule, B7-2 gene (B7-2−/−). SAPP is a chronic progressive and multifocal inflammatory and demyelinating polyneuropathy of spontaneous onset with secondary axonal degeneration. Insulin-like growth factor 1(IGF-1) is a pleiotropic factor with neuroprotective, regenerative, and anti-inflammatory effects with extensive experience in its preclinical and clinical use. Systemic delivery of recombinant adeno-associated virus serotype 9 (rAAV9) provides robust and widespread gene transfer to central and peripheral nervous systems making it suitable for gene delivery in neurological diseases. A significant proportion of patients with inflammatory neuropathies like CIDP do not respond to current clinical therapies and there is a need for new treatments. In this study, we examined the efficacy IGF-1 gene therapy by systemic delivery with rAAV9 in SAPP model. The rAAV9 construct also contained a reporter gene to monitor the surrogate expression of IGF-1. We found significant improvement in neuropathic disease after systemic delivery of rAAV9/IGF-1 gene at presymptomatic and symptomatic stages of SAPP model. These findings support that IGF-1 treatment (including gene therapy) is a viable therapeutic option in immune neuropathies such as CIDP.
Collapse
|
16
|
AAV1.NT-3 gene therapy increases muscle fiber diameter through activation of mTOR pathway and metabolic remodeling in a CMT mouse model. Gene Ther 2018. [PMID: 29523879 DOI: 10.1038/s41434-018-0009-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurotrophin 3 (NT-3) has well-recognized effects on peripheral nerve and Schwann cells, promoting axonal regeneration and associated myelination. In this study, we assessed the effects of AAV.NT-3 gene therapy on the oxidative state of the neurogenic muscle from the TremblerJ (Tr J ) mice at 16 weeks post-gene injection and found that the muscle fiber size increase was associated with a change in the oxidative state of muscle fibers towards normalization of the fiber type ratio seen in the wild type. NT-3-induced fiber size increase was most prominent for the fast twitch glycolytic fiber population. These changes in the Tr J muscle were accompanied by increased phosphorylation levels of 4E-BP1 and S6 proteins as evidence of mTORC1 activation. In parallel, the expression levels of the mitochondrial biogenesis regulator PGC1α, and the markers of glycolysis (HK1 and PK1) increased in the TrJ muscle. In vitro studies showed that recombinant NT-3 can directly induce Akt/mTOR pathway activation in the TrkC expressing myotubes but not in myoblasts. In addition, myogenin expression levels were increased in myotubes while p75 NTR expression was downregulated compared to myoblasts, indicating that NT-3 induced myoblast differentiation is associated with mTORC1 activation. These studies for the first time have shown that NT-3 increases muscle fiber diameter in the neurogenic muscle through direct activation of mTOR pathway and that the fiber size increase is more prominent for fast twitch glycolytic fibers.
Collapse
|
17
|
Hao P, Duan H, Hao F, Chen L, Sun M, Fan KS, Sun YE, Williams D, Yang Z, Li X. Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials 2017. [DOI: 10.1016/j.biomaterials.2017.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Bermudez MA, Sendon-Lago J, Seoane S, Eiro N, Gonzalez F, Saa J, Vizoso F, Perez-Fernandez R. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Exp Eye Res 2016; 149:84-92. [PMID: 27381329 DOI: 10.1016/j.exer.2016.06.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) in uveitis. To do that, uveitis was induced in rats after footpad injection of Escherichia coli lipopolysaccaride (LPS). Human retinal pigment epithelial (ARPE-19) cells after LPS challenge were used to test anti-inflammatory effect of CM-hUCESCs 'ìn vitro'. Real-time PCR was used to evaluate mRNA expression levels of the pro-inflammatory cytokines interkeukin-6, interkeukin-8, macrophage inflammatory protein-1 alpha, tumor necrosis factor alpha, and the anti-inflammatory interkeukin-10. Leucocytes from aqueous humor (AqH) were quantified in a Neubauer chamber, and eye histopathological analysis was done with hematoxylin-eosin staining. Additionally, using a human cytokine antibody array we evaluated CM-hUCESCs to determine mediating proteins. Results showed that administration of CM-hUCESCs significantly reduced LPS-induced pro-inflammatory cytokines both 'in vitro' and 'in vivo', and decreased leucocytes in AqH and ocular tissues. High levels of cytokines with anti-inflammatory effects were found in CM-hUCESCs, suggesting a possible role of these factors in reducing intraocular inflammation. In summary, treatment with CM-hUCESCs significantly reduces inflammation in uveitis. Our data indicate that CM-hUCESCs could be regarded as a potential therapeutic agent for patients suffering from ocular inflammation.
Collapse
Affiliation(s)
- Maria A Bermudez
- Department of Physiology-CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Juan Sendon-Lago
- Department of Physiology-CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Samuel Seoane
- Department of Physiology-CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, 33290, Gijón, Spain; Fundación para la Investigación con Células Madre Uterinas (FICEMU), 33212, Gijón, Spain.
| | - Francisco Gonzalez
- Department of Surgery-CIMUS, University of Santiago de Compostela, and Service of Ophthalmology-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Jorge Saa
- Unidad de Investigación, Fundación Hospital de Jove, 33290, Gijón, Spain; Fundación para la Investigación con Células Madre Uterinas (FICEMU), 33212, Gijón, Spain; Service of Ophthalmology, Fundación Hospital de Jove, 33290, Gijón, Spain.
| | - Francisco Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, 33290, Gijón, Spain; Fundación para la Investigación con Células Madre Uterinas (FICEMU), 33212, Gijón, Spain.
| | - Roman Perez-Fernandez
- Department of Physiology-CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|