1
|
Chmiel J, Kurpas D, Stępień-Słodkowska M. The Potential of Transcranial Direct Current Stimulation (tDCS) in Improving Quality of Life in Patients with Multiple Sclerosis: A Review and Discussion of Mechanisms of Action. J Clin Med 2025; 14:373. [PMID: 39860377 PMCID: PMC11766291 DOI: 10.3390/jcm14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being. There are psychological interventions that can improve QoL, but their number is limited. Therefore, searching for new methods that are as effective and safe as possible is ongoing. Methods: This review examines the potential effectiveness of transcranial direct current stimulation (tDCS) in improving the quality of life in patients with MS. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. Results: The search yielded seven studies in which QoL was a primary or secondary outcome. Stimulation protocols displayed heterogeneity, especially concerning the choice of the stimulation site. Four studies demonstrated the effectiveness of tDCS in improving QoL, all of which (two) used anodal stimulation of the left DLPFC. Stimulation of the motor cortex has produced mixed results. The potential mechanisms of action of tDCS in improving QoL in MS are explained. These include improved synaptic plasticity, increased cerebral blood flow, salience network engagement through tDCS, and reduction of beta-amyloid deposition. The limitations are also detailed, and recommendations for future research are made. Conclusions: While the evidence is limited, tDCS has shown potential to improve QoL in MS patients in some studies. Prefrontal stimulation appears promising, and further research is recommended to explore this approach.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland;
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| |
Collapse
|
2
|
Chmiel J, Stępień-Słodkowska M. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Neuropsychiatric Symptoms in Multiple Sclerosis (MS)-A Review and Insight into Possible Mechanisms of Action. J Clin Med 2024; 13:7793. [PMID: 39768715 PMCID: PMC11728448 DOI: 10.3390/jcm13247793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction: Neuropsychiatric symptoms such as depression and anxiety are a significant burden on patients with multiple sclerosis (MS). Their pathophysiology is complex and yet to be fully understood. There is an urgent need for non-invasive treatments that directly target the brain and help patients with MS. One such possible treatment is transcranial direct current stimulation (tDCS), a popular and effective non-invasive brain stimulation technique. Methods: This mechanistic review explores the efficacy of tDCS in treating depression and anxiety in MS while focusing on the underlying mechanisms of action. Understanding these mechanisms is crucial, as neuropsychiatric symptoms in MS arise from complex neuroinflammatory and neurodegenerative processes. This review offers insights that may direct more focused and efficient therapeutic approaches by investigating the ways in which tDCS affects inflammation, brain plasticity, and neural connections. Searches were conducted using the PubMed/Medline, ResearchGate, Cochrane, and Google Scholar databases. Results: The literature search yielded 11 studies to be included in this review, with a total of 175 patients participating in the included studies. In most studies, tDCS did not significantly reduce depression or anxiety scores as the studied patients did not have elevated scores indicating depression and anxiety. In the few studies where the patients had scores indicating mild/moderate dysfunction, tDCS was more effective. The risk of bias in the included studies was assessed as moderate. Despite the null or near-null results, tDCS may still prove to be an effective treatment option for depression and anxiety in MS, because tDCS produces a neurobiological effect on the brain and nervous system. To facilitate further work, several possible mechanisms of action of tDCS have been reported, such as the modulation of the frontal-midline theta, reductions in neuroinflammation, the modulation of the HPA axis, and cerebral blood flow regulation. Conclusions: Although tDCS did not overall demonstrate positive effects in reducing depression and anxiety in the studied MS patients, the role of tDCS in this area should not be underestimated. Evidence from other studies indicates the effectiveness of tDCS in reducing depression and anxiety, but the studies included in this review did not include patients with sufficient depression or anxiety. Future studies are needed to confirm the effectiveness of tDCS in neuropsychiatric dysfunctions in MS.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
