1
|
Yu F, Li Y, Meng S, Zhang B, Liu Y, Luo W, Qian Z, Xie W, Ye X, Pratush A, Peng T, Wang H, Gu JD, Hu Z. Distribution of microbial taxa and genes degrading halogenated organic pollutants in the mangroves. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137145. [PMID: 39793385 DOI: 10.1016/j.jhazmat.2025.137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Anthropogenic activities have led to serious contamination of halogenated organic pollutants (HOPs), such as PCBs, PBDEs, and HBCDs, in the mangrove wetland. Biodegradation of HOPs is generally driven by environmental microorganisms harboring dehalogenase genes. However, little is known if HOPs can affect the distributions of HOPs-degrading bacteria and dehalogenase genes in the mangrove wetlands. Historical data suggested that HOPs contamination has been persistent and even deteriorated in the mangrove wetlands in China. We found that the organohalides-respiring bacteria Dehalococcoidia and reductive dehalogenase genes were more prevalent in the subsurface layer sediments (20-30 cm depth; 1.935-9.876 % relative abundance; 71-286 contigs) than the surface layer (0-5 cm depth; 0.174-2.020 % relative abundance; 7-130 contigs). While the genes of haloacid and haloalkane dehalogenases were more abundant in the surface layer (30-100 and 18-138 contigs) than the subsurface layer (22-56 and 50-101 contigs). The abundance of HOPs-degrading genes of reductive dehalogenase, haloacid dehalogenases, AtzA, AtzB, TrzA, TrzN, PcpB, were determined by GeoChip 5.0. Their total abundance ranged from 444.760 to 880.909. Their distributions were mainly associated with the contamination levels of HOPs and strength of anthropogenic activities around the mangrove wetlands. Therefore, the distribution of bacterial taxa and genes involved in HOPs degradation was related to the depth of sediments and affected by the selective stress from HOPs.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China.
| | - Yuyang Li
- Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Bing Zhang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Zhihui Qian
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Wei Xie
- School of Food Science and Engineering, South China University of Technology, No 381 Wushan Road, Guangzhou, PR China
| | - Xueying Ye
- School of Life Sciences, Huizhou University, Huizhou, PR China
| | - Amit Pratush
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Tao Peng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, Shantou, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China.
| |
Collapse
|
2
|
Luo H. How Big Is Big? The Effective Population Size of Marine Bacteria. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:537-560. [PMID: 39288792 DOI: 10.1146/annurev-marine-050823-104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Genome-reduced bacteria constitute most of the cells in surface-ocean bacterioplankton communities. Their extremely large census population sizes (N c) have been unfoundedly translated to huge effective population sizes (N e)-the size of an ideal population carrying as much neutral genetic diversity as the actual population. As N e scales inversely with the strength of genetic drift, constraining the magnitude of N e is key to evaluating whether natural selection can overcome the power of genetic drift to drive evolutionary events. Determining the N e of extant species requires measuring the genomic mutation rate, a challenging step for most genome-reduced bacterioplankton lineages. Results for genome-reduced Prochlorococcus and CHUG are surprising-their N e values are an order of magnitude lower than those of less abundant lineages carrying large genomes, such as Ruegeria and Vibrio. As bacterioplankton genome reduction commonly occurred in the distant past, appreciating their population genetic mechanisms requires constraining their ancient N e values by other methods.
