1
|
Bian C, Lyu M, Zhu M, Liu M, Xie X, Weir MD, Hack GD, Masri R, Zhang K, Bai Y, Xu HHK, Zhang N. Novel antibacterial orthodontic elastomeric ligature with oral biofilm-regulatory ability to prevent enamel demineralization. Dent Mater 2024; 40:1534-1545. [PMID: 39060129 DOI: 10.1016/j.dental.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES To synthesize a novel antibacterial orthodontic elastomeric ligature incorporating dimethylaminohexadecyl methacrylate (DMAHDM) for the first time to prevent enamel demineralization during orthodontic therapy. METHODS Various mass fractions of DMAHDM (ranging from 0 % to 20 %) were grafted onto commercial elastomeric ligatures using an ultraviolet photochemical grafting method and were characterized. The optimal DMAHDM concentration was determined based on biocompatibility and mechanical properties, and the antibacterial efficacy was evaluated in a whole-plaque biofilm model. TaqMan real-time polymerase chain reaction and fluorescence in situ hybridization were used to assess the microbial regulatory ability of the multispecies biofilms. Furthermore, an in vitro tooth demineralization model was established to explore its preventive effects on enamel demineralization. Statistical analysis involved a one-way analysis of variance and LSD post hoc tests at a significance level of 0.05. RESULTS The elastomeric ligature containing 2 % mass fraction of DMAHDM exhibited excellent mechanical properties, favorable biocompatibility, and the most effective antibacterial ability against microorganisms, which decreased by almost two logarithms (P < 0.05). It significantly reduced the proportion of Streptococcus mutans in the multispecies plaque biofilm by 25 % at 72 h, leading to an enhanced biofilm microenvironment. Moreover, the novel elastomeric ligature demonstrated an obvious preventive effect on enamel demineralization, with an elastic modulus 30 % higher and hardness 62 % higher than those of the control group within 3 months (P < 0.05). SIGNIFICANCE The integration of DMAHDM with an elastomeric ligature holds significant promise for regulating biofilms and preventing enamel demineralization in orthodontic applications.
Collapse
Affiliation(s)
- Ce Bian
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Menghao Lyu
- Department of Periodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Mengyao Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Miao Liu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Gary D Hack
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Sun M, Lu Y, Zhang H, Jiang W, Wang W, Huang X, Zhang S, Xiang D, Tang B, Chen Y, Chen T, Lian C, Zhang J. Multifunctional Composite Scaffold with Nanosilver, Graphene Oxide, and Macrophage Membrane Vesicles for Sequential Treatment of Infected Bone Defects. Adv Healthc Mater 2024; 13:e2400346. [PMID: 38684106 DOI: 10.1002/adhm.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/02/2024]
Abstract
The management of infected bone defects poses a significant clinical challenge, and current treatment modalities exhibit various limitations. This study focuses on the development of a multifunctional composite scaffold comprising nanohydroxyapatite/polyethyleneglycol diacrylate matrix, silver nanoparticles, graphene oxide (GO), sodium alginate, and M2-type macrophage membrane vesicles (MVs) to enhance the healing of infected bone defects. The composite scaffold demonstrates several key features: first, it releases sufficient quantities of silver ions to effectively eliminate bacteria; second, the controlled release of MVs leads to a notable increase in M2-type macrophages, thereby significantly mitigating the inflammatory response. Additionally, GO acts synergistically with nanohydroxyapatite to enhance osteoinductive activity, thereby fostering bone regeneration. Through meticulous in vitro and in vivo investigations, the composite scaffold exhibits broad-spectrum antimicrobial effects, robust immunomodulatory capabilities, and enhanced osteoinductive activity. This multifaceted composite scaffold presents a promising approach for the sequential treatment of infected bone defects, addressing the antimicrobial, immunomodulatory, and osteogenic aspects. This study introduces innovative perspectives and offers new and effective treatment alternatives for managing infected bone defects.
