1
|
Ganeshkumar A, Gonçale JC, Rajaram R, Junqueira JC. Anti-Candidal Marine Natural Products: A Review. J Fungi (Basel) 2023; 9:800. [PMID: 37623571 PMCID: PMC10455659 DOI: 10.3390/jof9080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Candida spp. are common opportunistic microorganisms in the human body and can cause mucosal, cutaneous, and systemic infections, mainly in individuals with weakened immune systems. Candida albicans is the most isolated and pathogenic species; however, multi-drug-resistant yeasts like Candida auris have recently been found in many different regions of the world. The increasing development of resistance to common antifungals by Candida species limits the therapeutic options. In light of this, the present review attempts to discuss the significance of marine natural products in controlling the proliferation and metabolism of C. albicans and non-albicans species. Natural compounds produced by sponges, algae, sea cucumber, bacteria, fungi, and other marine organisms have been the subject of numerous studies since the 1980s, with the discovery of several products with different chemical frameworks that can inhibit Candida spp., including antifungal drug-resistant strains. Sponges fall under the topmost category when compared to all other organisms investigated. Terpenoids, sterols, and alkaloids from this group exhibit a wide array of inhibitory activity against different Candida species. Especially, hippolide J, a pair of enantiomeric sesterterpenoids isolated from the marine sponge Hippospongia lachne, exhibited strong activity against Candida albicans, Candida parapsilosis, and Candida glabrata. In addition, a comprehensive analysis was performed to unveil the mechanisms of action and synergistic activity of marine products with conventional antifungals. In general, the results of this review show that the majority of chemicals derived from the marine environment are able to control particular functions of microorganisms belonging to the Candida genus, which can provide insights into designing new anti-candidal therapies.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Juliana Caparroz Gonçale
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
| | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
| |
Collapse
|
2
|
Nie Q, Guo S, Gao X. Unraveling the biosynthesis of penicillenols by genome mining PKS-NRPS gene clusters in Penicillium citrinum. AIChE J 2022; 68:e17885. [PMID: 36591370 PMCID: PMC9797205 DOI: 10.1002/aic.17885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/16/2022] [Indexed: 01/05/2023]
Abstract
Penicillenols belong to the family of tetramic acids with anticancer and antibacterial activities. Here, we report the discovery of the biosynthetic gene cluster (pnc) for penicillenol A1 and E in Penicillium citrinum ATCC9849 by genome mining. We discover the pnc cluster based on the results of gene deletions in P. citrinum and gene cluster heterologous expression in Aspergillus nidulans. We also propose the assembly line of the PKS module in PncA with the reduction by PncB provides a highly reduce polyketide chain to be further linked with an L-threonine molecule and released from PncA to produce penicillenol E. Further formation of penicillenol A1 requires the N-methylation of tetramic acid group by PncC. Our work deepens the understanding of the biosynthetic logic for N-methylated tetramic acids and contributes to the discovery of new penicillenols by genome mining.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Shuqi Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
3
|
Deng Y, Liu Y, Li J, Wang X, He S, Yan X, Shi Y, Zhang W, Ding L. Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 2022; 239:114513. [DOI: 10.1016/j.ejmech.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
|
4
|
Sazali Hamzah A, Fazli Mohammat M, Wibowo A, Shaameri Z, Nur Ain Abdul Rashid F, Hidayah Pungot N. Five-Membered Nitrogen Heterocycles as New Lead Compounds in Drug Discovery. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Anti-Pathogenic Properties of the Combination of a T3SS Inhibitory Halogenated Pyrrolidone with C-30 Furanone. Molecules 2021; 26:molecules26247635. [PMID: 34946717 PMCID: PMC8707098 DOI: 10.3390/molecules26247635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance is one of the current public health challenges to be solved. The World Health Organization (WHO) has urgently called for the development of strategies to expand the increasingly limited antimicrobial arsenal. The development of anti-virulence therapies is a viable option to counteract bacterial infections with the possibility of reducing the generation of resistance. Here we report on the chemical structures of pyrrolidones DEXT 1–4 (previously identified as furan derivatives) and their anti-virulence activity on Pseudomonas aeruginosa strains. DEXT 1–4 were shown to inhibit biofilm formation, swarming motility, and secretion of ExoU and ExoT effector proteins. Also, the anti-pathogenic property of DEXT-3 alone or in combination with furanone C-30 (quorum sensing inhibitor) or MBX-1641 (type III secretion system inhibitor) was analyzed in a model of necrosis induced by P. aeruginosa PA14. All treatments reduced necrosis; however, only the combination of C-30 50 µM with DEXT-3 100 µM showed significant inhibition of bacterial growth in the inoculation area and systemic dispersion. In conclusion, pyrrolidones DEXT 1–4 are chemical structures capable of reducing the pathogenicity of P. aeruginosa and with the potential for the development of anti-virulence combination therapies.