Collapse
Affiliation(s)
- Haiwei Luo
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR;
| |
Collapse
|
3
|
Zhang H, Hellweger FL, Luo H. Genome reduction occurred in early Prochlorococcus with an unusually low effective population size. THE ISME JOURNAL 2024; 18:wrad035. [PMID: 38365237 PMCID: PMC10837832 DOI: 10.1093/ismejo/wrad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
In the oligotrophic sunlit ocean, the most abundant free-living planktonic bacterial lineages evolve convergently through genome reduction. The cyanobacterium Prochlorococcus responsible for 10% global oxygen production is a prominent example. The dominant theory known as "genome streamlining" posits that they have extremely large effective population sizes (Ne) such that selection for metabolic efficiency acts to drive genome reduction. Because genome reduction largely took place anciently, this theory builds on the assumption that their ancestors' Ne was similarly large. Constraining Ne for ancient ancestors is challenging because experimental measurements of extinct organisms are impossible and alternatively reconstructing ancestral Ne with phylogenetic models gives large uncertainties. Here, we develop a new strategy that leverages agent-based modeling to simulate the changes in the genome-wide ratio of radical to conservative nonsynonymous nucleotide substitution rate (dR/dC) in a possible range of Ne in ancestral populations. This proxy shows expected increases with decreases of Ne only when Ne falls to about 10 k - 100 k or lower, magnitudes characteristic of Ne of obligate endosymbiont species where drift drives genome reduction. Our simulations therefore strongly support a scenario where the primary force of Prochlorococcus genome reduction is drift rather than selection.
Collapse
Affiliation(s)
- Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin, 10623, Germany
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
| |
Collapse
|
4
|
Patton DL, Cardenas T, Mele P, Navarro J, Sung W. CDMAP/CDVIS: context-dependent mutation analysis package and visualization software. G3 (BETHESDA, MD.) 2022; 13:6887836. [PMID: 36917690 PMCID: PMC10085751 DOI: 10.1093/g3journal/jkac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022]
Abstract
The Context-dependent Mutation Analysis Package and Visualization Software (CDMAP/CDVIS) is an automated, modular toolkit used for the analysis and visualization of context-dependent mutation patterns (site-specific variation in mutation rate from neighboring-nucleotide effects). The CDMAP computes context-dependent mutation rates using a Variant Call File (VCF), Genbank file, and reference genome and can generate high-resolution figures to analyze variation in mutation rate across spatiotemporal scales. This algorithm has been benchmarked against mutation accumulation data but can also be used to calculate context-dependent mutation rates for polymorphism or closely related species as long as the input requirements are met. Output from CDMAP can be integrated into CDVIS, an interactive database for visualizing mutation patterns across multiple taxa simultaneously.
Collapse
Affiliation(s)
- David L Patton
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Thomas Cardenas
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Perrin Mele
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Jon Navarro
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Way Sung
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| |
Collapse
|
5
|
Pan J, Li W, Ni J, Wu K, Konigsberg I, Rivera CE, Tincher C, Gregory C, Zhou X, Doak TG, Lee H, Wang Y, Gao X, Lynch M, Long H. Rates of Mutations and Transcript Errors in the Foodborne Pathogen Salmonella enterica subsp. enterica. Mol Biol Evol 2022; 39:msac081. [PMID: 35446958 PMCID: PMC9040049 DOI: 10.1093/molbev/msac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Because errors at the DNA level power pathogen evolution, a systematic understanding of the rate and molecular spectra of mutations could guide the avoidance and treatment of infectious diseases. We thus accumulated tens of thousands of spontaneous mutations in 768 repeatedly bottlenecked lineages of 18 strains from various geographical sites, temporal spread, and genetic backgrounds. Entailing over ∼1.36 million generations, the resultant data yield an average mutation rate of ∼0.0005 per genome per generation, with a significant within-species variation. This is one of the lowest bacterial mutation rates reported, giving direct support for a high genome stability in this pathogen resulting from high DNA-mismatch-repair efficiency and replication-machinery fidelity. Pathogenicity genes do not exhibit an accelerated mutation rate, and thus, elevated mutation rates may not be the major determinant for the diversification of toxin and secretion systems. Intriguingly, a low error rate at the transcript level is not observed, suggesting distinct fidelity of the replication and transcription machinery. This study urges more attention on the most basic evolutionary processes of even the best-known human pathogens and deepens the understanding of their genome evolution.
