1
|
Li J, Fan T, Wang D, Xiao C, Deng Z, Cai W, Ji Y, Li C, He J. SLAMF receptors: key regulators of tumor progression and emerging targets for cancer immunotherapy. Mol Cancer 2025; 24:145. [PMID: 40382610 PMCID: PMC12084948 DOI: 10.1186/s12943-025-02308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/18/2025] [Indexed: 05/20/2025] Open
Abstract
The signaling lymphocytic activation molecule family (SLAMF) consists of nine distinct cell surface receptors predominantly expressed on immune cells, each characterized by unique structural features, expression patterns, downstream signaling pathways, and biological functions. These receptors play critical roles in modulating various immune cell activities within the tumor microenvironment, thereby shaping immune responses in cancer. Although accumulating evidence demonstrates their value as therapeutic targets for developing cancer immunotherapies, the full spectrum of SLAMF receptors in cancer remains incompletely understood. This review aims to provide a comprehensive overview of the molecular characteristics and immunomodulatory functions of each SLAMF receptor, underscoring their pivotal contributions to cancer progression. Furthermore, we also highlight their potential as promising targets for advancing cancer immunotherapeutic strategies. Finally, we discuss clinical trials evaluating the efficacy and safety of SLAMF receptor-based immunotherapies, emphasizing their translational relevance in the development of cancer treatments.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Lenart M, Kluczewska A, Szaflarska A, Rutkowska-Zapała M, Wąsik M, Ziemiańska-Pięta A, Kobylarz K, Pituch-Noworolska A, Siedlar M. Selective downregulation of natural killer activating receptors on NK cells and upregulation of PD-1 expression on T cells in children with severe and/or recurrent Herpes simplex virus infections. Immunobiology 2021; 226:152097. [PMID: 34015527 DOI: 10.1016/j.imbio.2021.152097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Severe, recurrent or atypical Herpes simplex virus (HSV) infections are still posing clinical and diagnostic problem in clinical immunology facilities. However, the molecular background of this disorder is still unclear. The aim of this study was to investigate the expression of activating receptors on NK cells (CD16, NKp46, NKG2D, NKp80, 2B4, CD48 and NTB-A) and checkpoint molecule PD-1 on T lymphocytes and NK cells, in patients with severe and/or recurrent infections with HSV and age-matched healthy control subjects. As a result, we noticed that patients with severe and/or recurrent infection with HSV had significantly lower percentage of CD16brightCD56dim and higher percentage of CD16dimCD56bright NK cell subsets, when compared to control subjects, which may be associated with abnormal NK cell maturation during chronic HSV infection. Patients had also significantly downregulated expression of CD16 receptor on CD16bright NK cells. The expression of activating receptors was significantly reduced on patients' NK cells - either both the percentage of NK cells expressing the receptor and MFI of its expression (NKp46, NKp80 and 2B4 on CD16brightCD56dim cells and NKp46 on CD16dimCD56bright cells) or only MFI (NKG2D on both NK cell subsets). It should be noted that the reduction of receptor expression was limited to NK cells, since there was no differences in the percentage of receptor-positive cells or MFI on T cells. However, NTB-A receptor was the only one which expression was not only simultaneously changed in patients' NK and T cells, but also significantly upregulated on CD16dimCD56bright NK cell and CD8+ cell subsets. Patients had also upregulated proportion of CD4+ T cells expressing PD-1. Thus, we suggest that an increased percentage of PD-1+ cells may represent an independent indirect mechanism of downregulation of antiviral response, separate from the reduction of NK cell activating receptors expression. Altogether, our studies indicate two possible mechanisms which may promote perpetuation of HSV infection: 1) selective inhibition of activating receptors on NK cells, but not on T cells, and 2) upregulation of checkpoint molecule PD-1 on CD4+ T cells.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Magdalena Wąsik
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Ziemiańska-Pięta
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Krzysztof Kobylarz
- Department of Anesthesiology and Intensive Care, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland.
