1
|
Mishra V, Singh M, Mishra Y, Charbe N, Nayak P, Sudhakar K, Aljabali AAA, Shahcheraghi SH, Bakshi H, Serrano-Aroca Á, Tambuwala MM. Nanoarchitectures in Management of Fungal Diseases: An Overview. APPLIED SCIENCES 2021; 11:7119. [DOI: 10.3390/app11157119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Fungal infections, from mild itching to fatal infections, lead to chronic diseases and death. Antifungal agents have incorporated chemical compounds and natural products/phytoconstituents in the management of fungal diseases. In contrast to antibacterial research, novel antifungal drugs have progressed more swiftly because of their mild existence and negligible resistance of infections to antifungal bioactivities. Nanotechnology-based carriers have gained much attention due to their magnificent abilities. Nanoarchitectures have served as excellent carriers/drug delivery systems (DDS) for delivering antifungal drugs with improved antifungal activities, bioavailability, targeted action, and reduced cytotoxicity. This review outlines the different fungal diseases and their treatment strategies involving various nanocarrier-based techniques such as liposomes, transfersomes, ethosomes, transethosomes, niosomes, spanlastics, dendrimers, polymeric nanoparticles, polymer nanocomposites, metallic nanoparticles, carbon nanomaterials, and nanoemulsions, among other nanotechnological approaches.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Manvendra Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Unichem Laboratories Limited, C31-32, Meerut Road Industrial Area, Ghaziabad 201003, India
| | - Yachana Mishra
- Departments of Zoology, Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Nitin Charbe
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B, MSC 131, Kingsville, TX 78363, USA
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana 142021, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Seyed H. Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
2
|
Sowińska M, Szeliga M, Morawiak M, Ziemińska E, Zabłocka B, Urbańczyk-Lipkowska Z. Peptide Dendrimers with Non-Symmetric Bola Structure Exert Long Term Effect on Glioblastoma and Neuroblastoma Cell Lines. Biomolecules 2021; 11:435. [PMID: 33804286 PMCID: PMC8000084 DOI: 10.3390/biom11030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). Neuroblastoma (NB) is one of the most common cancers of childhood derived from the neural crest cells. The survival rate for patients with GBM and high-risk NB is poor; therefore, novel therapeutic approaches are needed. Increasing evidence suggests a dual role of redox-active compounds in both tumorigenesis and cancer treatment. Therefore, in this study, polyfunctional peptide-based dendrimeric molecules of the bola structure carrying residues with antiproliferative potential on one side and the antioxidant residues on the other side were designed. METHODS We synthesized non-symmetric bola dendrimers and assessed their radical scavenging potency as well as redox capability. The influence of dendrimers on viability of rat primary cerebellar neurons (CGC) and normal human astrocytes (NHA) was determined by propidium iodide staining and cell counting. Cytotoxicity against human GBM cell lines, T98G and LN229, and NB cell line SH-SY5Y was assessed by cell counting and colony forming assay. RESULTS Testing of CGC and NHA viability allowed to establish a range of optimal dendrimers structure and concentration for further evaluation of their impact on two human GBM and one human NB cell lines. According to ABTS, DPPH, FRAP, and CUPRAC antioxidant tests, the most toxic for normal cells were dendrimers with high charge and an excess of antioxidant residues (Trp and PABA) on both sides of the bola structure. At 5 μM concentration, most of the tested dendrimers neither reduced rat CGC viability below 50-40%, nor harmed human neurons (NHA). The same dose of compounds 16 or 22, after 30 min treatment decreased the number of SH-SY5Y and LN229 cells, but did not affect the number of T98G cells 48 h post treatment. However, either compound significantly reduced the number of colonies formed by SH-SY5Y, LN229, and T98G cells measured 14 days after treatment. CONCLUSIONS Peptide dendrimers with non-symmetric bola structure are excellent scaffolds for design of molecules with pro/antioxidant functionality. Design of molecules with an excess of positive charges and antioxidant residues rendered molecules with high neurotoxicity. Single, 30 min exposition of the GBM and NB cell lines to the selected bola dendrimers significantly suppressed their clonogenic potential.