Collapse
Affiliation(s)
- Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Weiyi Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Iain Konigsberg
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Caitlyn E. Rivera
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Clayton Tincher
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Colin Gregory
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Xia Zhou
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Thomas G. Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Heewook Lee
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, No. 72 Binhai Road, Qingdao, Shandong Province 266237, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
6
|
Chen Z, Wang X, Song Y, Zeng Q, Zhang Y, Luo H. Prochlorococcus have low global mutation rate and small effective population size. Nat Ecol Evol 2022; 6:183-194. [PMID: 34949817 DOI: 10.1038/s41559-021-01591-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022]
Abstract
Prochlorococcus are the most abundant free-living photosynthetic carbon-fixing organisms in the ocean. Prochlorococcus show small genome sizes, low genomic G+C content, reduced DNA repair gene pool and fast evolutionary rates, which are typical features of endosymbiotic bacteria. Nevertheless, their evolutionary mechanisms are believed to be different. Evolution of endosymbiotic bacteria is dominated by genetic drift owing to repeated population bottlenecks, whereas Prochlorococcus are postulated to have extremely large effective population sizes (Ne) and thus drift has rarely been considered. However, accurately extrapolating Ne requires measuring an unbiased global mutation rate through mutation accumulation, which is challenging for Prochlorococcus. Here, we managed this experiment over 1,065 days using Prochlorococcus marinus AS9601, sequenced genomes of 141 mutant lines and determined its mutation rate to be 3.50 × 10-10 per site per generation. Extrapolating Ne additionally requires identifying population boundaries, which we defined using PopCOGenT and over 400 genomes related to AS9601. Accordingly, we calculated its Ne to be 1.68 × 107, which is only reasonably greater than that of endosymbiotic bacteria but surprisingly smaller than that of many free-living bacteria extrapolated using the same approach. Our results therefore suggest that genetic drift is a key driver of Prochlorococcus evolution.
Collapse
Affiliation(s)
- Zhuoyu Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaojun Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu Song
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Hong Kong SAR
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China. .,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Hong Kong SAR.
| |
Collapse
|
7
|
Wang S, Luo H. Estimating the Divergence Times of Alphaproteobacteria Based on Mitochondrial Endosymbiosis and Eukaryotic Fossils. Methods Mol Biol 2022; 2569:95-116. [PMID: 36083445 DOI: 10.1007/978-1-0716-2691-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alphaproteobacteria is one of the most abundant bacterial lineages that successfully colonize diverse marine and terrestrial environments on Earth. In addition, many alphaproteobacterial lineages have established close association with eukaryotes. This makes Alphaproteobacteria a promising system to test the link between the emergence of ecologically important bacteria and related geological events and the co-evolution between symbiotic bacteria and their hosts. Understanding the timescale of evolution of Alphaproteobacteria is key to testing these hypotheses, which is limited by the scarcity of bacterial fossils, however. Based on the mitochondrial endosymbiosis which posits that the mitochondrion originated from an alphaproteobacterial lineage, we propose a new strategy to estimate the divergence times of lineages within the Alphaproteobacteria by leveraging the fossil records of eukaryotes. In this chapter, we describe the workflow of the mitochondria-based method to date Alphaproteobacteria evolution by detailing the software, methods, and commands used for each step. Visualization of data and results is also described. We also provide related notes with background information and alternative options. All codes used to build this protocol are made available to the public, and we strive to make this protocol user-friendly in particular to microbiologists with limited practical skills in bioinformatics.
Collapse
Affiliation(s)
- Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haiwei Luo
- School of Life Sciences, Earth and Environmental Sciences Programme, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Wang S, Luo H. Dating Alphaproteobacteria evolution with eukaryotic fossils. Nat Commun 2021; 12:3324. [PMID: 34083540 PMCID: PMC8175736 DOI: 10.1038/s41467-021-23645-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
Elucidating the timescale of the evolution of Alphaproteobacteria, one of the most prevalent microbial lineages in marine and terrestrial ecosystems, is key to testing hypotheses on their co-evolution with eukaryotic hosts and Earth's systems, which, however, is largely limited by the scarcity of bacterial fossils. Here, we incorporate eukaryotic fossils to date the divergence times of Alphaproteobacteria, based on the mitochondrial endosymbiosis that mitochondria evolved from an alphaproteobacterial lineage. We estimate that Alphaproteobacteria arose ~1900 million years (Ma) ago, followed by rapid divergence of their major clades. We show that the origin of Rickettsiales, an order of obligate intracellular bacteria whose hosts are mostly animals, predates the emergence of animals for ~700 Ma but coincides with that of eukaryotes. This, together with reconstruction of ancestral hosts, strongly suggests that early Rickettsiales lineages had established previously underappreciated interactions with unicellular eukaryotes. Moreover, the mitochondria-based approach displays higher robustness to uncertainties in calibrations compared with the traditional strategy using cyanobacterial fossils. Further, our analyses imply the potential of dating the (bacterial) tree of life based on endosymbiosis events, and suggest that previous applications using divergence times of the modern hosts of symbiotic bacteria to date bacterial evolution might need to be revisited.