Collapse
Affiliation(s)
- Mingjie Sun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Lu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongrui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiqian Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shichun Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Dulei Xiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Boyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chengjie Lian
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Li Y, Li B, Guo X, Wang H, Cheng L. Applications of quaternary ammonium compounds in the prevention and treatment of oral diseases: State-of-the-art and future directions. J Dent 2023; 137:104678. [PMID: 37634613 DOI: 10.1016/j.jdent.2023.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVES The aim of this review is to comprehensively summarize the state-of-the-art developments of quaternary ammonium compounds (QACs) in the prevention and treatment of oral diseases. By discussing the structural diversity and the potential killing mechanism, we try to offer some insights for the future research of QACs. DATA, SOURCES & STUDY SELECTION A literature search was conducted in electronic databases (Web of Science, PubMed, Medline, and Scopus). Publications that involved the applications of QACs, especially those related to the prevention and treatment of oral diseases, are included. RESULTS We have reviewed the relevant research on QACs over the past two decades. The research results indicate that the current applications are mainly focused on dental material modification and direct pharmacological interventions. Concurrently, challenges such as potential risks to normal tissues and impediments in drug resistance and microbial persistence present certain application constraints. The latest studies have encompassed the exploration of smart materials and nanoparticle formulations. CONCLUSIONS The killing mechanism may possess a threshold related to charge density. However, the exact process remains enigmatic. The structural diversity and the exploration of intelligent materials and nanoparticle formulations provide directions in development of novel QACs. CLINICAL SIGNIFICANCE The intricate oral anatomy, combined with the multifaceted oral microbiome, necessitates specialized materials for the targeted prevention and treatment of oral pathologies. QACs represent a cohort of compounds distinguished by potent anti-infective and anti-tumor attributes. Innovations in intelligent materials and nanoparticle formulations amplify their potential in significantly advancing the prevention and therapeutic interventions for oral diseases.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Chen X, Shan T, Ren B, Zhang L, Xu HHK, Wang N, Zhou X, Li H, Cheng L. Dimethylaminododecyl Methacrylate-Incorporated Dental Materials Could Be the First Line of Defense against Helicobacter pylori. Int J Mol Sci 2023; 24:13644. [PMID: 37686449 PMCID: PMC10487857 DOI: 10.3390/ijms241713644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Oral cavity is an essential reservoir for H. pylori. We aimed to investigate the antibacterial effects of dimethylaminododecyl methacrylate (DMADDM) against H. pylori. Modified giomers were prepared by introducing 0%, 1.25% and 2.5% DMADDM monomers. Broth microdilution assay, spot assay, Alamer Blue assay, PMA-qPCR, crystal violet staining, scanning electron microscopy observation and live/dead bacterial staining were performed to evaluate the antibacterial and antibiofilm effects of DMADDM and modified giomers in vitro. Urease assay, qPCR, hematoxylin-eosin staining and ELISA were performed to evaluate the inflammation levels and colonization of H. pylori in vivo. In vitro experiments indicated that the minimum inhibitory concentration and minimum bactericidal concentration of DMADDM were 6.25 μg/mL and 25 μg/mL, respectively. It inhibited H. pylori in a dose- and time-dependent manner, and significantly reduced the expression of cagA, vacA, flaA and ureB. DMADDM-modified giomers inhibited the formation of H. pylori biofilm and reduced live cells within it. In vivo experiments confirmed that the pretreatment with DMADDM-modified dental resin effectively reduced the gastric colonization of oral-derived H. pylori, suppressed systemic and local gastric inflammation. DMADDM monomers and DMADDM-modified giomers possessed excellent antibacterial and antibiofilm effects on H. pylori. Pretreatment with DMADDM-modified giomers significantly inhibited the gastric infection by H. pylori.