Collapse
Affiliation(s)
- Marta Sowińska
- Institute of Organic Chemistry PAS, 01-224 Warsaw, Poland; (M.S.); (M.M.)
| | - Monika Szeliga
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | - Maja Morawiak
- Institute of Organic Chemistry PAS, 01-224 Warsaw, Poland; (M.S.); (M.M.)
| | - Elżbieta Ziemińska
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | - Barbara Zabłocka
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | | |
Collapse
|
3
|
Dendrimers against fungi - A state of the art review. J Control Release 2020; 330:599-617. [PMID: 33347941 DOI: 10.1016/j.jconrel.2020.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Fungal based diseases currently affect nearly a quarter of the population around the world, which diseases are usually limited to superficial infections. Perversely, along with the development of modern medicine, cases of life-threatening systemic fungi are more and more often encountered. Compared to antibacterial drugs, significantly fewer fungicides are tested and introduced to clinical practice. At the same time, the drug resistance of pathological fungi is constantly growing. In addition to obtaining new derivatives of already-established classes of drugs, such as azoles, there is a growing interest in new compounds with potentially new mechanisms and application possibilities. Polymers are included in the flow of these studies, and among them - dendrimers. Dendrimers are a special type of polymers with a strictly defined structure and a plethora of functionalization possibilities. This allows them to not only be used as effective antifungal drug carriers but also enables them to exhibit antifungal activity per se. In this review, we have introduced to the epidemiology of fungal infections and summarized the aspects related to their control and therapy. Various polymers and dendrimers with antifungal activity were presented. In the subsequent sections antifungal acting dendrimers were discussed within three subchapters, based on their chemical structure: (i) amino acid-based dendrimers, (ii) amino based dendrimers, and (iii) other, which do not share similarities in structure. We have gathered and summarized the reports regarding the direct action of dendrimers on infectious fungi, as well as their effect when used as solubilizers, carriers or adjuvants with currently used antifungals. Use of dendrimers for the sensing of fungi or their metabolites are also considered. Special attention was also paid to the applications of dendrimers together with photosensitizers in antimicrobial photodynamic therapy.
Collapse
|
4
|
Bioinspired Bola-Type Peptide Dendrimers Inhibit Proliferation and Invasiveness of Glioblastoma Cells in a Manner Dependent on Their Structure and Amphipathic Properties. Pharmaceutics 2020; 12:pharmaceutics12111106. [PMID: 33217976 PMCID: PMC7698760 DOI: 10.3390/pharmaceutics12111106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Natural peptides supporting the innate immune system studied at the functional and mechanistic level are a rich source of innovative compounds for application in human therapy. Increasing evidence indicates that apart from antimicrobial activity, some of them exhibit selective cytotoxicity towards tumor cells. Their cationic, amphipathic structure enables interactions with the negatively-charged membranes of microbial or malignant cells. It can be modeled in 3D by application of dendrimer chemistry. (2) Methods: Here we presented design principles, synthesis and bioactivity of branched peptides constructed from ornithine (Orn) assembled as proline (Pro)- or histidine (His)-rich dendrons and dendrimers of the bola structure. The impact of the structure and amphipathic properties of dendrons/dendrimers on two glioblastoma cell lines U87 and T98G was studied with the application of proliferation, apoptosis and cell migration assays. Cell morphology/cytoskeleton architecture was visualized by immunofluorescence microscopy. (3) Results: Dimerization of dendrons into bola dendrimers enhanced their bioactivity. Pro- and His-functionalized bola dendrimers displayed cytostatic activity, even though differences in the responsiveness of U87 and T98G cells to these compounds indicate that their bioactivity depends not only on multiple positive charge and amphipathic structure but also on cellular phenotype. (4) Conclusion: Ornithine dendrons/dendrimers represent a group of promising anti-tumor agents and the potential tools to study interrelations between drug bioactivity, its chemical properties and tumor cells' phenotype.