Collapse
Affiliation(s)
- Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, SAR, Hong Kong.
| |
Collapse
|
9
|
Unexpectedly high mutation rate of a deep-sea hyperthermophilic anaerobic archaeon. THE ISME JOURNAL 2021; 15:1862-1869. [PMID: 33452477 PMCID: PMC8163891 DOI: 10.1038/s41396-020-00888-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Deep-sea hydrothermal vents resemble the early Earth, and thus the dominant Thermococcaceae inhabitants, which occupy an evolutionarily basal position of the archaeal tree and take an obligate anaerobic hyperthermophilic free-living lifestyle, are likely excellent models to study the evolution of early life. Here, we determined that unbiased mutation rate of a representative species, Thermococcus eurythermalis, exceeded that of all known free-living prokaryotes by 1-2 orders of magnitude, and thus rejected the long-standing hypothesis that low mutation rates were selectively favored in hyperthermophiles. We further sequenced multiple and diverse isolates of this species and calculated that T. eurythermalis has a lower effective population size than other free-living prokaryotes by 1-2 orders of magnitude. These data collectively indicate that the high mutation rate of this species is not selectively favored but instead driven by random genetic drift. The availability of these unusual data also helps explore mechanisms underlying microbial genome size evolution. We showed that genome size is negatively correlated with mutation rate and positively correlated with effective population size across 30 bacterial and archaeal lineages, suggesting that increased mutation rate and random genetic drift are likely two important mechanisms driving microbial genome reduction. Future determinations of the unbiased mutation rate of more representative lineages with highly reduced genomes such as Prochlorococcus and Pelagibacterales that dominate marine microbial communities are essential to test these hypotheses.
Collapse
|
10
|
Nguyen DT, Wu B, Xiao S, Hao W. Evolution of a Record-Setting AT-Rich Genome: Indel Mutation, Recombination, and Substitution Bias. Genome Biol Evol 2020; 12:2344-2354. [PMID: 32986811 PMCID: PMC7846184 DOI: 10.1093/gbe/evaa202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Genome-wide nucleotide composition varies widely among species. Despite extensive research, the source of genome-wide nucleotide composition diversity remains elusive. Yeast mitochondrial genomes (mitogenomes) are highly A + T rich, and they provide a unique opportunity to study the evolution of AT-biased landscape. In this study, we sequenced ten complete mitogenomes of the Saccharomycodes ludwigii yeast with 8% G + C content, the lowest genome-wide %(G + C) in all published genomes to date. The S. ludwigii mitogenomes have high densities of short tandem repeats but severely underrepresented mononucleotide repeats. Comparative population genomics of these record-setting A + T-rich genomes shows dynamic indel mutations and strong mutation bias toward A/T. Indel mutations play a greater role in genomic variation among very closely related strains than nucleotide substitutions. Indels have resulted in presence–absence polymorphism of tRNAArg (ACG) among S. ludwigii mitogenomes. Interestingly, these mitogenomes have undergone recombination, a genetic process that can increase G + C content by GC-biased gene conversion. Finally, the expected equilibrium G + C content under mutation pressure alone is higher than observed G + C content, suggesting existence of mechanisms other than AT-biased mutation operating to increase A/T. Together, our findings shed new lights on mechanisms driving extremely AT-rich genomes.