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tiantian Shan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21021, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nanxi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Anti-bacterial and anti-microbial aging effects of resin-based sealant modified by quaternary ammonium monomers. J Dent 2021; 112:103767. [PMID: 34363889 DOI: 10.1016/j.jdent.2021.103767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Pit and fissure sealant is used in the prevention of dental caries. However, commercial pit and fissure sealant lacks persistent antibacterial properties. Dimethylaminododecyl methacrylate (DMADDM) was added to pit and fissure sealants to give it sustainable antibacterial properties and anti-microbial aging properties. METHODS Resin-based sealant was used as a control. Novel sealants were made with DMADDM. Atomic force microscope observation, curing depth, cytotoxicity, lactic acid measurement, hardness and microleakage were measured. Saliva-derived biofilms were grown on sealants. Biofilm metabolic activity, lactic acid production and biomass accumulation were measured. RESULTS Incorporating DMADDM did not increase the cytotoxicity or change the physical properties when the mass fraction of the DMADDM was 2.5-10%. The modification decreased the amount of bacterial biofilm, metabolic activity, lactic acid production and exopolysaccharide (EPS) in the saliva biofilms. It also provided anti-microbial aging properties. CONCLUSION The incorporation of DMADDM improved the antibacterial and anti-microbial aging effects of the material. It demonstrated a sustained antibacterial effect. The antibacterial and anti-microbial aging modification might be a potential choice for future clinical applications to inhibit dental caries, especially for children at high caries risk. CLINICAL SIGNIFICANCE The antibacterial and anti-microbial aging modification might be a potential choice for future clinical applications to prevent dental caries, especially for individuals at high caries risk.
Collapse
|
6
|
Huang Y, Song B, Zhou X, Chen H, Wang H, Cheng L. Dental Restorative Materials for Elderly Populations. Polymers (Basel) 2021; 13:polym13050828. [PMID: 33800358 PMCID: PMC7962827 DOI: 10.3390/polym13050828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/26/2023] Open
Abstract
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the restorative materials commonly used clinically cannot fully meet the requirements in this population. Specifically, the antibacterial, adhesive, remineralization, mechanical, and anti-aging properties of the materials need to be significantly improved for dental caries in the elderly. This review mainly discusses the strengths and weaknesses of currently available materials, including amalgam, glass ionomer cement, and light-cured composite resin, for root caries. It also reviews the studies on novel anti-caries materials divided into three groups, antimicrobial, remineralization, and self-healing materials, and explores their potential in the clinical use for caries in the elderly. Therefore, specific restorative materials for caries in the elderly, especially for root caries, need to be further developed and applied in clinical practice.
Collapse
Affiliation(s)
- Yuyao Huang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bingqing Song
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hui Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| |
Collapse
|
7
|
Khan AS, Ur Rehman S, AlMaimouni YK, Ahmad S, Khan M, Ashiq M. Bibliometric Analysis of Literature Published on Antibacterial Dental Adhesive from 1996-2020. Polymers (Basel) 2020; 12:E2848. [PMID: 33260410 PMCID: PMC7761276 DOI: 10.3390/polym12122848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the current state of research on antibacterial dental adhesives. The interest in this field can be drawn from an increasing number of scholarly works in this area. However, there is still a lack of quantitative measurement of this topic. The main aim of this study was to consolidate the research published on the antibacterial adhesive from 1996 to 2020 in Web of Science indexed journals. The bibliometric method, a quantitative study of investigating publishing trends and patterns, was used for this study. The result has shown that a gradual increase in research was found, whereby a substantial increase was observed from 2013. A total of 248 documents were published in 84 journals with total citations of 5107. The highly cited articles were published mainly in Q1 category journals. Most of the published articles were from the USA, China, and other developed countries; however, some developing countries contributed as well. The authorship pattern showed an interdisciplinary and collaborative approach among researchers. The thematic evaluation of keywords along with a three-factor analysis showed that 'antibacterial adhesives' and 'quaternary ammonium' have been used commonly. This bibliometric analysis can provide direction not only to researchers but also to funding organizations and policymakers.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54000, Pakistan;