- Doctoral School of the University of Szczecin, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| |
Collapse
|
3
|
Khalil A, Asseyer S, Rust R, Schmitz‐Hübsch T, Fiebach JB, Paul F, Chien C. Non-invasive Assessment of Cerebral Hemodynamics Using Resting-State Functional Magnetic Resonance Imaging in Multiple Sclerosis and Age-Related White Matter Lesions. Hum Brain Mapp 2024; 45:e70076. [PMID: 39535849 PMCID: PMC11558553 DOI: 10.1002/hbm.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Perfusion changes in white matter (WM) lesions and normal-appearing brain regions play an important pathophysiological role in multiple sclerosis (MS). However, most perfusion imaging methods require exogenous contrast agents, the repeated use of which is discouraged. Using resting-state functional MRI (rs-fMRI), we aimed to investigate differences in perfusion between white matter lesions and normal-appearing brain regions in MS and healthy participants. A total of 41 MS patients and 41 age- and sex-matched healthy participants received rs-fMRI, from which measures of cerebral hemodynamics and oxygenation were extracted and compared across brain regions and study groups using within- and between-group nonparametric tests, linear mixed models, and robust multiple linear regression. We found longer blood arrival times and lower blood volumes in lesions than in normal-appearing WM. Higher blood volumes were found in MS patients' deep WM lesions compared to healthy participants, and blood arrival time was more delayed in MS patients' deep WM lesions than in healthy participants. Delayed blood arrival time in the cortical grey matter was associated with greater cognitive impairment in MS patients. Perfusion imaging using rs-fMRI is useful for WM lesion characterization. rs-fMRI-based blood arrival times and volumes are associated with cognitive function.
Collapse
Affiliation(s)
- Ahmed Khalil
- Center for Stroke Research Berlin, Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Rebekka Rust
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Institute of Medical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Tanja Schmitz‐Hübsch
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jochen B. Fiebach
- Center for Stroke Research Berlin, Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Claudia Chien
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of Psychiatry and PsychotherapyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
4
|
Cashion JM, Young KM, Sutherland BA. How does neurovascular unit dysfunction contribute to multiple sclerosis? Neurobiol Dis 2023; 178:106028. [PMID: 36736923 DOI: 10.1016/j.nbd.2023.106028] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) and the most common non-traumatic cause of neurological disability in young adults. Multiple sclerosis clinical care has improved considerably due to the development of disease-modifying therapies that effectively modulate the peripheral immune response and reduce relapse frequency. However, current treatments do not prevent neurodegeneration and disease progression, and efforts to prevent multiple sclerosis will be hampered so long as the cause of this disease remains unknown. Risk factors for multiple sclerosis development or severity include vitamin D deficiency, cigarette smoking and youth obesity, which also impact vascular health. People with multiple sclerosis frequently experience blood-brain barrier breakdown, microbleeds, reduced cerebral blood flow and diminished neurovascular reactivity, and it is possible that these vascular pathologies are tied to multiple sclerosis development. The neurovascular unit is a cellular network that controls neuroinflammation, maintains blood-brain barrier integrity, and tightly regulates cerebral blood flow, matching energy supply to neuronal demand. The neurovascular unit is composed of vessel-associated cells such as endothelial cells, pericytes and astrocytes, however neuronal and other glial cell types also comprise the neurovascular niche. Recent single-cell transcriptomics data, indicate that neurovascular cells, particular cells of the microvasculature, are compromised within multiple sclerosis lesions. Large-scale genetic and small-scale cell biology studies also suggest that neurovascular dysfunction could be a primary pathology contributing to multiple sclerosis development. Herein we revisit multiple sclerosis risk factors and multiple sclerosis pathophysiology and highlight the known and potential roles of neurovascular unit dysfunction in multiple sclerosis development and disease progression. We also evaluate the suitability of the neurovascular unit as a potential target for future disease modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