Collapse
|
6
|
Hansen PE. Structural Studies of β-Diketones and Their Implications on Biological Effects. Pharmaceuticals (Basel) 2021; 14:ph14111189. [PMID: 34832971 PMCID: PMC8622542 DOI: 10.3390/ph14111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
The paper briefly summarizes methods to determine the structure of β-diketones with emphasis on NMR methods. Density functional calculations are also briefly treated. Emphasis is on the tautomeric equilibria of β-diketones in relation to biological effects. Relevant physical parameters such as acidity and solubility are treated. A series of biologically active molecules are treated with respect to structure (tautomerism). Characteristic molecules or groups of molecules are usnic acids, tetramic and tetronic acids, o-hydroxydibenzoylmethanes, curcumines, lupulones, and hyperforines.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| |
Collapse
|
7
|
Treiber L, Pezolt C, Zeng H, Schrey H, Jungwirth S, Shekhar A, Stadler M, Bilitewski U, Erb-Brinkmann M, Schobert R. Dual Agents: Fungal Macrocidins and Synthetic Analogues with Herbicidal and Antibiofilm Activities. Antibiotics (Basel) 2021; 10:antibiotics10081022. [PMID: 34439072 PMCID: PMC8388955 DOI: 10.3390/antibiotics10081022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Eight analogues of the bioherbicides macrocidin A (1) and Z (2) with structural variance in the size of the macrocycle, its para- or meta-cyclophane character, and its functional groups were synthesized on two modular routes and tested for herbicidal, antibiotic, and antibiofilm activities. Apart from the lead compounds 1 and 2, the structurally simplified dihydromacrocidin Z (3) and normacrocidin Z (4) showed high herbicidal activity in either thistles, dandelions or in both. The derivatives 2, 3, and dibromide 9 also inhibited the growth of Staphylococcus aureus biofilms by ca 70% when applied at subtoxic concentrations as low as ca 20 µM, which are unlikely to induce bacterial resistance. They also led to the dispersion of preformed biofilms of S. aureus, exceeding a similar effect by microporenic acid A, a known biofilm inhibitor. Compounds 3 and 9 showed no noticeable cytotoxicity against human cancer and endothelial cells at concentrations below 50 µM, making them conceivable candidates for application as anti-biofilm agents in a medicinal context.
Collapse
Affiliation(s)
- Laura Treiber
- Department of Chemistry, University Bayreuth, Universitaetsstr. 30, 95440 Bayreuth, Germany; (L.T.); (C.P.)
| | - Christine Pezolt
- Department of Chemistry, University Bayreuth, Universitaetsstr. 30, 95440 Bayreuth, Germany; (L.T.); (C.P.)
| | - Haoxuan Zeng
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Stefan Jungwirth
- Compound Profiling and Screening, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.J.); (A.S.); (U.B.)
| | - Aditya Shekhar
- Compound Profiling and Screening, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.J.); (A.S.); (U.B.)
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Ursula Bilitewski
- Compound Profiling and Screening, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.J.); (A.S.); (U.B.)
| | | | - Rainer Schobert
- Department of Chemistry, University Bayreuth, Universitaetsstr. 30, 95440 Bayreuth, Germany; (L.T.); (C.P.)
