1
|
Low neutral and immunogenetic diversity in northern fringe populations of the green toad Bufotes viridis: implications for conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractGenetic variation is often lower at high latitudes, which may compromise the adaptability and hence survival of organisms. Here we show that genetic variability is negatively correlated with northern latitude in European green toads (Bufotes viridis). The result holds true for both putatively neutral microsatellite variation and supposedly adaptive MHC Class IIB variation. In particular, our findings have bearing on the conservation status of this species in Sweden, on the northern limit of its distribution where local populations are small and fragmented. These genetically impoverished populations are closely related to other populations found around the Baltic Sea basin. The low neutral and adaptive variation in these fringe populations compared to population at central ranges confirms a pattern shared across all other amphibians so far studied. In Sweden, the situation of green toads is of concern as the remaining populations may not have the evolutionary potential to cope with present and future environmental challenges.
Collapse
|
2
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
3
|
Tarkhnishvili D, Yanchukov A, Şahin MK, Gabelaia M, Murtskhvaladze M, Candan K, Galoyan E, Arakelyan M, Iankoshvili G, Kumlutaş Y, Ilgaz Ç, Matur F, Çolak F, Erdolu M, Kurdadze S, Barateli N, Anderson CL. Genotypic similarities among the parthenogenetic Darevskia rock lizards with different hybrid origins. BMC Evol Biol 2020; 20:122. [PMID: 32938384 PMCID: PMC7493426 DOI: 10.1186/s12862-020-01690-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The majority of parthenogenetic vertebrates derive from hybridization between sexually reproducing species, but the exact number of hybridization events ancestral to currently extant clonal lineages is difficult to determine. Usually, we do not know whether the parental species are able to contribute their genes to the parthenogenetic vertebrate lineages after the initial hybridization. In this paper, we address the hypothesis, whether some genotypes of seven phenotypically distinct parthenogenetic rock lizards (genus Darevskia) could have resulted from back-crosses of parthenogens with their presumed parental species. We also tried to identify, as precise as possible, the ancestral populations of all seven parthenogens. RESULTS We analysed partial mtDNA sequences and microsatellite genotypes of all seven parthenogens and their presumed ansectral species, sampled across the entire geographic range of parthenogenesis in this group. Our results confirm the previous designation of the parental species, but further specify the maternal populations that are likely ancestral to different parthenogenetic lineages. Contrary to the expectation of independent hybrid origins of the unisexual taxa, we found that genotypes at multiple loci were shared frequently between different parthenogenetic species. The highest proportions of shared genotypes were detected between (i) D. sapphirina and D. bendimahiensis and (ii) D. dahli and D. armeniaca, and less often between other parthenogens. In case (ii), genotypes at the remaining loci were notably distinct. CONCLUSIONS We suggest that both observations (i-ii) can be explained by two parthenogenetic forms tracing their origin to a single initial hybridization event. In case (ii), however, occasional gene exchange between the unisexual and the parental bisexual species could have taken place after the onset of parthenogenetic reproduction. Indeed, backcrossed polyploid hybrids are relatively frequent in Darevskia, although no direct evidence of recent gene flow has been previously documented. Our results further suggest that parthenogens are losing heterozygosity as a result of allelic conversion, hence their fitness is expected to decline over time as genetic diversity declines. Backcrosses with the parental species could be a rescue mechanism which might prevent this decline, and therefore increase the persistance of unisexual forms.