| |
Collapse
|
3
|
Gartshteyn Y, Askanase AD, Mor A. SLAM Associated Protein Signaling in T Cells: Tilting the Balance Toward Autoimmunity. Front Immunol 2021; 12:654839. [PMID: 33936082 PMCID: PMC8086963 DOI: 10.3389/fimmu.2021.654839] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
T cell activation is the result of the integration of signals across the T cell receptor and adjacent co-receptors. The signaling lymphocyte activation molecules (SLAM) family are transmembrane co-receptors that modulate antigen driven T cell responses. Signal transduction downstream of the SLAM receptor is mediated by the adaptor protein SLAM Associated Protein (SAP), a small intracellular protein with a single SH2 binding domain that can recruit tyrosine kinases as well as shield phosphorylated sites from dephosphorylation. Balanced SLAM-SAP signaling within T cells is required for healthy immunity, with deficiency or overexpression prompting autoimmune diseases. Better understanding of the molecular pathways involved in the intracellular signaling downstream of SLAM could provide treatment targets for these autoimmune diseases.
Collapse
Affiliation(s)
- Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Anca D Askanase
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
4
|
Liu B, Zeng L, Shao Y, Fu R. Expression and function of SLAMF6 in CD8 + T lymphocytes of patients with severe aplastic anemia. Cell Immunol 2021; 364:104343. [PMID: 33774556 DOI: 10.1016/j.cellimm.2021.104343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the expression status of signaling lymphocytic activation molecule family 6 (SLAMF6) in CD8+ T lymphocytes of patients with severe aplastic anemia (SAA) and its association with the clinical indicators and immune status of the disease. The effects of SLAMF6 on the function and apoptosis of CD8+ T lymphocytes were also investigated. Levels of SLAMF6 and SLAM-associated protein in the CD8+ T lymphocytes of SAA patients were significantly lower than the normal controls, and they were positively correlated with hematopoietic-related indicators but negatively correlated with the levels of functional molecules of CD8+ T lymphocytes. After blocking SLAMF6, CD8+ T lymphocyte functional molecule secretion was upregulated and RICD was downregulated in SAA patients, suggesting that SLAMF6, is involved in the pathogenetic mechanism of SAA by regulating CD8+ T lymphocyte functional molecule secretion and RICD levels. SLAMF6 may be a novel target for the regulation of CD8+ T lymphocyte homeostasis.
Collapse
Affiliation(s)
- Bingnan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Lijie Zeng
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Yuanyuan Shao
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| |
Collapse
|
5
|
Rolandelli A, Pellegrini JM, Hernández Del Pino RE, Tateosian NL, Amiano NO, Morelli MP, Castello FA, Casco N, Levi A, Palmero DJ, García VE. The Non-synonymous rs763780 Single-Nucleotide Polymorphism in IL17F Gene Is Associated With Susceptibility to Tuberculosis and Advanced Disease Severity in Argentina. Front Immunol 2019; 10:2248. [PMID: 31616423 PMCID: PMC6764169 DOI: 10.3389/fimmu.2019.02248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Th17 lymphocytes, that produce IL17A, IL17F, and IL22, play a crucial role during the immune response against Mycobacterium tuberculosis (Mtb) infection. Whereas, the contribution of IL17A in immunity to tuberculosis is usually accepted, the role of IL17F has been scarcely studied so far. The aim of this work was to evaluate the existence of a potential association of the non-synonymous variant rs763780 SNP of the IL17F gene with human tuberculosis. Accordingly, by comparing healthy donors (HD) and tuberculosis patients (TB) populations we demonstrated an association between the C allele of the SNP and the susceptibility to tuberculosis disease in Argentina. Furthermore, we found that peripheral blood mononuclear cells (PBMCs) from individuals with a more effective immune response against Mtb secreted the highest levels of IL17F when stimulated with a lysate of Mtb (Mtb-Ag). Besides, we evidenced that Mtb-Ag-stimulated PBMCs from HD carrying the C variant of the SNP displayed the lowest IFNG secretion, proliferation index, and SLAM expression as compared to TT carriers. Moreover, Mtb-Ag-stimulated PBMCs from TB carrying the C allele produced the lowest levels of IFNG, the highest level of IL17A, and the minimum proliferation indexes as compared to TT TB, suggesting a relationship between the C allele and tuberculosis severity. In fact, TB carrying the C allele presented a more severe disease, with the highest bacilli burden in sputum. Together, our findings identify the IL17F rs763780 SNP as a biomarker of tuberculosis susceptibility and advanced disease severity in Argentina, suggesting that IL17F could be a critical cytokine in tuberculosis immunity.
