1
|
Oliveira JC, Negreiro JM, Nunes FM, Barbosa FG, Mafezoli J, Mattos MC, Fernandes MCR, Pessoa C, Furtado CLM, Zanatta G, Oliveira MCF. In Silico Study of the Anti-MYC Potential of Lanostane-Type Triterpenes. ACS OMEGA 2024; 9:50844-50858. [PMID: 39741863 PMCID: PMC11683602 DOI: 10.1021/acsomega.4c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025]
Abstract
One of the most investigated molecular targets for anticancer therapy is the proto-oncogene MYC, which is amplified and thus overexpressed in many types of cancer. Due to its structural characteristics, developing inhibitors for the target has proven to be challenging. In this study, the anti-MYC potential of lanostane-type triterpenes was investigated for the first time, using computational approaches that involved ensemble docking, prediction of structural properties and pharmacokinetic parameters, molecular dynamics (MD), and binding energy calculation using the molecular mechanics-generalized born surface area (MM-GBSA) method. The analysis of physicochemical properties, druglikeness, and pharmacokinetic parameters showed that ligands ganoderic acid E (I), ganoderlactone D (II), ganoderic acid Y (III), ganoderic acid Df (IV), lucidenic acid F (V), ganoderic acid XL4 (VI), mariesiic acid A (VII), and phellinol E (VIII) presented properties within the filter used. These eight ligands, in general, could interact with the molecular target favorably, with interaction energy values between -8.3 and -8.6 kcal mol-1. In MD, the results of RMSD, RMSF, radius of gyration, and hydrogen bonds of the complexes revealed that ligands I, IV, VI, and VII interacted satisfactorily with the protein during the simulations and assisted in its conformational and energetic stabilization. The binding energy calculation using the MM-GBSA method showed better results for the MYC-VII and MYC-I complexes (-44.98 and -41.96 kcal mol-1, respectively). These results support the hypothesis that such molecules can interact with MYC for a considerable period, which would be an essential condition for them to exert their inhibitory activity effectively.
Collapse
Affiliation(s)
- José
A. C. Oliveira
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Jonatas M. Negreiro
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Fátima M. Nunes
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Francisco G. Barbosa
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Jair Mafezoli
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Marcos C. Mattos
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Maria C. R. Fernandes
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
| | - Claudia Pessoa
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
| | - Cristiana L. M. Furtado
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
- Graduate
Program in Medical Sciences, University
of Fortaleza, Rua Francisco
Segundo da Costa, 23-57, Fortaleza, CE 60811-650, Brazil
| | - Geancarlo Zanatta
- Department
of Biophysics, Bioscience Institute, Federal
University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Building 43422, Laboratory
204, Porto Alegre, RS 91501-970, Brazil
| | - Maria C. F. Oliveira
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| |
Collapse
|
2
|
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024; 12:1021. [PMID: 38790983 PMCID: PMC11117879 DOI: 10.3390/biomedicines12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of this review is to introduce readers to the fascinating class of lipid molecules known as norsteroids, exploring their distribution across various biotopes and their biological activities. The review provides an in-depth analysis of various modified steroids, including A, B, C, and D-norsteroids, each characterized by distinct structural alterations. These modifications, which range from the removal of specific methyl groups to changes in the steroid core, result in unique molecular architectures that significantly impact their biological activity and therapeutic potential. The discussion on A, B, C, and D-norsteroids sheds light on their unique configurations and how these structural modifications influence their pharmacological properties. The review also presents examples from natural sources that produce a diverse array of steroids with distinct structures, including the aforementioned A, B, C, and D-nor variants. These compounds are sourced from marine organisms like sponges, soft corals, and starfish, as well as terrestrial entities such as plants, fungi, and bacteria. The exploration of these steroids encompasses their biosynthesis, ecological significance, and potential medical applications, highlighting a crucial area of interest in pharmacology and natural product chemistry. The review emphasizes the importance of researching these steroids for drug development, particularly in addressing diseases where conventional medications are inadequate or for conditions lacking sufficient therapeutic options. Examples of norsteroid synthesis are provided to illustrate the practical applications of this research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
3
|
Joshi RK. Bioactive Usual and Unusual Triterpenoids Derived from Natural Sources Used in Traditional Medicine. Chem Biodivers 2023; 20:e202200853. [PMID: 36598091 DOI: 10.1002/cbdv.202200853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Triterpenoids are accessible in several terrestrial plants as well as marine organisms, including sponges, algae, fungi, and sea cucumbers are examples of marine creatures. So far, more than 20,000 natural triterpenoids have exhibited several varied bioactivities, including anticancer, antimalarial, anti-HIV, inhibit HIF-1 activation, antibacterial, chemopreventive, anti-inflammatory, antioxidant, cardioprotective, antiviral, neuroprotective, hepatoprotective, insecticidal, antidiabetic, cytotoxic. Several plants are used in folklore medicine to treat numerous ailments, and the preparation or uses of traditional practices have been scientifically validated. Although various structural diversity has been observed in the triterpenoids, this review presents the sources and uses of those triterpenoids that showed significant biological activities which could be accessible and promoted to familiar people in the form of traditional medicine or for industrial, or pharmaceutical applications.
