1
|
Sainbhi AS, Gomez A, Froese L, Slack T, Batson C, Stein KY, Cordingley DM, Alizadeh A, Zeiler FA. Non-Invasive and Minimally-Invasive Cerebral Autoregulation Assessment: A Narrative Review of Techniques and Implications for Clinical Research. Front Neurol 2022; 13:872731. [PMID: 35557627 PMCID: PMC9087842 DOI: 10.3389/fneur.2022.872731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
The process of cerebral vessels regulating constant cerebral blood flow over a wide range of systemic arterial pressures is termed cerebral autoregulation (CA). Static and dynamic autoregulation are two types of CA measurement techniques, with the main difference between these measures relating to the time scale used. Static autoregulation looks at the long-term change in blood pressures, while dynamic autoregulation looks at the immediate change. Techniques that provide regularly updating measures are referred to as continuous, whereas intermittent techniques take a single at point in time. However, a technique being continuous or intermittent is not implied by if the technique measures autoregulation statically or dynamically. This narrative review outlines technical aspects of non-invasive and minimally-invasive modalities along with providing details on the non-invasive and minimally-invasive measurement techniques used for CA assessment. These non-invasive techniques include neuroimaging methods, transcranial Doppler, and near-infrared spectroscopy while the minimally-invasive techniques include positron emission tomography along with magnetic resonance imaging and radiography methods. Further, the advantages and limitations are discussed along with how these methods are used to assess CA. At the end, the clinical considerations regarding these various techniques are highlighted.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Amanjyot Singh Sainbhi
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Yushmanov VE, Kharlamov A, Ibrahim TS, Zhao T, Boada FE, Jones SC. K⁺ dynamics in ischemic rat brain in vivo by ⁸⁷Rb MRI at 7 T. NMR IN BIOMEDICINE 2011; 24:778-783. [PMID: 21834001 PMCID: PMC3212415 DOI: 10.1002/nbm.1652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 05/31/2023]
Abstract
The aims of the present study were as follows: (i) to perform the first (87)Rb MRI in live rats with focal ischemic stroke; and (ii) to test the hypothesis that K(+) egress from the brain in this model is quantifiable in individual animals by high-field (7-T) K/Rb substitution MRI. Rats preloaded with dietary Rb(+) (resulting in Rb/(K + Rb) replacement ratios of 0.1-0.2 in the brain) were subjected to permanent occlusion of the middle cerebral artery, and (87)Rb MRI was implemented with 13-min temporal resolution using a dedicated RF coil and a spiral ultrashort-TE sequence (TR/TE = 3/0.07 ms). The ischemic core was localized by apparent diffusion coefficient mapping, by microtubule-associated protein-2 immunohistochemistry and by changes in surface reflectivity. [K], [Na] and [Rb] were determined independently in the micropunched samples by post-mortem flame photometry. Both techniques were generally in agreement in the nonischemic cortex; however, the MRI-assessed [K(+) + Rb(+)] drop in ischemic brain was less pronounced (average efflux rate of 4.8 ± 0.2 nEq/mm(3) /h versus 10 ± 1 nEq/mm(3)/h by flame photometry; p < 0.0001). The use of higher field gradients for better spatial resolution, and hence more accurate quantification, is suggested.
Collapse
Affiliation(s)
- Victor E Yushmanov
- Department of Anesthesiology, Allegheny-Singer Research Institute, Pittsburgh, PA 15212-4772, USA.
| | | | | | | | | | | |
Collapse
|