- Correspondence: ; Fax: +49-(0)921-552672
| |
Collapse
|
8
|
Yang LJ, Peng XY, Zhang YH, Liu ZQ, Li X, Gu YC, Shao CL, Han Z, Wang CY. Antimicrobial and Antioxidant Polyketides from a Deep-Sea-Derived Fungus Aspergillus versicolor SH0105. Mar Drugs 2020; 18:E636. [PMID: 33322355 PMCID: PMC7764742 DOI: 10.3390/md18120636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fifteen polyketides, including four new compounds, isoversiol F (1), decumbenone D (2), palitantin B (7), and 1,3-di-O-methyl-norsolorinic acid (8), along with 11 known compounds (3-6 and 9-15), were isolated from the deep-sea-derived fungus Aspergillus versicolor SH0105. Their structures and absolute configurations were determined by comprehensive spectroscopic data, including 1D and 2D NMR, HRESIMS, and ECD calculations, and it is the first time to determine the absolute configuration of known decumbenone A (6). All of these compounds were evaluated for their antimicrobial activities against four human pathogenic microbes and five fouling bacterial strains. The results indicated that 3,7-dihydroxy-1,9-dimethyldibenzofuran (14) displayed obvious inhibitory activity against Staphylococcus aureus (ATCC 27154) with the MIC value of 13.7 μM. In addition, the antioxidant assays of the isolated compounds revealed that aspermutarubrol/violaceol-I (15) exhibited significant 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity with the IC50 value of 34.1 μM, and displayed strong reduction of Fe3+ with the ferric reducing antioxidant power (FRAP) value of 9.0 mM under the concentration of 3.1 μg/mL, which were more potent than ascorbic acid.
Collapse
Affiliation(s)
- Lu-Jia Yang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.-J.Y.); (X.-Y.P.); (Y.-H.Z.); (Z.-Q.L.); (X.L.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiao-Yue Peng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.-J.Y.); (X.-Y.P.); (Y.-H.Z.); (Z.-Q.L.); (X.L.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ya-Hui Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.-J.Y.); (X.-Y.P.); (Y.-H.Z.); (Z.-Q.L.); (X.L.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhi-Qing Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.-J.Y.); (X.-Y.P.); (Y.-H.Z.); (Z.-Q.L.); (X.L.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.-J.Y.); (X.-Y.P.); (Y.-H.Z.); (Z.-Q.L.); (X.L.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yu-Cheng Gu
- Jealott’s Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, UK;
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.-J.Y.); (X.-Y.P.); (Y.-H.Z.); (Z.-Q.L.); (X.L.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhuang Han
- Institute of Deep-sea Science and Engineering, Chinese Academy of Science, Sanya 572000, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.-J.Y.); (X.-Y.P.); (Y.-H.Z.); (Z.-Q.L.); (X.L.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Dasanayaka SAHK, Nong XH, Liang X, Liang JQ, Amin M, Qi SH. New dibenzodioxocinone and pyran-3,5-dione derivatives from the deep-sea-derived fungus Penicillium canescens SCSIO z053. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:338-345. [PMID: 30835537 DOI: 10.1080/10286020.2019.1575819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
A new isopentylated dibenzodioxocinone, canescenin A (1), and a new isopentylated pyran-3,5-dione derivative, canescenin B (2), were isolated from an extract of the deep-sea-derived fungus Penicillium canescens SCSIO z053. Their structures were elucidated by spectroscopic analysis. It was rare to obtain pyran-3,5-dione derivatives from nature. Antibacterial, cytotoxic, and antiviral activities of 1 and 2 were also evaluated.
Collapse
Affiliation(s)
- S A H K Dasanayaka
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Hua Nong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiu Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Muhammad Amin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
10
|
The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar Drugs 2020; 18:md18020114. [PMID: 32075282 PMCID: PMC7074263 DOI: 10.3390/md18020114] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Tetramic acid (pyrrolidine-2,4-dione) compounds, isolated from a variety of marine and terrestrial organisms, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities. In the past decade, marine-derived microorganisms have become great repositories of novel tetramic acids. Here, we discuss the biological activities of 277 tetramic acids of eight classifications (simple 3-acyl tetramic acids, 3-oligoenoyltetramic acids, 3-decalinoyltetramic acid, 3-spirotetramic acids, macrocyclic tetramic acids, N-acylated tetramic acids, α-cyclopiazonic acid-type tetramic acids, and other tetramic acids) from marine-derived microbes, including fungi, actinobacteria, bacteria, and cyanobacteria, as reported in 195 research studies up to 2019.