| | - Murtaza Ashiq
- Islamabad Model College for Boys, H-9, Islamabad 44000, Pakistan;
| |
Collapse
|
8
|
Dimethylaminododecyl methacrylate inhibits Candida albicans and oropharyngeal candidiasis in a pH-dependent manner. Appl Microbiol Biotechnol 2020; 104:3585-3595. [PMID: 32125481 DOI: 10.1007/s00253-020-10496-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/28/2020] [Accepted: 02/20/2020] [Indexed: 02/05/2023]
Abstract
The prevalence of stomatitis, especially that caused by Candida albicans, has highlighted the need for new antifungal agents. We previously found that a type of quaternary ammonium salts, dimethylaminododecyl methacrylate (DMADDM), incorporated in dental materials inhibited the growth and hyphal development of C. albicans. However, how the quaternary ammonium salts inhibited the fungal pathogens and whether the oral condition, such as salivary pH variation under different diseases, can affect the antimicrobial capacity of quaternary ammonium salts is unknown. This study evaluated the antifungal effects of DMADDM at different pH in vitro and in vivo. A pH-dependent antifungal effect of DMADDM was observed in planktonic and biofilm growth. DMADDM enhanced antifungal activity at alkaline pH. Two pH-regulated genes (PHR1/PHR2) of C. albicans were correlated with the pH-dependent antifungal effects of DMADDM. The PHR1/PHR2 genes and pH values regulated the zeta potential of C. albicans, which then influenced the binding between C. albicans cells and DMADDM. The pH-dependent antifungal activity of DMADDM was then substantiated in a murine oropharyngeal candidiasis model. We directly demonstrated that the antifungal abilities of quaternary ammonium salts relied on the cell zeta potential which affected the binding between fungal cells and quaternary ammonium salts. These findings suggest a new antifungal mechanism of quaternary ammonium under different pH and that DMADDM can be a potential antifungal agent applied in dental materials and stomatitis therapy.Key Points • DMADDM has stronger antifungal activity in alkaline than in acidic pH conditions. • The pH values and pH-regulated genes can affect the zeta potential of fungal cells. • Zeta potential of fungal cells directly affect the binding between DMADDM and cells. Graphical abstract Schematic diagram of the antifungal activities of DMADDM at different pH values.
Collapse
|
9
|
Kuang X, Chen V, Xu X. Novel Approaches to the Control of Oral Microbial Biofilms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6498932. [PMID: 30687755 PMCID: PMC6330817 DOI: 10.1155/2018/6498932] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/13/2018] [Indexed: 02/05/2023]
Abstract
Effective management of biofilm-related oral infectious diseases is a global challenge. Oral biofilm presents increased resistance to antimicrobial agents and elevated virulence compared with planktonic bacteria. Antimicrobial agents, such as chlorhexidine, have proven effective in the disruption/inhibition of oral biofilm. However, the challenge of precisely and continuously eliminating the specific pathogens without disturbing the microbial ecology still exists, which is a major factor in determining the virulence of a multispecies microbial consortium and the consequent development of oral infectious diseases. Therefore, several novel approaches are being developed to inhibit biofilm virulence without necessarily inducing microbial dysbiosis of the oral cavity. Nanoparticles, such as pH-responsive enzyme-mimic nanoparticles, have been developed to specifically target the acidic niches within the oral biofilm where tooth demineralization readily occurs, in effect controlling dental caries. Quaternary ammonium salts (QAS) such as dimethylaminododecyl methacrylate (DMADDM), when incorporated into dental adhesives or resin composite, have also shown excellent and durable antimicrobial activity and thus could effectively inhibit the occurrence of secondary caries. In addition, custom-designed small molecules, natural products and their derivatives, as well as basic amino acids such as arginine, have demonstrated ecological effects by modulating the virulence of the oral biofilm without universally killing the commensal bacteria, indicating a promising approach to the management of oral infectious diseases such as dental caries and periodontal diseases. This article aims to introduce these novel approaches that have shown potential in the control of oral biofilm. These methods may be utilized in the near future to effectively promote the clinical management of oral infectious diseases and thus benefit oral health.