Collapse
|
5
|
Beema Shafreen R, Seema S, Martinez-Ayala AL, Lozano-Grande MA, Robles-Sánchez M, Szterk A, Grishko M, Hanuka E, Katrich E, Gorinstein S. Binding and potential antibiofilm activities of Amaranthus proteins against Candida albicans. Colloids Surf B Biointerfaces 2019; 183:110479. [DOI: 10.1016/j.colsurfb.2019.110479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/30/2019] [Indexed: 11/15/2022]
|
6
|
Xie J, Du G, Zhang Y, Zhou F, Wu J, Jiao H, Li Y, Chen Y, Ouyang L, Bo D, Feng C, Yang W, Fan G. ECG conduction disturbances and ryanodine receptor expression levels in occupational lead exposure workers. Occup Environ Med 2019; 76:151-156. [DOI: 10.1136/oemed-2018-105463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 11/03/2022]
Abstract
ObjectivesA significant number of researches have evidenced that occupational lead (Pb) exposure increased risks of cardiovascular disease. However, evidences about the potential effects of Pb on the cardiac conduction system are sparse and inconclusive. Besides, ryanodine receptors (RyRs) induced dysfunction of cardiac excitation contraction coupling which is considered to be one of the mechanisms in cardiovascular diseases. Therefore, we examined the association between occupational Pb exposure and ECG conduction abnormalities, as well as RyRs in Pb-induced ECG abnormalities.MethodsWe investigated 529 Pb smelter workers, and measured blood lead (BPb), zinc protoporphyrin (ZPP), ECG outcomes and RyR expression levels. Based on BPb levels, the workers were divided into three groups: the BPb not elevated group, the BPb elevated group and the Pb poisoning group. Descriptive and multivariable analyses were performed.ResultsCompared with the BPb not elevated group, the Pb poisoning group had a higher incidence of high QRS voltage, and a lower level of RyR1 gene expression (p<0.05). Further unconditional multivariable logistic regression analyses showed that high QRS voltage was positively related to BPb (OR=1.045, 95% CI 1.014 to 1.078) and inversely associated with RyR1 expression (OR=0.042, 95% CI 0.002 to 0.980) after adjusting for potential confounders. In addition, multiple linear regression analyses showed that the QTc interval was positively associated with ZPP (β=0.299, 95% CI 0.130 to 0.468) after adjusting for potential confounders.ConclusionsOur study provided evidences that occupational exposure to Pb may be associated with worse ECG outcomes (high QRS voltage), which might be related to decreased levels of RyR1.
Collapse
|
7
|
Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J Fungi (Basel) 2017; 3:E46. [PMID: 29371563 PMCID: PMC5715947 DOI: 10.3390/jof3030046] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are associated with high mortality rates, despite appropriate antifungal therapy. Limited therapeutic options, resistance development and the high mortality of invasive fungal infections brought about more concern triggering the search for new compounds capable of interfering with fungal viability and virulence. In this context, peptides gained attention as promising candidates for the antimycotics development. Variety of structural and functional characteristics identified for various natural antifungal peptides makes them excellent starting points for design novel drug candidates. Current review provides a brief overview of natural and synthetic antifungal peptides.