Collapse
|
11
|
Tong Q, Li Y, Wang S, Yan S. High-Throughput Screening of Streptomyces virginiae Strains Using Microtiter Plates for the High-Titer Production of Virginiamycin. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1700516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qianqian Tong
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yaliang Li
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Shunchang Wang
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Shoubao Yan
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| |
Collapse
|
12
|
Amin M, Liang X, Ma X, Dong JD, Qi SH. New pyrone and cyclopentenone derivatives from marine-derived fungus Aspergillus sydowii SCSIO 00305. Nat Prod Res 2019; 35:318-326. [PMID: 31204847 DOI: 10.1080/14786419.2019.1629919] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two new 2-pyrone derivatives sydowiones A-B (1, 2), one new cyclopentenone derivative sydowione C (3), and one new mycotoxin 6-methoxyl austocystin A (4) along with two known analogues paecilpyrone A (5) and austocystin A (6), were isolated from the marine-derived fungus Aspergillus sydowii SCSIO 00305. The structures of 1-4 were elucidated by extensive spectroscopic analysis. The absolute configuration of C-8 in 1 was established by Mosher method, and further confirmed by calculation of the electronic circular dichroism (ECD) spectra. The absolute configuration of C-11 in 3 was also determined by calculation of ECD spectra. The absolute configuration of 6 was determined by a single-crystal X-ray diffraction experiment for the first time. Compounds 1-4 showed moderate toxicity towards brine shrine naupalii with LC50 values of 19.5, 14.3, 8.3 and 2.9 μM, respectively. And 1 and 2 also showed antioxidant activity against 2,2-diphenyl-picrylhydrazyl (DPPH) radicals with IC50 values of 46.0 and 46.6 μM, respectively.[Formula: see text].
Collapse
Affiliation(s)
- Muhammad Amin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou, China
| | - Jun-De Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou, China
| |
Collapse
|
13
|
Amin M, Zhang XY, Xu XY, Qi SH. New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Nat Prod Res 2019; 34:1219-1226. [PMID: 30663375 DOI: 10.1080/14786419.2018.1556266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During the course of our search for novel bioactive compounds from marine fungi, four new citrinin derivatives, cladosporins A-D (1-4) were isolated from a culture broth of the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Their complete structural assignments were elucidated by the extensive spectroscopic investigation. The absolute configurations of 1-3 were established by quantum chemical calculations of the electronic circular dichroism (ECD) spectra. Compounds 1-4 showed weak toxicity towards brine shrine naupalii with LC50 values of 72.0, 81.7, 49.9 and 81.4 μM, respectively. And 4 also showed significant antioxidant activity against ɑ,α-diphenyl-picrylhydrazyl (DPPH) radicals with an IC50 value of 16.4 μM.
Collapse
Affiliation(s)
- Muhammad Amin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xin-Ya Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
15
|
Phylogenetic analysis and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. World J Microbiol Biotechnol 2018; 34:90. [DOI: 10.1007/s11274-018-2470-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/03/2018] [Indexed: 11/26/2022]
|
16
|
Li S, Mou Q, Xu X, Qi S, Leung PHM. Synergistic antibacterial activity between penicillenols and antibiotics against methicillin-resistant Staphylococcus aureus. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172466. [PMID: 29892433 PMCID: PMC5990757 DOI: 10.1098/rsos.172466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Penicillenol A2 (isolated from deep-sea fungus Penicillium biourgeianum DFFSCS023) has good antibacterial activity against methicillin-sensitive Staphylococcus aureus and in combination with beta-lactam antibiotics it could significantly decrease methicillin-resistant Staphylococcus aureus (MRSA) survival, which provides a novel treatment consideration for MRSA-caused infections.
Collapse
Affiliation(s)
- Shuihong Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Qianqian Mou
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Xinya Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Shuhua Qi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Polly H. M. Leung
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| |
Collapse
|
17
|
Huang ZH, Nong XH, Liang X, Qi SH. New tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z0025. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|