6
|
Zhang J, Sadowska GB, Chen X, Park SY, Kim JE, Bodge CA, Cummings E, Lim YP, Makeyev O, Besio WG, Gaitanis J, Banks WA, Stonestreet BS. Anti-IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. FASEB J 2015; 29:1739-53. [PMID: 25609424 DOI: 10.1096/fj.14-258822] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.
Collapse
Affiliation(s)
- Jiyong Zhang
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Grazyna B Sadowska
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaodi Chen
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Seon Yeong Park
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jeong-Eun Kim
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Courtney A Bodge
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Erin Cummings
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Yow-Pin Lim
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Oleksandr Makeyev
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Walter G Besio
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - John Gaitanis
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - William A Banks
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Barbara S Stonestreet
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Chen X, Sadowska GB, Zhang J, Kim JE, Cummings EE, Bodge CA, Lim YP, Makeyev O, Besio WG, Gaitanis J, Threlkeld SW, Banks WA, Stonestreet BS. Neutralizing anti-interleukin-1β antibodies modulate fetal blood-brain barrier function after ischemia. Neurobiol Dis 2015; 73:118-29. [PMID: 25258170 PMCID: PMC4252260 DOI: 10.1016/j.nbd.2014.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 08/15/2014] [Accepted: 09/12/2014] [Indexed: 02/08/2023] Open
Abstract
We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Grazyna B Sadowska
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Jiyong Zhang
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Jeong-Eun Kim
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Erin E Cummings
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Courtney A Bodge
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA
| | - Oleksandr Makeyev
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Walter G Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
| | - John Gaitanis
- Department of Neurology, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Steven W Threlkeld
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - William A Banks
- Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA.
| |
Collapse
|