1
|
Liu BP, Hua BZ. Distinct roles of the Hox genes Ultrabithorax and abdominal-A in scorpionfly embryonic proleg development. INSECT MOLECULAR BIOLOGY 2024; 33:69-80. [PMID: 37792400 DOI: 10.1111/imb.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of Ultrabithorax (Ubx) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target Distal-less (Dll) expression but did not affect the expression levels of Dll. Knockdown of abdominal-A (abd-A) resulted in malformed segments, abnormal prolegs and disrupted Dll expression. The results demonstrate that the gene Ubx maintains an ancestral role of modulating A1 appendage fate without preventing Dll initiation, and a secondary adaptation of abd-A evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.
Collapse
Affiliation(s)
- Bing-Peng Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Tendolkar A, Mazo-Vargas A, Livraghi L, Hanly JJ, Van Horne KC, Gilbert LE, Martin A. Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings. eLife 2024; 12:RP90846. [PMID: 38261357 PMCID: PMC10945631 DOI: 10.7554/elife.90846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Hox gene clusters encode transcription factors that drive regional specialization during animal development: for example the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities. Hox transcriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other than Drosophila, which shows a derived Hox dislocation into two genomic clusters that disjoined Antennapedia (Antp) and Ultrabithorax (Ubx). Here, we investigated how Ubx is restricted to the hindwing in butterflies, amidst a contiguous Hox cluster. By analysing Hi-C and ATAC-seq data in the butterfly Junonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening around Ubx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around the Antp locus. CRISPR mutational perturbation of this BE releases ectopic Ubx expression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putative cis-regulatory module within the Ubx TAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained in Heliconius butterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration of Ubx regulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings.
Collapse
Affiliation(s)
- Amruta Tendolkar
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Luca Livraghi
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Kelsey C Van Horne
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas – AustinAustinUnited States
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| |
Collapse
|
3
|
Matsuoka Y, Murugesan SN, Prakash A, Monteiro A. Lepidopteran prolegs are novel traits, not leg homologs. SCIENCE ADVANCES 2023; 9:eadd9389. [PMID: 37824626 PMCID: PMC10569709 DOI: 10.1126/sciadv.add9389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Lepidopteran larvae have both thoracic legs and abdominal prolegs, yet it is unclear whether these are serial homologs. A RNA-seq analysis with various appendages of Bicyclus anynana butterfly larvae indicated that the proleg transcriptome resembles the head-horn transcriptome, a novel trait in the lepidoptera, but not a thoracic leg. Under a partial segment abdominal-A (abd-A) knockout, both thoracic leg homologs (pleuropodia) and prolegs developed in the same segment, arguing that both traits are not serial homologs. Further, three of the four coxal marker genes, Sp5, Sp6-9, and araucan, were absent from prolegs, but two endite marker genes, gooseberry and Distal-less, were expressed in prolegs, suggesting that prolegs may be using a modular endite gene-regulatory network (GRN) for their development. We propose that larval prolegs are novel traits derived from the activation of a pre-existing modular endite GRN in the abdomen using abd-A, the same Hox gene that still represses legs in more lateral positions.