Collapse
Affiliation(s)
| | | | - Mehmet Kürşat Şahin
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Mariam Gabelaia
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | | | - Kamil Candan
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | | | | | | | - Yusuf Kumlutaş
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Çetin Ilgaz
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Ferhat Matur
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Faruk Çolak
- Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Meriç Erdolu
- Middle East Technical University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Sofiko Kurdadze
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Natia Barateli
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Cort L Anderson
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
4
|
Dufresnes C, Mazepa G, Jablonski D, Oliveira RC, Wenseleers T, Shabanov DA, Auer M, Ernst R, Koch C, Ramírez-Chaves HE, Mulder KP, Simonov E, Tiutenko A, Kryvokhyzha D, Wennekes PL, Zinenko OI, Korshunov OV, Al-Johany AM, Peregontsev EA, Masroor R, Betto-Colliard C, Denoël M, Borkin LJ, Skorinov DV, Pasynkova RA, Mazanaeva LF, Rosanov JM, Dubey S, Litvinchuk S. Fifteen shades of green: The evolution of Bufotes toads revisited. Mol Phylogenet Evol 2019; 141:106615. [DOI: 10.1016/j.ympev.2019.106615] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023]
|
5
|
Jablonski D, Urošević A, Andjelković M, Džukić G. An unknown collection of lizards from Afghanistan. Zookeys 2019; 843:129-147. [PMID: 31558882 PMCID: PMC6522455 DOI: 10.3897/zookeys.843.29420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/04/2019] [Indexed: 11/12/2022] Open
Abstract
Afghanistan is a herpetologically understudied country with few published papers since the end of “Afghanistan’s Golden Age” from the 1930s to the 1970s. Although a detailed checklist of the herpetofauna of the country, based on exploration of herpetodiversity using biodiversity archives, has been published recently, there still exist additional historical data that have not been considered. This is the case for a so far unknown collection of lizards from Afghanistan deposited in the herpetological collection of the Institute for Biological Research “Siniša Stanković at the University of Belgrade, Belgrade, Serbia. The material comes from field research conducted in 1972 and contains 27 specimens in seven lizard genera representing four families (Agamidae, Gekkonidae, Lacertidae, Scincidae). This historical collection was examined and basic morphometric data, field data, and photographs are provided, comparing the distributional data with published datasets. Updated species distribution maps reveal new locality or province records and an important range extension for Eurylepistaeniolata Blyth, 1854 which represents the northernmost record for this species in Afghanistan. In addition, one further distribution record for the Bufotesviridis (Laurenti, 1768) complex from the same research trip is noted.
Collapse
Affiliation(s)
- Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovakia Comenius University in Bratislava Bratislava Slovakia
| | - Aleksandar Urošević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia University of Belgrade Belgrade Serbia
| | - Marko Andjelković
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia University of Belgrade Belgrade Serbia
| | - Georg Džukić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia University of Belgrade Belgrade Serbia
| |
Collapse
|
6
|
Gerchen JF, Dufresnes C, Stöck M. Introgression across Hybrid Zones Is Not Mediated by Large X-Effects in Green Toads with Undifferentiated Sex Chromosomes. Am Nat 2018; 192:E178-E188. [DOI: 10.1086/699162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Betto-Colliard C, Hofmann S, Sermier R, Perrin N, Stöck M. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc Biol Sci 2018; 285:rspb.2017.2667. [PMID: 29436499 PMCID: PMC5829204 DOI: 10.1098/rspb.2017.2667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
The evolutionary causes and consequences of allopolyploidization, an exceptional pathway to instant hybrid speciation, are poorly investigated in animals. In particular, when and why hybrid polyploids versus diploids are produced, and constraints on sources of paternal and maternal ancestors, remain underexplored. Using the Palearctic green toad radiation (including bisexually reproducing species of three ploidy levels) as model, we generate a range-wide multi-locus phylogeny of 15 taxa and present four new insights: (i) at least five (up to seven) distinct allotriploid and allotetraploid taxa have evolved in the Pleistocene; (ii) all maternal and paternal ancestors of hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya, 3.1-9.6 Mya), with distinctly greater divergence than the parental species of diploid hybrids found at secondary contact zones; (iii) allotriploid taxa possess two conspecific genomes and a deeply diverged allospecific one, suggesting that genomic imbalance and divergence are causal for their partly clonal reproductive mode; (iv) maternal versus paternal genome contributions exhibit asymmetry, with the maternal nuclear (and mitochondrial) genome of polyploids always coming from the same clade, and the paternal genome from the other. We compare our findings with similar patterns in diploid/polyploid vertebrates, and suggest deep ancestral divergence as a precondition for successful allopolyploidization.