Collapse
Affiliation(s)
- Duong T Nguyen
- Department of Biological Sciences, Wayne State University
| | - Baojun Wu
- Department of Biological Sciences, Wayne State University
| | - Shujie Xiao
- Department of Biological Sciences, Wayne State University
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
11
|
Xue CX, Zhang H, Lin HY, Sun Y, Luo D, Huang Y, Zhang XH, Luo H. Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages. Environ Microbiol 2020; 22:3234-3247. [PMID: 32390223 DOI: 10.1111/1462-2920.15065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Marine flavobacteria are specialists for polysaccharide degradation. They dominate in habitats enriched with polysaccharides, but are also prevalent in pelagic environments where polysaccharides are less available. These niches are likely occupied by distinct lineages, but evolutionary processes underlying their niche differentiation remain elusive. Here, genomic analyses and physiological assays indicate that the sister flavobacteria lineages Leeuwenhoekiella and Nonlabens likely explore polysaccharide-rich macroalgae and polysaccharide-poor pelagic niches respectively. Phylogenomic analyses inferred that the niche separation likely occurred anciently and coincided with increased sequence evolutionary rate in Nonlabens compared with Leeuwenhoekiella. Further analyses ruled out the known mechanisms likely driving evolutionary rate acceleration, including reduced selection efficiency, decreased generation time and increased mutation rate. In particular, the mutation rates were determined using an unbiased experimental method, which measures the present-day populations and may not reflect ancestral populations. These data collectively lead to a new hypothesis that an ancestral and transient mutation rate increase resulted in evolutionary rate increase in Nonlabens. This hypothesis was supported by inferring that gains and losses of genes involved in SOS response, a mechanism known to drive transiently increased mutation rate, coincided with evolutionary rate acceleration. Our analyses highlight the evolutionary mechanisms underlying niche differentiation of flavobacteria lineages.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - He-Yu Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Danli Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
12
|
Krasovec M, Sanchez-Brosseau S, Piganeau G. First Estimation of the Spontaneous Mutation Rate in Diatoms. Genome Biol Evol 2020; 11:1829-1837. [PMID: 31218358 PMCID: PMC6604790 DOI: 10.1093/gbe/evz130] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Mutations are the origin of genetic diversity, and the mutation rate is a fundamental parameter to understand all aspects of molecular evolution. The combination of mutation-accumulation experiments and high-throughput sequencing enabled the estimation of mutation rates in most model organisms, but several major eukaryotic lineages remain unexplored. Here, we report the first estimation of the spontaneous mutation rate in a model unicellular eukaryote from the Stramenopile kingdom, the diatom Phaeodactylum tricornutum (strain RCC2967). We sequenced 36 mutation accumulation lines for an average of 181 generations per line and identified 156 de novo mutations. The base substitution mutation rate per site per generation is μbs = 4.77 × 10-10 and the insertion-deletion mutation rate is μid = 1.58 × 10-11. The mutation rate varies as a function of the nucleotide context and is biased toward an excess of mutations from GC to AT, consistent with previous observations in other species. Interestingly, the mutation rates between the genomes of organelles and the nucleus differ, with a significantly higher mutation rate in the mitochondria. This confirms previous claims based on indirect estimations of the mutation rate in mitochondria of photosynthetic eukaryotes that acquired their plastid through a secondary endosymbiosis. This novel estimate enables us to infer the effective population size of P. tricornutum to be Ne∼8.72 × 106.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| | - Gwenael Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France.,Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
McDew-White M, Li X, Nkhoma SC, Nair S, Cheeseman I, Anderson TJC. Mode and Tempo of Microsatellite Length Change in a Malaria Parasite Mutation Accumulation Experiment. Genome Biol Evol 2020; 11:1971-1985. [PMID: 31273388 PMCID: PMC6644851 DOI: 10.1093/gbe/evz140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Malaria parasites have small extremely AT-rich genomes: microsatellite repeats (1–9 bp) comprise 11% of the genome and genetic variation in natural populations is dominated by repeat changes in microsatellites rather than point mutations. This experiment was designed to quantify microsatellite mutation patterns in Plasmodium falciparum. We established 31 parasite cultures derived from a single parasite cell and maintained these for 114–267 days with frequent reductions to a single cell, so parasites accumulated mutations during ∼13,207 cell divisions. We Illumina sequenced the genomes of both progenitor and end-point mutation accumulation (MA) parasite lines in duplicate to validate stringent calling parameters. Microsatellite calls were 99.89% (GATK), 99.99% (freeBayes), and 99.96% (HipSTR) concordant in duplicate sequence runs from independent sequence libraries, whereas introduction of microsatellite mutations into the reference genome revealed a low false negative calling rate (0.68%). We observed 98 microsatellite mutations. We highlight several conclusions: microsatellite mutation rates (3.12 × 10−7 to 2.16 × 10−8/cell division) are associated with both repeat number and repeat motif like other organisms studied. However, 41% of changes resulted from loss or gain of more than one repeat: this was particularly true for long repeat arrays. Unlike other eukaryotes, we found no insertions or deletions that were not associated with repeats or homology regions. Overall, microsatellite mutation rates are among the lowest recorded and comparable to those in another AT-rich protozoan (Dictyostelium). However, a single infection (>1011 parasites) will still contain over 2.16 × 103 to 3.12 × 104 independent mutations at any single microsatellite locus.