5
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Sisco NJ, Borazanci A, Dortch R, Stokes AM. Investigating the relationship between multi-scale perfusion and white matter microstructural integrity in patients with relapsing-remitting MS. Mult Scler J Exp Transl Clin 2021; 7:20552173211037002. [PMID: 34377529 PMCID: PMC8330486 DOI: 10.1177/20552173211037002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Multiple sclerosis is characterized by the formation of central nervous system demyelinating lesions with microvasculature inflammation. Objective Evaluate how lesion cerebral perfusion relates to white matter microstructural integrity in patients with RRMS using perfusion MRI and myelin-related T1-weighted to T2-weighted (T1w/T2w) ratios. Methods Forty-eight patients with RRMS were imaged with dynamic susceptibility contrast imaging using SAGE (spin- and gradient-echo) to calculate global and capillary-sized perfusion parameters, including cerebral blood flow (CBF), volume (CBV), and mean transit time (MTT). T1w/T2w ratios were used to indirectly assess white matter microstructural integrity. Results For global perfusion metrics, CBF was reduced 28.4% in lesion regions of interest (ROIs) compared to normal appearing white matter (NAWM), CBV was reduced 25.9% in lesion ROIs compared to NAWM, and MTT increased 12.9%. For capillary perfusion metrics (via spin-echo (SE)), CBF-SE was reduced 35.7% in lesion ROIs compared to NAWM, CBV-SE was reduced 35.2% in lesion ROIs compared to NAWM, and MTT-SE increased 9.1%. Capillary-level CBF was correlated (ρ = 0.34, p = 0.024) with white matter microstructural integrity in lesion ROIs. Conclusion This study demonstrates that lesion perfusion is reduced at both the global and capillary level and capillary-associated hypoperfusion is associated with reduced white matter microstructural integrity in RRMS.
Collapse
Affiliation(s)
- Nicholas J Sisco
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Aimee Borazanci
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Richard Dortch
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
7
|
Mariani Wigley ILC, Mascheroni E, Peruzzo D, Giorda R, Bonichini S, Montirosso R. Neuroimaging and DNA Methylation: An Innovative Approach to Study the Effects of Early Life Stress on Developmental Plasticity. Front Psychol 2021; 12:672786. [PMID: 34079501 PMCID: PMC8165202 DOI: 10.3389/fpsyg.2021.672786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
DNA methylation plays a key role in neural cell fate and provides a molecular link between early life stress and later-life behavioral phenotypes. Here, studies that combine neuroimaging methods and DNA methylation analysis in pediatric population with a history of adverse experiences were systematically reviewed focusing on: targeted genes and neural correlates; statistical models used to examine the link between DNA methylation and neuroimaging data also considering early life stress and behavioral outcomes. We identified 8 studies that report associations between DNA methylation and brain structure/functions in infants, school age children and adolescents faced with early life stress condition (e.g., preterm birth, childhood maltreatment, low socioeconomic status, and less-than optimal caregiving). Results showed that several genes were investigated (e.g., OXTR, SLC6A4, FKBP5, and BDNF) and different neuroimaging techniques were performed (MRI and f-NIRS). Statistical model used ranged from correlational to more complex moderated mediation models. Most of the studies (n = 5) considered DNA methylation and neural correlates as mediators in the relationship between early life stress and behavioral phenotypes. Understanding what role DNA methylation and neural correlates play in interaction with early life stress and behavioral outcomes is crucial to promote theory-driven studies as the future direction of this research fields.
