1
|
Tang L, Que H, Wei Y, Yang T, Tong A, Wei X. Replicon RNA vaccines: design, delivery, and immunogenicity in infectious diseases and cancer. J Hematol Oncol 2025; 18:43. [PMID: 40247301 PMCID: PMC12004886 DOI: 10.1186/s13045-025-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
Replicon RNA (RepRNA) represents a cutting-edge technology in the field of vaccinology, fundamentally transforming vaccine design and development. This innovative approach facilitates the induction of robust immune responses against a range of infectious diseases and cancers. RepRNA vaccines leverage the inherent capabilities of RNA-dependent RNA polymerase associated with self-replicating repRNA, allowing for extreme replication within host cells. This process enhances antigen production and subsequently stimulates adaptive immunity. Additionally, the generation of double-stranded RNA during RNA replication can activate innate immune responses. Numerous studies have demonstrated that repRNA vaccines elicit potent humoral and cellular immune responses that are broader and more durable than those generated by conventional mRNA vaccines. These significant immune responses have been shown to provide protection in various models for infectious diseases and cancers. This article will explore the design and delivery of RepRNA vaccines, the mechanisms of immune activation, preclinical studies addressing infectious diseases and tumors, and related clinical trials that focus on safety and immunogenicity.
Collapse
Affiliation(s)
- Lirui Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.
| | - Aiping Tong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Prow NA, Liu L, Nakayama E, Cooper TH, Yan K, Eldi P, Hazlewood JE, Tang B, Le TT, Setoh YX, Khromykh AA, Hobson-Peters J, Diener KR, Howley PM, Hayball JD, Suhrbier A. A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat Commun 2018; 9:1230. [PMID: 29581442 PMCID: PMC5964325 DOI: 10.1038/s41467-018-03662-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Zika and chikungunya viruses have caused major epidemics and are transmitted by Aedes aegypti and/or Aedes albopictus mosquitoes. The “Sementis Copenhagen Vector” (SCV) system is a recently developed vaccinia-based, multiplication-defective, vaccine vector technology that allows manufacture in modified CHO cells. Herein we describe a single-vector construct SCV vaccine that encodes the structural polyprotein cassettes of both Zika and chikungunya viruses from different loci. A single vaccination of mice induces neutralizing antibodies to both viruses in wild-type and IFNAR−/− mice and protects against (i) chikungunya virus viremia and arthritis in wild-type mice, (ii) Zika virus viremia and fetal/placental infection in female IFNAR−/− mice, and (iii) Zika virus viremia and testes infection and pathology in male IFNAR−/− mice. To our knowledge this represents the first single-vector construct, multi-pathogen vaccine encoding large polyproteins, and offers both simplified manufacturing and formulation, and reduced “shot burden” for these often co-circulating arboviruses. Zika and chikungunya virus are co-circulating in many regions and currently there is no approved vaccine for either virus. Here, the authors engineer one vaccinia virus based vaccine for both, Zika and chikungunya, and show protection from infection and pathogenesis in mice.
Collapse
Affiliation(s)
- Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Eri Nakayama
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia. .,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia. .,Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia.
| |
Collapse
|
3
|
Sciutto E, Fragoso G, Hernández M, Rosas G, Martínez JJ, Fleury A, Cervantes J, Aluja A, Larralde C. Development of the S3Pvac vaccine against murine Taenia crassiceps cysticercosis: a historical review. J Parasitol 2013; 99:693-702. [PMID: 23409920 DOI: 10.1645/ge-3101.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Our work of the last 25 yr was concerned with the development of a vaccine aimed to prevent porcine Taenia solium cysticercosis and was based on cross-reacting Taenia crassiceps antigens that had proved protective against experimental intraperitoneal murine T. crassiceps cysticercosis (EIMTcC). In recent times the efficacy of the vaccine has been considered in need of confirmation, and the use of EIMTcC has been questioned as a valid tool in screening for vaccine candidates among the many antigens possibly involved. A review of our work divided in 2 parts is presented at this point, the first dealing with EIMTcC and the second with porcine T. solium cysticercosis (presented in this issue). Herein, we revise our results using EIMTcC as a measure of the protective capacity of T. crassiceps complex antigen mixtures, of purified native antigens, and of S3Pvac anti-cysticercosis vaccine composed by 3 protective peptides: GK-1, KETc1, and KETc12 either synthetic or recombinantly expressed and collectively or separately, by diverse delivery systems when administered at different doses and by different routes. Statistical analyses of the data lead confidently to the strong inference that S3Pvac is indeed an effective vaccine against EIMTcC via specific and non-specific mechanisms of protection.
Collapse
Affiliation(s)
- Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México.
| | | | | | | | | | | | | | | | | |
Collapse
|