Collapse
Affiliation(s)
- Xinyi Kuang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
10
|
Guterman R, Smith CA. Photopolymerization of Ionic Liquids – A Mutually Beneficial Approach for Materials Fabrication. Isr J Chem 2018. [DOI: 10.1002/ijch.201800123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ryan Guterman
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Christene A. Smith
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
11
|
Wang S, Wang H, Ren B, Li X, Wang L, Zhou H, Weir MD, Zhou X, Masri RM, Oates TW, Cheng L, Xu HHK. Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Sci Rep 2018; 8:5509. [PMID: 29615732 PMCID: PMC5882658 DOI: 10.1038/s41598-018-23831-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Only two reports exist on drug-resistance of quaternary ammonium monomers against oral bacteria; both studies tested planktonic bacteria for 10 passages, and neither study tested biofilms or resins. The objectives of this study were to investigate the drug-resistance of Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii against dimethylaminohexadecyl methacrylate (DMAHDM), and to evaluate biofilms on resins with repeated exposures for 20 passages for the first time. DMAHDM, dimethylaminododecyl methacrylate (DMADDM) and chlorhexidine (CHX) were tested with planktonic bacteria. Biofilms were grown on a resin containing 3% DMAHDM. Minimum-inhibitory concentrations were measured. To detect drug-resistance, the survived bacteria from the previous passage were used as inoculum for the next passage for repeated exposures. S. gordonii developed drug-resistance against DMADDM and CHX, but not against DMAHDM. Biofilm colony-forming units (CFU) on DMAHDM-resin was reduced by 3–4 log; there was no difference from passages 1 to 20 (p > 0.1). No drug-resistance to DMAHDM was detected for all three bacterial species. In conclusion, this study showed that DMAHDM induced no drug-resistance, and DMAHDM-resin reduced biofilm CFU by 3–4 log, with no significant change from 1 to 20 passages. DMAHDM with potent antibacterial activities and no drug-resistance is promising for dental applications.
Collapse
Affiliation(s)
- Suping Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Haohao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Li
- Department of Oral Medicine, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Wang
- VIP Integrated Department, Stomatological Hospital of Jilin University, Changchun, China
| | - Han Zhou
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Radi M Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD, 21250, USA. .,Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Liang J, Li M, Ren B, Wu T, Xu HHK, Liu Y, Peng X, Yang G, Weir MD, Zhang S, Cheng L, Zhou X. The anti-caries effects of dental adhesive resin influenced by the position of functional groups in quaternary ammonium monomers. Dent Mater 2017; 34:400-411. [PMID: 29269159 DOI: 10.1016/j.dental.2017.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES A new quaternary ammonium monomer (QAM), triethylaminododecyl acrylate (TEADDA) was synthesized, in which the position of the functional groups was different from that of dimethylaminododecyl methacrylate (DMADDM). The objectives were to: (1) investigate the effect of the changed position of the functional groups on the mechanical properties, anti-biofilm activity and biocompatibility of adhesive resin, and (2) study the anti-bacterial mechanism of QAM to improve the performance of the adhesive system modified by QAM. METHODS TEADDA and DMADDM were added into adhesives. Microtensile bond strength and surface charge density were measured. Multi-species biofilms were incubated on specimens for 16h, 48h and 72h and analyzed via MTT assay, lactic acid measurement and confocal laser scanning microscopy. The ratio of different species of bacteria was measured by real-time polymerase chain reaction. Cytotoxicity and biocompatibility were analyzed by eluents cytotoxicity test and histological images of H&E staining via an animal study in rats. RESULTS The mass fraction of TEDDA allowed to be added into adhesive was higher than that of DMADDM. However, even 10% TEADDA did not yield a strong anti-biofilm effect on biofilm growth, lactic acid production and bacteria compositions. TEADDA added into adhesives showed better mechanical properties but weaker anti-bacterial effect. There was no significant difference on cytotoxicity and biocompatibility between DMADDM and TEADDA. SIGNIFICANCE The study could be helpful for the investigation of the anti-caries mechanism of QAMs, the design of new QAMs and the improvement of the anti-caries activity of the modified dental materials.
Collapse
Affiliation(s)
- Jingou Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Tianmu Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yong Liu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Ge Yang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Shiyong Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|