Collapse
Affiliation(s)
| | - Eleonora Mascheroni
- 0-3 Center for the At-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sabrina Bonichini
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Rosario Montirosso
- 0-3 Center for the At-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
8
|
Haacke EM, Ge Y, Sethi SK, Buch S, Zamboni P. An Overview of Venous Abnormalities Related to the Development of Lesions in Multiple Sclerosis. Front Neurol 2021; 12:561458. [PMID: 33981281 PMCID: PMC8107266 DOI: 10.3389/fneur.2021.561458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is currently understood to be autoimmune. However, there is a long history and growing evidence for disrupted vasculature and flow within the disease pathology. A broad review of the literature related to vascular effects in MS revealed a suggestive role for abnormal flow in the medullary vein system. Evidence for venous involvement in multiple sclerosis dates back to the early pathological work by Charcot and Bourneville, in the mid-nineteenth century. Pioneering work by Adams in the 1980s demonstrated vasculitis within the walls of veins and venules proximal to active MS lesions. And more recently, magnetic resonance imaging (MRI) has been used to show manifestations of the central vein as a precursor to the development of new MS lesions, and high-resolution MRI using Ferumoxytol has been used to reveal the microvasculature that has previously only been demonstrated in cadaver brains. Both approaches may shed new light into the structural changes occurring in MS lesions. The material covered in this review shows that multiple pathophysiological events may occur sequentially, in parallel, or in a vicious circle which include: endothelial damage, venous collagenosis and fibrin deposition, loss of vessel compliance, venous hypertension, perfusion reduction followed by ischemia, medullary vein dilation and local vascular remodeling. We come to the conclusion that a potential source of MS lesions is due to locally disrupted flow which in turn leads to remodeling of the medullary veins followed by endothelial damage with the subsequent escape of glial cells, cytokines, etc. These ultimately lead to the cascade of inflammatory and demyelinating events which ensue in the course of the disease.
Collapse
Affiliation(s)
- E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean K. Sethi
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Paolo Zamboni
- Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Li N, Chen K, Bai J, Geng Z, Tang Y, Hou Y, Fan F, Ai X, Hu Y, Meng X, Wang X, Zhang Y. Tibetan medicine Duoxuekang ameliorates hypobaric hypoxia-induced brain injury in mice by restoration of cerebrovascular function. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113629. [PMID: 33246120 DOI: 10.1016/j.jep.2020.113629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duoxuekang (DXK, ཁྲག་འཕེལ་བདེ་བྱེད།) is a clinical experience prescription of CuoRu-Cailang, a famous Tibetan medicine master, which has effective advantages in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The present study was designed to investigate the effects of DXK on cerebrovascular function of HH-induced brain injury in mice. MATERIALS AND METHODS DSC-MR imaging was used to evaluate the effect of DXK on the brain blood perfusion of patients with hypoxic brain injury. HPLC analysis was used to detect the content of salidroside, gallic acid, tyrosol, corilagin, ellagic acid, isorhamnetin, quercetin and gingerol in DXK. The model of HH-induced brain injury in mice was established by an animal hypobaric and hypoxic chamber. The BABL/c mice were randomly divided into six groups: control group, model group, Hongjingtian oral liquid group (HOL, 3.3 ml/kg) and DXK groups (0.9, 1.8 and 3.6 g/kg). All mice (except the control group) were intragastrically administrated for a continuous 7 days and put into the animal hypobaric and hypoxic chamber after the last intragastric administration. Hematoxylin-eosin staining was employed to evaluate the pathological changes of brain tissue. Masson and Weigert stainings were used to detect the content of collagen fibers and elastic fibers of brain, respectively. Routine blood test and biochemical kits were used to analyze hematological parameters and oxidative stress indices. Immunofluorescence staining was applied to detect the protein levels of VEGF, CD31/vWF and α-SMA. RESULTS The results of DSC-MR imaging confirmed that DXK can increased CBV in the left temporal lobe while decreased MTT in the right frontal lobe, right temporal lobe and right occipital lobe of the brain. DXK contains salidroside, gallic acid, tyrosol, corilagin, ellagic acid, isorhamnetin, quercetin and gingerol. Compared with the model group, DXK can ameliorate the atrophy and deformation, and increase the number of pyramidal neurons in hippocampal CA3 area and cortical neurocytes. Masson and Weigert stainings results revealed that DXK can significantly increase the content of collagen fibers and elastic fibers in brain. Routine blood test results demonstrated that DXK can dramatically decrease the levels of WBC, MCH and MCHC, while increase RBC, HGB, HCT, MCV and PLT in the blood samples. Biochemical results revealed that DXK can markedly increase SOD, CAT and GSH activities, while decrease MDA activity. Immunofluorescence revealed that DXK can notably increase the protein levels of VEGF, CD31/vWF and α-SMA. CONCLUSIONS In conclusion, this study proved that DXK can ameliorate HH-induced brain injury by improving brain blood perfusion, increasing the number of collagen and elastic fibers and inhibiting oxidative stress injury. The underlying mechanisms may be involved in maintaining the integrity of cerebrovascular endothelial cells and vascular function. However, further in vivo and in vitro investigations are still needed to elucidate the mechanisms of DXK on regulating cerebral blood vessels.