Collapse
Affiliation(s)
- Caroline Betto-Colliard
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Sylvia Hofmann
- Department of Conservation Biology, UFZ Helmholtz-Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
8
|
Grenat P, Salas N, Pollo F, Otero M, Baraquet M, Sinsch U, Martino A. Naturally occurring triploids in contact zones between diploid/tetraploid Odontophrynus cordobae and O. americanus (Anura, Odontophrynidae). AMPHIBIA-REPTILIA 2018. [DOI: 10.1163/15685381-00003141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyploidization plays an important role in speciation and evolution in anurans. However, a few stable triploid populations and some isolated triploid individuals have been reported. Here, we report the discovery of naturally occurring triploids in contact zones between diploidOdontophrynus cordobaeand tetraploidO. americanusfrom Central Argentina, and propose values of erythrocyte area for the distinction of ploidy levels. A total of 101 individuals from three contact zones were studied and ploidy of each specimen was identified by mean chromosome count and erythrocyte size. Twenty three adult triploid specimens (males: ; females: ) from two contact sites were identified (percentage of individuals per ploidy level: site S2, %, %, %; site S3: %, %, %). The limit values of erythrocyte nuclear area used to distinguish between different ploidy levels were 23.62 μm2(probability to be assigned to a respective ploidy level = 94.78%) for separating diploids and triploids and 27.67 μm2(98.62%) for triploids and tetraploids. The high number of adult triploids occurring in more than one contact site betweenO. cordobaeandO. americanusindicates that is not an isolated event. However, further studies are necessary to provide a hypothesis on the origin and evaluate the possible maintenance of triploids in syntopy withO. cordobaeandO. americanus.
Collapse
Affiliation(s)
- Pablo Grenat
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
- CONICET
| | - Nancy Salas
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
| | - Favio Pollo
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
- CONICET
| | - Manuel Otero
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
- CONICET
| | - Mariana Baraquet
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
- CONICET
| | - Ulrich Sinsch
- Department of Biology, Zoology Group, University of Koblenz-Landau, Koblenz, Germany
| | - Adolfo Martino
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
| |
Collapse
|
9
|
Escoda L, González-Esteban J, Gómez A, Castresana J. Using relatedness networks to infer contemporary dispersal: Application to the endangered mammal Galemys pyrenaicus. Mol Ecol 2017; 26:3343-3357. [DOI: 10.1111/mec.14133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/21/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Lídia Escoda
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra); Barcelona Spain
| | | | | | - Jose Castresana
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra); Barcelona Spain
| |
Collapse
|
10
|
Gerchen JF, Reichert SJ, Röhr JT, Dieterich C, Kloas W, Stöck M. A Single Transcriptome of a Green Toad (Bufo viridis) Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers. PLoS One 2016; 11:e0156419. [PMID: 27232626 PMCID: PMC4883742 DOI: 10.1371/journal.pone.0156419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/15/2016] [Indexed: 12/13/2022] Open
Abstract
Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species.
Collapse
Affiliation(s)
- Jörn F Gerchen
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Samuel J Reichert
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Johannes T Röhr
- Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Matthias Stöck
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
11
|
Li S, Zhang G, Li X, Wang L, Yuan J, Deng C, Gao W. Genome-wide identification and validation of simple sequence repeats (SSRs) from Asparagus officinalis. Mol Cell Probes 2016; 30:153-60. [PMID: 26987412 DOI: 10.1016/j.mcp.2016.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Garden asparagus (Asparagus officinalis), an important vegetable cultivated worldwide, can also serve as a model dioecious plant species in the study of sex determination and sex chromosome evolution. However, limited DNA marker resources have been developed and used for this species. To expand these resources, we examined the DNA sequences for simple sequence repeats (SSRs) in 163,406 scaffolds representing approximately 400 Mbp of the A. officinalis genome. A total of 87,576 SSRs were identified in 59,565 scaffolds. The most abundant SSR repeats were trinucleotide and tetranucleotide, accounting for 29.2 and 29.1% of the total SSRs, respectively, followed by di-, penta-, hexa-, hepta-, and octanucleotides. The AG motif was most common among dinucleotides and was also the most frequent motif in the entire A. officinalis genome, representing 14.7% of all SSRs. A total of 41,917 SSR primers pairs were designed to amplify SSRs. Twenty-two genomic SSR markers were tested in 39 asparagus accessions belonging to ten cultivars and one accession of Asparagus setaceus for determination of genetic diversity. The intra-species polymorphism information content (PIC) values of the 22 genomic SSR markers were intermediate, with an average of 0.41. The genetic diversity between the ten A. officinalis cultivars was low, and the UPGMA dendrogram was largely unrelated to cultivars. It is here suggested that the sex of individuals is an important factor influencing the clustering results. The information reported here provides new information about the organization of the microsatellites in A. officinalis genome and lays a foundation for further genetic studies and breeding applications of A. officinalis and related species.