Collapse
Affiliation(s)
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, National University of Singapore; 14 Science Drive, Singapore 117543 Singapore
| | | | | |
Collapse
|
4
|
Guo H, Liu XZ, Long GJ, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, He M, He P. Functional characterization of developmentally critical genes in the white-backed planthopper: Efficacy of nanoparticle-based dsRNA sprays for pest control. PEST MANAGEMENT SCIENCE 2023; 79:1048-1061. [PMID: 36325939 DOI: 10.1002/ps.7271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR), zinc finger homeodomain-2 (zfh-2), Abdominal-A (Abd-A), and Abdominal-B (Abd-B) regulate the growth and development of the insect abdomen. However, their potential roles in pest control have not been fully assessed. The development of insecticide resistance to multiple chemistries in the white-backed planthopper (WBPH), a major pest of rice, has prompted interest in novel pest control approaches that are ecologically friendly. Although pest management approaches based on double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) have potential, their susceptibility to degradation limits large-scale field applications. These limitations, however, can be overcome with nanoparticle-dsRNA complexes that have greater environmental stability and improved cellular uptake. RESULTS In this study, at 5 days post-injection, transcripts for the four gene targets were reduced relative to controls and all of the experimental groups exhibited significant phenotypic defects and increased mortality. To evaluate the potential of these gene targets for field applications, a nanocarrier-dsRNA spray delivery system was assessed for RNAi efficacy. At 11 days post-spray, significant phenotypic defects and increased mortality were observed in all experimental groups. CONCLUSION Taken together, the results confirm the suitability of the target genes (SfEGFR, Sfzfh-2, SfAbd-A, and SfAbd-B) for pest management and demonstrate the efficacy of the nanocarrier spray system for inducing RNAi-mediated knockdown. As such, the study lays the foundation for the further development and optimization of this technology for large-scale field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Xuan-Zheng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Gui-Jun Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
5
|
Liu BP, Ding G, Miao Y, Hua BZ. The Hox gene Abdominal-B regulates the appendage development during the embryogenesis of scorpionflies. INSECT MOLECULAR BIOLOGY 2022; 31:609-619. [PMID: 35575115 DOI: 10.1111/imb.12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The Homeotic Complex (Hox) genes encode conserved homeodomain transcription factors that specify segment identity and appendage morphology along the antero-posterior axis in bilaterian animals. The Hox gene Abdominal-B (Abd-B) is mainly expressed in the posterior segments of the abdomen and plays an important role in insect organogenesis. In Mecoptera, the potential function of this gene remains unclear yet. Here, we performed a de novo transcriptome assembly and identified an Abd-B ortholog in the scorpionfly Panorpa liui. Quantitative real-time reverse transcription PCR showed that Abd-B expression increased gradually in embryos 76 h post oviposition, and was mainly present in the more posterior abdominal segments. Embryonic RNA interference of Abd-B resulted in a set of abnormalities, including developmental arrest, malformed suckers and misspecification of posterior segment identity. These results suggest that Abd-B is required for the proper development of the posterior abdomen. Furthermore, in Abd-B RNAi embryos, the expression of the appendage marker Distal-less (Dll) was up-regulated and was additionally present on abdominal segments IX and X compared with wild embryos, suggesting that scorpionfly Abd-B may act to suppress proleg development and has gained the ability to repress Dll expression on the more posterior abdominal segments. This study provides additional information on both the functional and evolutionary roles of Abd-B across different insects.
Collapse
Affiliation(s)
- Bing-Peng Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guo Ding
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Miao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Campbell JF, Athanassiou CG, Hagstrum DW, Zhu KY. Tribolium castaneum: A Model Insect for Fundamental and Applied Research. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:347-365. [PMID: 34614365 DOI: 10.1146/annurev-ento-080921-075157] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum has a long history as a model species in many distinct subject areas, but improved connections among the genetics, genomics, behavioral, ecological, and pest management fields are needed to fully realize this species' potential as a model. Tribolium castaneum was the first beetle whose genome was sequenced, and a new genome assembly and enhanced annotation, combined with readily available genomic research tools, have facilitated its increased use in a wide range of functional genomics research. Research into T. castaneum's sensory systems, response to pheromones and kairomones, and patterns of movement and landscape utilization has improved our understanding of behavioral and ecological processes. Tribolium castaneum has also been a model in the development of pest monitoring and management tactics, including evaluation of insecticide resistance mechanisms. Application of functional genomics approaches to behavioral, ecological, and pest management research is in its infancy but offers a powerful tool that can link mechanism with function and facilitate exploitation of these relationships to better manage this important food pest.
