1
|
Fischer D, Balkenhohl M, Carreira EM. Cobalt-Catalyzed Cyclization of Unsaturated N-Acyl Sulfonamides: a Diverted Mukaiyama Hydration Reaction. JACS AU 2022; 2:1071-1077. [PMID: 35647594 PMCID: PMC9131372 DOI: 10.1021/jacsau.2c00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The cycloisomerization of β-, γ-, and δ-unsaturated N-acyl sulfonamides to N-sulfonyl lactams and imidates is reported. This transformation is effected in the presence of a CoIII(salen) catalyst using t-BuOOH or air as the oxidant. The method shows good functional group tolerance (alkyl, aryl, heteroaryl, ether, N-Boc) and furnishes an underexplored class of cyclic building blocks. The strong solvent dependence of the transformation is investigated, and the synthetic versatility of the N-sulfonyl imidate product class is highlighted.
Collapse
|
2
|
A novel series of 11-O-carbamoyl-3-O-descladinosyl clarithromycin derivatives bearing 1,2,3-triazole group: Design, synthesis and antibacterial evaluation. Bioorg Med Chem Lett 2020; 30:126850. [DOI: 10.1016/j.bmcl.2019.126850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022]
|
3
|
Janas A, Przybylski P. 14- and 15-membered lactone macrolides and their analogues and hybrids: structure, molecular mechanism of action and biological activity. Eur J Med Chem 2019; 182:111662. [DOI: 10.1016/j.ejmech.2019.111662] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
|
4
|
Park JW, Yoon YJ. Recent advances in the discovery and combinatorial biosynthesis of microbial 14-membered macrolides and macrolactones. J Ind Microbiol Biotechnol 2018; 46:445-458. [PMID: 30415291 DOI: 10.1007/s10295-018-2095-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Macrolides, especially 14-membered macrolides, are a valuable group of antibiotics that originate from various microorganisms. In addition to their antibacterial activity, newly discovered 14-membered macrolides exhibit other therapeutic potentials, such as anti-proliferative and anti-protistal activities. Combinatorial biosynthetic approaches will allow us to create structurally diversified macrolide analogs, which are especially important during the emerging post-antibiotic era. This review focuses on recent advances in the discovery of new 14-membered macrolides (also including macrolactones) from microorganisms and the current status of combinatorial biosynthetic approaches, including polyketide synthase (PKS) and post-PKS tailoring pathways, and metabolic engineering for improved production together with heterologous production of 14-membered macrolides.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Cong C, Chai WC, Dong R, Jia L, Song D, Zhou Z, Ma S. Synthesis and antibacterial activity of novel 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs. Bioorg Med Chem Lett 2017; 27:3872-3877. [PMID: 28655423 DOI: 10.1016/j.bmcl.2017.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 11/30/2022]
Abstract
Three novel structural series of 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs were designed, synthesized and evaluated for their in vitro antibacterial activity. All the target compounds exhibited excellent activity against erythromycin-susceptible Streptococcus pyogenes, and significantly improved activity against three phenotypes of erythromycin-resistant Streptococcus pneumoniae compared with clarithromycin and azithromycin. Among the three series of azithromycin analogs, the novel series of 11,4″-disubstituted azithromycin analogs 9a-k exhibited the most effective and balanced activity against susceptible and resistant bacteria. Among them, compound 9j showed the most potent activity against Staphylococcus aureus ATCC25923 (0.008µg/mL) and Streptococcus pyogenes R2 (1µg/mL). Besides, all the 11,4″-disubstituted azithromycin analogs 9a-k except 9f shared the identical activity with the MIC value <0.002µg/mL against Streptococcus pyogenes S2. Furthermore, compounds 9g, 9h, 9j and 9k displayed significantly improved activity compared with the references against all the three phenotypes of resistant S. pneumoniae. Particularly, compound 9k was the most effective (0.06, 0.03 and 0.125µg/mL) against all the erythromycin-resistant S. pneumoniae expressing the erm gene, the mef gene and the erm and mef genes, exhibiting 2133, 133 and 2048-fold more potent activity than azithromycin, respectively.