Collapse
Affiliation(s)
- Rajesh K Joshi
- Department of Natural Product Chemistry, ICMR-National Institute of Traditional Medicine, Karnataka, 590010, India
| |
Collapse
|
4
|
Nicholson JM, Millham AB, Bucknam AR, Markham LE, Sailors XI, Micalizio GC. General Enantioselective and Stereochemically Divergent Four-Stage Approach to Fused Tetracyclic Terpenoid Systems. J Org Chem 2022; 87:3352-3362. [PMID: 35175755 PMCID: PMC9438405 DOI: 10.1021/acs.joc.1c02979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tetracyclic terpenoid-derived natural products are a broad class of medically relevant agents that include well-known steroid hormones and related structures, as well as more synthetically challenging congeners such as limonoids, cardenolides, lanostanes, and cucurbitanes, among others. These structurally related compound classes present synthetically disparate challenges based, in part, on the position and stereochemistry of the numerous quaternary carbon centers that are common to their tetracyclic skeletons. While de novo syntheses of such targets have been a topic of great interest for over 50 years, semisynthesis is often how synthetic variants of these natural products are explored as biologically relevant materials and how such agents are further matured as therapeutics. Here, focus was directed at establishing an efficient, stereoselective, and molecularly flexible de novo synthetic approach that could offer what semisynthetic approaches do not. In short, a unified strategy to access common molecular features of these natural product families is described that proceeds in four stages: (1) conversion of epichlorohydrin to stereodefined enynes, (2) metallacycle-mediated annulative cross-coupling to generate highly substituted hydrindanes, (3) tetracycle formation by stereoselective forging of the C9-C10 bond, and (4) group-selective oxidative rearrangement that repositions a quaternary center from C9 to C10. These studies have defined the structural features required for highly stereoselective C9-C10 bond formation and document the generality of this four-stage synthetic strategy to access a range of unique stereodefined systems, many of which bear stereochemistry/substitution/functionality not readily accessible from semisynthesis.
Collapse
Affiliation(s)
- Joshua M. Nicholson
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Adam B. Millham
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Andrea R. Bucknam
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Lauren E. Markham
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Xenia Ivanna Sailors
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
5
|
Perera WH, Meepagala KM, Duke SO. Sesquiterpene-α-amino acid quaternary ammonium hybrids from Stereum complicatum (Steraceae). BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
In Depth Natural Product Discovery from the Basidiomycetes Stereum Species. Microorganisms 2020; 8:microorganisms8071049. [PMID: 32679785 PMCID: PMC7409058 DOI: 10.3390/microorganisms8071049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Natural metabolites from microorganisms play significant roles in the discovery of drugs, both for disease treatments in humans, and applications in agriculture. The Basidiomycetes Stereum genus has been a source of such bioactive compounds. Here we report on the structures and activities of secondary metabolites from Stereum. Their structural types include sesquiterpenoids, polyketides, vibralactones, triterpenoids, sterols, carboxylic acids and saccharides. Most of them showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, radical scavenging activity, autophagy inducing activity, inhibiting pancreatic lipase against malarial parasite, nematocidal and so on. The syntheses of some metabolites have been studied. In this review, 238 secondary metabolites from 10 known species and various unidentified species of Stereum were summarized over the last seven decades.
Collapse
|
7
|
Wang W, Yang YP, Tasneem S, Daniyal M, Zhang L, Jia YZ, Jian YQ, Li B. Lanostane tetracyclic triterpenoids as important sources for anti-inflammatory drug discovery. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_17_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Wang JT, Ma ZH, Wang GK, Xu FQ, Yu Y, Wang G, Peng DY, Liu JS. Chemical constituents from plant endophytic fungus Alternaria alternata. Nat Prod Res 2019; 35:1199-1206. [PMID: 31305141 DOI: 10.1080/14786419.2019.1639699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Five new natural compounds (1-5) along with four known ones, involving dibenzo-α-pyrone derivatives, a benzo-γ-pyrone derivative and an amide-type compound were obtained from Alternaria alternata, an endophyte isolated from Paeonia lactiflora. The structures of these isolates were elucidated by intensive analysis of spectroscopic data including NMR, HRMS (ESI and EI), UV and IR spectra. Compounds (1-4) were evaluated for their cytotoxicities against five selected human tumourtumour cell lines (A-549, MDA-MB-231, MCF-7, KB and KB-VIN), and compound 3 exhibited activities against MDA-MB-231and MCF-7 with IC50 values of 20.1 μM and 32.2 μM.
Collapse
Affiliation(s)
- Ju-Tao Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Zong-Hui Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Feng-Qing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Yang Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|