1
|
Xie L, Wang T, Lin S, Lu Z, Wang Y, Shen Z, Cheng Y, Shen A, Peng J, Chu J. Uncaria Rhynchophylla attenuates angiotensin Ⅱ-induced myocardial fibrosis via suppression of the RhoA/ROCK1 pathway. Biomed Pharmacother 2022; 146:112607. [PMID: 35062072 DOI: 10.1016/j.biopha.2021.112607] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/15/2022] Open
Abstract
Uncaria rhynchophylla (UR), a traditional Chinese medicine, has been proven effective in treating hypertensive patients in China. However, the mechanisms of action of UR in reducing hypertension and myocardial fibrosis are still unclear. The purpose of this study was to explore the role of UR in an angiotensin Ⅱ (Ang Ⅱ) induced mouse model. The mice were randomly divided into 5 groups and infused with Ang Ⅱ (500 ng/kg/min) or saline, then administered UR (0.78, 1.56 or 3.12 g/kg/d) or saline for 4 weeks. UR treatment significantly attenuated the elevation of blood pressure caused by Ang Ⅱ. It enhanced myocardial function and attenuated the increase in the heart weight index and the pathological changes in the Ang Ⅱ-induced hypertensive mice. Furthermore, UR treatment inhibited cardiac fibrosis and significantly down-regulated collagen I, collagen Ⅲ, and α-SMA protein expression in cardiac tissues. UR also attenuated the expression of RhoA, ROCK1, CTGF, and TGF-β1. In cultured cardiac fibroblasts stimulated with Ang Ⅱ, UR significantly down-regulated the expression of Collagen I, Collagen III, RhoA, ROCK1, and α-SMA. In summary, UR can significantly attenuate Ang Ⅱ-induced hypertension and cardiac fibrosis, partly via suppression of the RhoA/ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Lingling Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Tianyi Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Zhuqing Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yilian Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Zhiqing Shen
- The People's Hospital of Fujian Traditional Medical University, No. 602, 817 Middle Road, Taijiang District, Fuzhou, Fujian 350004, China.
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
2
|
Zhang X, Zheng C, Gao Z, Chen H, Li K, Wang L, Zheng Y, Li C, Zhang H, Gong M, Zhang H, Meng Y. SLC7A11/xCT Prevents Cardiac Hypertrophy by Inhibiting Ferroptosis. Cardiovasc Drugs Ther 2021; 36:437-447. [PMID: 34259984 DOI: 10.1007/s10557-021-07220-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Systemic hypertension may induce adverse hypertrophy of the left cardiac ventricle. Pathological cardiac hypertrophy is a common cause of heart failure. We investigated the significance of ferroptosis repressor xCT in hypertrophic cardiomyopathy. METHODS xCT expression in angiotensin II (Ang II)-treated mouse hearts and rat cardiomyocytes was determined using qRT-PCR and Western blotting. Cardiac hypertrophy was induced by Ang II infusion in xCT knockout mice and their wildtype counterparts. Blood pressure, cardiac pump function, and pathological changes of cardiac remodeling were analyzed in these mice. Cell death, oxidative stress, and xCT-mediated ferroptosis were examined in Ang II-treated rat cardiomyocytes. RESULTS After Ang II infusion, xCT was downregulated at day 1 but upregulated at day 14 at both mRNA and protein levels. It was also decreased in Ang II-treated cardiomyocytes, but not in cardiofibroblasts. Inhibition of xCT exacerbated cardiomyocyte hypertrophy and boosted the levels of ferroptosis biomarkers Ptgs2, malondialdehyde, and reactive oxygen species induced by Ang II, while overexpression of xCT opposed these detrimental effects. Furthermore, knockout of xCT aggravated Ang II-mediated mouse cardiac fibrosis, hypertrophy, and dysfunction. Ferrostatin-1, a ferroptosis inhibitor, alleviated the exacerbation of cardiomyocyte hypertrophy caused by inhibiting xCT in cultured rat cells or ablating xCT in mice. CONCLUSION xCT acts as a suppressor in Ang II-mediated cardiac hypertrophy by blocking ferroptosis. Positive modulation of xCT may therefore represent a novel therapeutic approach against cardiac hypertrophic diseases.
Collapse
Affiliation(s)
- Xiyu Zhang
- Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China
| | - Cuiting Zheng
- Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China
| | - Hongyu Chen
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingling Wang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Chunjia Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Hongjia Zhang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Beijing Aortic Disease Center, Beijing Laboratory for Cardiovascular Precision Medicine, and Beijing Engineering Research Center of Vascular Prostheses, Capital Medical University, Beijing, China
| | - Ming Gong
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Beijing Aortic Disease Center, Beijing Laboratory for Cardiovascular Precision Medicine, and Beijing Engineering Research Center of Vascular Prostheses, Capital Medical University, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yan Meng
- Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|