Collapse
Affiliation(s)
- James F Campbell
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, USA;
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos 382 21, Greece;
| | - David W Hagstrum
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| |
Collapse
|
7
|
Tendolkar A, Pomerantz AF, Heryanto C, Shirk PD, Patel NH, Martin A. Ultrabithorax Is a Micromanager of Hindwing Identity in Butterflies and Moths. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.643661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The forewings and hindwings of butterflies and moths (Lepidoptera) are differentiated from each other, with segment-specific morphologies and color patterns that mediate a wide range of functions in flight, signaling, and protection. The Hox geneUltrabithorax(Ubx) is a master selector gene that differentiates metathoracic from mesothoracic identities across winged insects, and previous work has shown this role extends to at least some of the color patterns from the butterfly hindwing. Here we used CRISPR targeted mutagenesis to generateUbxloss-of-function somatic mutations in two nymphalid butterflies (Junonia coenia,Vanessa cardui) and a pyralid moth (Plodia interpunctella). The resulting mosaic clones yielded hindwing-to-forewing transformations, showingUbxis necessary for specifying many aspects of hindwing-specific identities, including scale morphologies, color patterns, and wing venation and structure. These homeotic phenotypes showed cell-autonomous, sharp transitions between mutant and non-mutant scales, except for clones that encroached into the border ocelli (eyespots) and resulted in composite and non-autonomous effects on eyespot ring determination. In the pyralid moth, homeotic clones converted the folding and depigmented hindwing into rigid and pigmented composites, affected the wing-coupling frenulum, and induced ectopic scent-scales in male androconia. These data confirmUbxis a master selector of lepidopteran hindwing identity and suggest it acts on many gene regulatory networks involved in wing development and patterning.
Collapse
|
8
|
Martin A, Wolcott NS, O'Connell LA. Bringing immersive science to undergraduate laboratory courses using CRISPR gene knockouts in frogs and butterflies. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb208793. [PMID: 32034043 DOI: 10.1242/jeb.208793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of CRISPR/Cas9 for gene editing offers new opportunities for biology students to perform genuine research exploring the gene-to-phenotype relationship. It is important to introduce the next generation of scientists, health practitioners and other members of society to the technical and ethical aspects of gene editing. Here, we share our experience leading hands-on undergraduate laboratory classes, where students formulate hypotheses regarding the roles of candidate genes involved in development, perform loss-of-function experiments using programmable nucleases and analyze the phenotypic effects of mosaic mutant animals. This is enabled by the use of the amphibian Xenopus laevis and the butterfly Vanessa cardui, two organisms that reliably yield hundreds of large and freshly fertilized eggs in a scalable manner. Frogs and butterflies also present opportunities to teach key biological concepts about gene regulation and development. To complement these practical aspects, we describe learning activities aimed at equipping students with a broad understanding of genome editing techniques, their application in fundamental and translational research, and the bioethical challenges they raise. Overall, our work supports the introduction of CRISPR technology into undergraduate classrooms and, when coupled with classroom undergraduate research experiences, enables hypothesis-driven research by undergraduates.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Nora S Wolcott
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | |
Collapse
|
9
|
Zhang Q, Cheng T, Sun Y, Wang Y, Feng T, Li X, Liu L, Li Z, Liu C, Xia Q, He H. Synergism of open chromatin regions involved in regulating genes in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:10-18. [PMID: 31004794 DOI: 10.1016/j.ibmb.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
The dynamic variability of transcription factors (TFs) and their binding sites makes it challenging to conduct genome-wide transcription regulation research. The silkworm Bombyx mori, which produces silk, is one of the most valuable model insects in the order Lepidoptera. The "opening" and "closing" of chromatin in different silk yield strains is associated with changes in silk production, making this insect a good model for studying the transcriptional regulation of genes. However, few studies have examined the open chromatin regions (OCRs) of silkworms, and studying OCR synergism and their function in silk production remains challenging. Here, we performed formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate OCRs from the silk glands of fifth-instar larvae of the DaZao and D872 strains. In total, 128,908 high confidence OCRs were identified and approximately 80% of OCRs were located in non-coding regions. OCRs upregulated adjacent genes and showed signal-dependent vulnerability to single-nucleotide polymorphisms. Mid- and low-signal OCRs were more likely to have single-nucleotide polymorphisms (SNP). Further, OCRs interacted with each other within a distance of 5 kb. We named the OCR interaction complex as the "cluster of related regions" (COREs). The functions of the CORE and its harbored OCRs showed some differences. Additionally, COREs enriched many silk protein synthesis-associated genes, some of which were upregulated. This study identified numerous high confidence regulation sites and synergistic regulatory modes of OCRs that affect adjacent genes. These results provide insight into silkworm transcriptional regulation and improve our understanding of cis-element cooperation.
Collapse
Affiliation(s)
- Quan Zhang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Yueting Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yi Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Tieshan Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaohong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Lihaoyu Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Huawei He
- Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|