Collapse
Affiliation(s)
- Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Guojun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Xu Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Lianjun Wang
- Institute of Food Corps, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, PR China
| | - Jinhong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China.
| |
Collapse
|
12
|
Abstract
This review summarizes the current status of the known extant genuine polyploid anuran and urodelan species, as well as spontaneously originated and/or experimentally produced amphibian polyploids. The mechanisms by which polyploids can originate, the meiotic pairing configurations, the diploidization processes operating in polyploid genomes, the phenomenon of hybridogenesis, and the relationship between polyploidization and sex chromosome evolution are discussed. The polyploid systems in some important amphibian taxa are described in more detail.
Collapse
|
13
|
Meirmans PG. Seven common mistakes in population genetics and how to avoid them. Mol Ecol 2015; 24:3223-31. [PMID: 25974103 DOI: 10.1111/mec.13243] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/01/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022]
Abstract
As the data resulting from modern genotyping tools are astoundingly complex, genotyping studies require great care in the sampling design, genotyping, data analysis and interpretation. Such care is necessary because, with data sets containing thousands of loci, small biases can easily become strongly significant patterns. Such biases may already be present in routine tasks that are present in almost every genotyping study. Here, I discuss seven common mistakes that can be frequently encountered in the genotyping literature: (i) giving more attention to genotyping than to sampling, (ii) failing to perform or report experimental randomization in the laboratory, (iii) equating geopolitical borders with biological borders, (iv) testing significance of clustering output, (v) misinterpreting Mantel's r statistic, (vi) only interpreting a single value of k and (vii) forgetting that only a small portion of the genome will be associated with climate. For every of those issues, I give some suggestions how to avoid the mistake. Overall, I argue that genotyping studies would benefit from establishing a more rigorous experimental design, involving proper sampling design, randomization and better distinction of a priori hypotheses and exploratory analyses.
Collapse
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090GE, Amsterdam, Netherlands
| |
Collapse
|
14
|
Dufresnes C, Borzée A, Horn A, Stöck M, Ostini M, Sermier R, Wassef J, Litvinchuck SN, Kosch TA, Waldman B, Jang Y, Brelsford A, Perrin N. Sex-Chromosome Homomorphy in Palearctic Tree Frogs Results from Both Turnovers and X-Y Recombination. Mol Biol Evol 2015; 32:2328-37. [PMID: 25957317 DOI: 10.1093/molbev/msv113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Contrasting with birds and mammals, poikilothermic vertebrates often have homomorphic sex chromosomes, possibly resulting from high rates of sex-chromosome turnovers and/or occasional X-Y recombination. Strong support for the latter mechanism was provided by four species of European tree frogs, which inherited from a common ancestor (∼ 5 Ma) the same pair of homomorphic sex chromosomes (linkage group 1, LG1), harboring the candidate sex-determining gene Dmrt1. Here, we test sex linkage of LG1 across six additional species of the Eurasian Hyla radiation with divergence times ranging from 6 to 40 Ma. LG1 turns out to be sex linked in six of nine resolved cases. Mapping the patterns of sex linkage to the Hyla phylogeny reveals several transitions in sex-determination systems within the last 10 My, including one switch in heterogamety. Phylogenetic trees of DNA sequences along LG1 are consistent with occasional X-Y recombination in all species where LG1 is sex linked. These patterns argue against one of the main potential causes for turnovers, namely the accumulation of deleterious mutations on nonrecombining chromosomes. Sibship analyses show that LG1 recombination is strongly reduced in males from most species investigated, including some in which it is autosomal. Intrinsically low male recombination might facilitate the evolution of male heterogamety, and the presence of important genes from the sex-determination cascade might predispose LG1 to become a sex chromosome.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Amaël Borzée
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Agnès Horn
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB, Berlin, Germany
| | - Massimo Ostini
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Wassef
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | | | - Tiffany A Kosch
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yikweon Jang
- Department of Life Sciences and Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
| | - Alan Brelsford
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Tamschick S, Rozenblut-Kościsty B, Bonato L, Dufresnes C, Lymberakis P, Kloas W, Ogielska M, Stöck M. Sex Chromosome Conservation, DMRT1 Phylogeny and Gonad Morphology in Diploid Palearctic Green Toads ( Bufo viridis Subgroup). Cytogenet Genome Res 2015; 144:315-24. [DOI: 10.1159/000380841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
|