Collapse
Affiliation(s)
- Agustín Rolandelli
- Department of Biological Chemistry, University of Buenos Aires (UBA), School of Sciences, Buenos Aires, Argentina.,Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Joaquín Miguel Pellegrini
- Department of Biological Chemistry, University of Buenos Aires (UBA), School of Sciences, Buenos Aires, Argentina.,Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Rodrigo Emanuel Hernández Del Pino
- Center of Investigation and Transference of National Northwest University of Buenos Aires (CITNOBA), The National Northwest University of Buenos Aires (UNNOBA)-CONICET, Buenos Aires, Argentina
| | - Nancy Liliana Tateosian
- Department of Biological Chemistry, University of Buenos Aires (UBA), School of Sciences, Buenos Aires, Argentina.,Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Nicolás Oscar Amiano
- Department of Biological Chemistry, University of Buenos Aires (UBA), School of Sciences, Buenos Aires, Argentina.,Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - María Paula Morelli
- Department of Biological Chemistry, University of Buenos Aires (UBA), School of Sciences, Buenos Aires, Argentina.,Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Florencia Andrea Castello
- Department of Biological Chemistry, University of Buenos Aires (UBA), School of Sciences, Buenos Aires, Argentina.,Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Nicolás Casco
- Tisioneumonology Division, F. J. Muñiz Hospital, Buenos Aires, Argentina
| | - Alberto Levi
- Tisioneumonology Division, F. J. Muñiz Hospital, Buenos Aires, Argentina
| | | | - Verónica Edith García
- Department of Biological Chemistry, University of Buenos Aires (UBA), School of Sciences, Buenos Aires, Argentina.,Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Katz G, Voss K, Yan TF, Kim YC, Kortum RL, Scott DW, Snow AL. FOXP3 renders activated human regulatory T cells resistant to restimulation-induced cell death by suppressing SAP expression. Cell Immunol 2018; 327:54-61. [PMID: 29454648 DOI: 10.1016/j.cellimm.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/15/2022]
Abstract
Restimulation-induced cell death (RICD) is an apoptotic program that regulates effector T cell expansion, triggered by repeated stimulation through the T cell receptor (TCR) in the presence of interleukin-2 (IL-2). Although CD4+ regulatory T cells (Tregs) consume IL-2 and experience frequent TCR stimulation, they are highly resistant to RICD. Resistance in Tregs is dependent on the forkhead box P3 (FOXP3) transcription factor, although the mechanism remains unclear. T cells from patients with X-linked lymphoproliferative disease (XLP-1), that lack the adaptor molecule SLAM-associated protein (SAP), are also resistant to RICD. Here we demonstrate that normal Tregs express very low levels of SAP compared to conventional T cells. FOXP3 reduces SAP expression by directly binding to and repressing the SH2D1A (SAP) promoter. Indeed, ectopic SAP expression restores RICD sensitivity in human FOXP3+ Tregs. Our findings illuminate the mechanism behind FOXP3-mediated RICD resistance in Tregs, providing new insight into their long-term persistence.
Collapse
Affiliation(s)
- Gil Katz
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kelsey Voss
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Toria F Yan
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Robert L Kortum
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|