Collapse
Affiliation(s)
- Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinrong Bai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zangjia Geng
- School of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yao Hu
- Interdisciplinary Laboratory of Exercise and Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xianli Meng
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Buch S, Subramanian K, Jella PK, Chen Y, Wu Z, Shah K, Bernitsas E, Ge Y, Haacke EM. Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO. Neuroimage Clin 2020; 29:102525. [PMID: 33338965 PMCID: PMC7750444 DOI: 10.1016/j.nicl.2020.102525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Multiple Sclerosis (MS) is a progressive, inflammatory, neuro-degenerative disease of the central nervous system (CNS) characterized by a wide range of histopathological features including vascular abnormalities. In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI). METHODS Six subjects with relapsing remitting MS (RRMS, age = 47.3 ± 11.8 years with 3 females and 3 males) and fourteen age-matched healthy controls were scanned at 3 T with SWI acquired before and after the infusion of Ferumoxytol. Composite data was generated by registering the FLAIR data to the high resolution SWI data in order to highlight the vascular information in MS lesions. Both the central vein sign (CVS) and, a new measure, the multiple vessel sign (MVS) were identified, along with any vascular abnormalities, in the lesions on pre- and post-contrast SWI-FLAIR fusion data. The small vessel density within the periventricular normal-appearing white matter (NAWM) and the periventricular lesions were compared for all subjects. RESULTS Averaged across two independent raters, a total of 530 lesions were identified across all patients. The total number of lesions with vascularity on pre- and post-contrast data were 287 and 488, respectively. The lesions with abnormal vascular behavior were broken up into following categories: small lesions appearing only at the vessel boundary; dilated vessels within the lesions; and developmental venous angiomas. These vessel abnormalities observed within lesions increased from 55 on pre-contrast data to 153 on post-contrast data. Finally, across all the patients, the periventricular lesional vessel density was significantly higher (p < 0.05) than that of the periventricular NAWM. CONCLUSIONS By inducing a super-paramagnetic susceptibility in the blood using Ferumoxytol, the vascular abnormalities in the RRMS patients were revealed and small vessel densities were obtained. This approach has the potential to monitor the venous vasculature present in MS lesions, catalogue their characteristics and compare the vascular structures spatially to the presence of lesions. These enhanced vascular features may provide new insight into the pathophysiology of MS.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Pavan K Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Zhen Wu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Kamran Shah
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; Department of Neurology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
11
|
Jakimovski D, Topolski M, Genovese AV, Weinstock-Guttman B, Zivadinov R. Vascular aspects of multiple sclerosis: emphasis on perfusion and cardiovascular comorbidities. Expert Rev Neurother 2019; 19:445-458. [PMID: 31003583 DOI: 10.1080/14737175.2019.1610394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. Over the last two decades, more favorable MS long-term outcomes have contributed toward increase in prevalence of the aged MS population. Emergence of age-associated pathology, such as cardiovascular diseases, may interact with the MS pathophysiology and further contribute to disease progression. Areas covered: This review summarizes the cardiovascular involvement in MS pathology, its disease activity, and progression. The cardiovascular health, the presence of various cardiovascular diseases, and their effect on MS cognitive performance are further explored. In similar fashion, the emerging evidence of a higher incidence of extracranial arterial pathology and its association with brain MS pathology are discussed. Finally, the authors outline the methodologies behind specific perfusion magnetic resonance imaging (MRI) and ultrasound Doppler techniques, which allow measurement of disease-specific and age-specific vascular changes in the aging population and MS patients. Expert opinion: Cardiovascular pathology significantly contributes to worse clinical and MRI-derived disease outcomes in MS. Global and regional cerebral hypoperfusion may be associated with poorer physical and cognitive performance. Prevention, improved detection, and treatment of the cardiovascular-based pathology may improve the overall long-term health of MS patients.