Collapse
Affiliation(s)
- Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Chao Cong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Wern Chern Chai
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| | - Ruiqian Dong
- Maternity and Child Care Centre of Jinan, Jinan 250001, China
| | - Li Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ziteng Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China.
| |
Collapse
|
6
|
Yan M, Ma R, Jia L, Venter H, Ma S. Synthesis and antibacterial activity of novel 3-O-descladinosylazithromycin derivatives. Eur J Med Chem 2016; 127:874-884. [PMID: 27836198 DOI: 10.1016/j.ejmech.2016.10.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/14/2016] [Accepted: 10/31/2016] [Indexed: 12/01/2022]
Abstract
Novel series of novel 3-O-arylalkylcarbamoyl descladinosylazithromycin derivatives with the 2'-O-acetyl and 11,12-cyclic carbonate groups, the 11,12-cyclic carbonate group and the 11-O-arylalkylcarbamoyl side chain, and 2'-O-arylalkylcarbamoyl descladinosylazithromycin with the 11,12-cyclic carbonate group were designed, synthesized and evaluated for their antibacterial activity using broth microdilution method. The results showed that the majority of the target compounds showed moderate to favorable activity against six kinds of susceptible strains and almost all of them displayed significantly improved activity compared with references against three erythromycin-resistant strains of S. pneumoniae B1 expressing the ermB gene, S. pneumoniae AB11 expressing the ermB and mefA genes, and S. pyogenes R1. In particular, compound 6h exhibited the most potent activity against susceptible B. subtilis ATCC9372 (0.5 μg/mL), penicillin-resistant S. epidermidis (0.125 μg/mL), and erythromycin-resistant S. pneumoniae B1 (1 μg/mL) and S. pneumoniae AB11 (1 μg/mL), which were 2-, 2-, 256-, 256-fold better activity than azithromycin, respectively. Additionally, compounds 6f (0.5 μg/mL) and 6g (0.25 μg/mL) were the most active against S. pneumoniae A22072, which were 8- and 16-fold better activity than azithromycin (4 μg/mL). As for erythromycin-resistant S. pyogenes R1, compound 5a presented the most excellent activity (8 μg/mL), showing 32- and 32-fold higher activity than azithromycin (256 μg/mL) and clarithromycin (256 μg/mL).
Collapse
Affiliation(s)
- Mi Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ruixin Ma
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Li Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Henrietta Venter
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China.
| |
Collapse
|
7
|
Yan M, Ma X, Dong R, Li X, Zhao C, Guo Z, Shen Y, Liu F, Ma R, Ma S. Synthesis and antibacterial activity of 4″-O-(trans-β-arylacrylamido)carbamoyl azithromycin analogs. Eur J Med Chem 2015; 103:506-15. [DOI: 10.1016/j.ejmech.2015.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 11/30/2022]
|
8
|
Li X, Ma S, Yan M, Wang Y, Ma S. Synthesis and antibacterial evaluation of novel 11,4″-disubstituted azithromycin analogs with greatly improved activity against erythromycin-resistant bacteria. Eur J Med Chem 2012; 59:209-17. [PMID: 23229056 DOI: 10.1016/j.ejmech.2012.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/18/2012] [Accepted: 11/19/2012] [Indexed: 11/25/2022]
Abstract
A series of novel 11,4″-disubstituted azithromycin analogs were synthesized and evaluated for their antibacterial activity. All the 11,4″-disubstituted analogs exhibited excellent activity (0.03-0.12 μg/ml) against erythromycin-susceptible Streptococcus pneumoniae, and significantly improved activity against three phenotypes of erythromycin-resistant S. pneumoniae compared with erythromycin A, clarithromycin or azithromycin. Among them, compounds 26-28 showed the most potent activity (0.25, 0.03 and 2 μg/ml) against S. pneumoniae expressing the erm gene, the mef gene and the erm and mef genes, respectively. In addition, compound 28 was the most effective (0.03 and 0.12 μg/ml) against erythromycin-susceptible S. pneumoniae and Staphylococcus aureus as well. It is noteworthy that the most active compounds described above possess the same terminal 3,5-dinitrophenyl groups on their C-4″ bisamide side chains.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, Jinan 250012, PR China
| | | | | | | | | |
Collapse
|