Collapse
Affiliation(s)
| | - Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Standwell C Nkhoma
- Texas Biomedical Research Institute, San Antonio, Texas.,Malaria Research and Reference Reagent Resource Center (MR4), BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA
| | - Shalini Nair
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Ian Cheeseman
- Texas Biomedical Research Institute, San Antonio, Texas
| | | |
Collapse
|
14
|
Gibson B, Eyre-Walker A. Investigating Evolutionary Rate Variation in Bacteria. J Mol Evol 2019; 87:317-326. [PMID: 31570957 PMCID: PMC6858405 DOI: 10.1007/s00239-019-09912-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Rates of molecular evolution are known to vary between species and across all kingdoms of life. Here, we explore variation in the rate at which bacteria accumulate mutations (accumulation rates) in their natural environments over short periods of time. We have compiled estimates of the accumulation rate for over 34 species of bacteria, the majority of which are pathogens evolving either within an individual host or during outbreaks. Across species, we find that accumulation rates vary by over 3700-fold. We investigate whether accumulation rates are associated to a number potential correlates including genome size, GC content, measures of the natural selection and the time frame over which the accumulation rates were estimated. After controlling for phylogenetic non-independence, we find that the accumulation rate is not significantly correlated to any factor. Furthermore, contrary to previous results, we find that it is not impacted by the time frame of which the estimate was made. However, our study, with only 34 species, is likely to lack power to detect anything but large effects. We suggest that much of the rate variation may be explained by differences between species in the generation time in the wild.
Collapse
Affiliation(s)
- Beth Gibson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
15
|
Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model. ISME JOURNAL 2018; 12:1180-1187. [PMID: 29330536 DOI: 10.1038/s41396-017-0023-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023]
Abstract
An important unanswered question in evolutionary genomics is the source of considerable variation of genomic base composition (GC content) even among organisms that share one habitat. Evolution toward GC-poor genomes has been considered a major adaptive pathway in the oligotrophic ocean, but GC-rich bacteria are also prevalent and highly successful in this environment. We quantify the contribution of multiple factors to the change of genomic GC content of Ruegeria pomeroyi DSS-3, a representative and GC-rich member in the globally abundant Roseobacter clade, using an agent-based model. The model simulates 2 × 108 cells, which allows random genetic drift to act in a realistic manner. Each cell has a whole genome subject to base-substitution mutation and recombination, which affect the carbon and nitrogen requirements of DNA and protein pools. Nonsynonymous changes can be functionally deleterious. Together, these factors affect the growth and fitness. Simulations show that experimentally determined mutation bias toward GC is not sufficient to build the GC-rich genome of DSS-3. While nitrogen availability has been repeatedly hypothesized to drive the evolution of GC content in marine bacterioplankton, our model instead predicts that DSS-3 and its ancestors have been evolving in environments primarily limited by carbon.