Collapse
Affiliation(s)
- Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Paulina Zielińska
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | | |
Collapse
|
8
|
Antimicrobial Dendrimeric Peptides: Structure, Activity and New Therapeutic Applications. Int J Mol Sci 2017; 18:ijms18030542. [PMID: 28273806 PMCID: PMC5372558 DOI: 10.3390/ijms18030542] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 01/09/2023] Open
Abstract
Microbial resistance to conventional antibiotics is one of the most outstanding medical and scientific challenges of our times. Despite the recognised need for new anti-infective agents, however, very few new drugs have been brought to the market and to the clinic in the last three decades. This review highlights the properties of a new class of antibiotics, namely dendrimeric peptides. These intriguing novel compounds, generally made of multiple peptidic sequences linked to an inner branched core, display an array of antibacterial, antiviral and antifungal activities, usually coupled to low haemolytic activity. In addition, several peptides synthesized in oligobranched form proved to be promising tools for the selective treatment of cancer cells.
Collapse
|
9
|
Voltan AR, Quindós G, Alarcón KPM, Fusco-Almeida AM, Mendes-Giannini MJS, Chorilli M. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? Int J Nanomedicine 2016; 11:3715-30. [PMID: 27540288 PMCID: PMC4982498 DOI: 10.2147/ijn.s93105] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Invasive mycoses are a major problem for immunocompromised individuals and patients in intensive care units. Morbidity and mortality rates of these infections are high because of late diagnosis and delayed treatment. Moreover, the number of available antifungal agents is low, and there are problems with toxicity and resistance. Alternatives for treating invasive fungal infections are necessary. Nanostructured systems could be excellent carriers for antifungal drugs, reducing toxicity and targeting their action. The use of nanostructured systems for antifungal therapy began in the 1990s, with the appearance of lipid formulations of amphotericin B. This review encompasses different antifungal drug delivery systems, such as liposomes, carriers based on solid lipids and nanostructure lipids, polymeric nanoparticles, dendrimers, and others. All these delivery systems have advantages and disadvantages. Main advantages are the improvement in the antifungal properties, such as bioavailability, reduction in toxicity, and target tissue, which facilitates innovative therapeutic techniques. Conversely, a major disadvantage is the high cost of production. In the near future, the use of nanosystems for drug delivery strategies can be used for delivering peptides, including mucoadhesive systems for the treatment of oral and vaginal candidiasis.
Collapse
Affiliation(s)
- Aline Raquel Voltan
- Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | - Guillermo Quindós
- Immunology, Microbiology, and Parasitology Department, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Spain
| | - Kaila P Medina Alarcón
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
10
|
Zielińska P, Staniszewska M, Bondaryk M, Koronkiewicz M, Urbańczyk-Lipkowska Z. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers. Eur J Med Chem 2015; 105:106-19. [PMID: 26479030 DOI: 10.1016/j.ejmech.2015.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. METHODS Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. RESULTS 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. CONCLUSIONS Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections.
Collapse
Affiliation(s)
| | - Monika Staniszewska
- National Institute of Public Health - National Institute of Hygiene, 00-791, Warsaw, Poland.
| | - Małgorzata Bondaryk
- National Institute of Public Health - National Institute of Hygiene, 00-791, Warsaw, Poland
| | | | | |
Collapse
|
11
|
Staniszewska M, Bondaryk M, Żukowski K, Chudy M. Quantification of the APE2 gene expression level in Candida albicans clinical isolates from patients with diagnosed fungal infections. Eur J Clin Microbiol Infect Dis 2015; 34:1429-35. [DOI: 10.1007/s10096-015-2369-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/23/2015] [Indexed: 12/01/2022]
|
12
|
Staniszewska M, Bondaryk M, Ochal Z. Susceptibility ofCandida albicansto New Synthetic Sulfone Derivatives. Arch Pharm (Weinheim) 2015; 348:132-43. [DOI: 10.1002/ardp.201400360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Monika Staniszewska
- National Institute of Public Health - National Institute of Hygiene; Warsaw Poland
| | - Małgorzata Bondaryk
- National Institute of Public Health - National Institute of Hygiene; Warsaw Poland
| | - Zbigniew Ochal
- Faculty of Chemistry; Warsaw University of Technology; Warsaw Poland
| |
Collapse
|
13
|
|