Collapse
|
16
|
Freese HM, Methner A, Overmann J. Adaptation of Surface-Associated Bacteria to the Open Ocean: A Genomically Distinct Subpopulation of Phaeobacter gallaeciensis Colonizes Pacific Mesozooplankton. Front Microbiol 2017; 8:1659. [PMID: 28912769 PMCID: PMC5583230 DOI: 10.3389/fmicb.2017.01659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023] Open
Abstract
The marine Roseobacter group encompasses numerous species which occupy a large variety of ecological niches. However, members of the genus Phaeobacter are specifically adapted to a surface-associated lifestyle and have so far been found nearly exclusively in disjunct, man-made environments including shellfish and fish aquacultures, as well as harbors. Therefore, the possible natural habitats, dispersal and evolution of Phaeobacter spp. have largely remained obscure. Applying a high-throughput cultivation strategy along a longitudinal Pacific transect, the present study revealed for the first time a widespread natural occurrence of Phaeobacter in the marine pelagial. These bacteria were found to be specifically associated to mesoplankton where they constitute a small but detectable proportion of the bacterial community. The 16S rRNA gene sequences of 18 isolated strains were identical to that of Phaeobacter gallaeciensis DSM26640T but sequences of internal transcribed spacer and selected genomes revealed that the strains form a distinct clade within P. gallaeciensis. The genomes of the Pacific and the aquaculture strains were highly conserved and had a fraction of the core genome of 89.6%, 80 synteny breakpoints, and differed 2.2% in their nucleotide sequences. Diversification likely occurred through neutral mutations. However, the Pacific strains exclusively contained two active Type I restriction modification systems which is commensurate with a reduced acquisition of mobile elements in the Pacific clade. The Pacific clade of P. gallaeciensis also acquired a second, homolog phosphonate transport system compared to all other P. gallaeciensis. Our data indicate that a previously unknown, distinct clade of P. gallaeciensis acquired a limited number of clade-specific genes that were relevant for its association with mesozooplankton and for colonization of the marine pelagial. The divergence of the Pacific clade most likely was driven by the adaptation to this novel ecological niche rather than by geographic isolation.
Collapse
Affiliation(s)
- Heike M Freese
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und ZellkulturenBraunschweig, Germany
| | - Anika Methner
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und ZellkulturenBraunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und ZellkulturenBraunschweig, Germany
| |
Collapse
|
17
|
Bullock HA, Luo H, Whitman WB. Evolution of Dimethylsulfoniopropionate Metabolism in Marine Phytoplankton and Bacteria. Front Microbiol 2017; 8:637. [PMID: 28469605 PMCID: PMC5395565 DOI: 10.3389/fmicb.2017.00637] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
The elucidation of the pathways for dimethylsulfoniopropionate (DMSP) synthesis and metabolism and the ecological impact of DMSP have been studied for nearly 70 years. Much of this interest stems from the fact that DMSP metabolism produces the climatically active gas dimethyl sulfide (DMS), the primary natural source of sulfur to the atmosphere. DMSP plays many important roles for marine life, including use as an osmolyte, antioxidant, predator deterrent, and cryoprotectant for phytoplankton and as a reduced carbon and sulfur source for marine bacteria. DMSP is hypothesized to have become abundant in oceans approximately 250 million years ago with the diversification of the strong DMSP producers, the dinoflagellates. This event coincides with the first genome expansion of the Roseobacter clade, known DMSP degraders. Structural and mechanistic studies of the enzymes of the bacterial DMSP demethylation and cleavage pathways suggest that exposure to DMSP led to the recruitment of enzymes from preexisting metabolic pathways. In some cases, such as DmdA, DmdD, and DddP, these enzymes appear to have evolved to become more specific for DMSP metabolism. By contrast, many of the other enzymes, DmdB, DmdC, and the acrylate utilization hydratase AcuH, have maintained broad functionality and substrate specificities, allowing them to carry out a range of reactions within the cell. This review will cover the experimental evidence supporting the hypothesis that, as DMSP became more readily available in the marine environment, marine bacteria adapted enzymes already encoded in their genomes to utilize this new compound.
Collapse
Affiliation(s)
- Hannah A Bullock
- Department of Microbiology, University of Georgia, AthensGA, USA
| | - Haiwei Luo
- School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | | |
Collapse
|