Collapse
Affiliation(s)
- Dejan Jakimovski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Matthew Topolski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Antonia Valentina Genovese
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,c Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences , University of Pavia , Pavia , Italy
| | - Bianca Weinstock-Guttman
- b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Robert Zivadinov
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA.,d Center for Biomedical Imaging at Clinical Translational Science Institute , University at Buffalo, State University of New York , Buffalo , NY , USA
| |
Collapse
|
12
|
Effect of glatiramer acetate on cerebral grey matter pathology in patients with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2019; 27:305-311. [DOI: 10.1016/j.msard.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/17/2023]
|
13
|
Dury RJ, Falah Y, Gowland PA, Evangelou N, Bright MG, Francis ST. Ultra-high-field arterial spin labelling MRI for non-contrast assessment of cortical lesion perfusion in multiple sclerosis. Eur Radiol 2018; 29:2027-2033. [PMID: 30280247 PMCID: PMC6420612 DOI: 10.1007/s00330-018-5707-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 11/27/2022]
Abstract
Objectives To assess the feasibility of using an optimised ultra-high-field high-spatial-resolution low-distortion arterial spin labelling (ASL) MRI acquisition to measure focal haemodynamic pathology in cortical lesions (CLs) in multiple sclerosis (MS). Methods Twelve MS patients (eight female, mean age 50 years; range 35–64 years) gave informed consent and were scanned on a 7 Tesla Philips Achieva scanner. Perfusion data were collected at multiple post-labelling delay times using a single-slice flow-sensitive alternating inversion recovery ASL protocol with a balanced steady-state free precession readout scheme. CLs were identified using a high-resolution Phase-Sensitive Inversion Recovery (PSIR) scan. Significant differences in perfusion within CLs compared to immediately surrounding normal appearing grey matter (NAGMlocal) and total cortical normal appearing grey matter (NAGMcortical) were assessed using paired t-tests. Results Forty CLs were identified in PSIR scans that overlapped with the ASL acquisition coverage. After excluding lesions due to small size or intravascular contamination, 27 lesions were eligible for analysis. Mean perfusion was 40 ± 25 ml/100 g/min in CLs, 53 ± 12 ml/100 g/min in NAGMlocal, and 53 ± 8 ml/100 g/min in NAGMcortical. CL perfusion was significantly reduced by 23 ± 9% (mean ± SE, p = 0.013) and 26 ± 9% (p = 0.006) relative to NAGMlocal and NAGMcortical perfusion, respectively. Conclusion This is the first ASL MRI study quantifying CL perfusion in MS at 7 Tesla, demonstrating that an optimised ASL acquisition is sensitive to focal haemodynamic pathology previously observed using dynamic susceptibility contrast MRI. ASL requires no exogenous contrast agent, making it a more appropriate tool to monitor longitudinal perfusion changes in MS, providing a new window to study lesion development. Key Points • Perfusion can be quantified within cortical lesions in multiple sclerosis using an optimised high spatial resolution arterial spin Labelling MRI acquisition at ultra-high-field. • The majority of cortical lesions assessed using arterial spin labelling are hypo-perfused compared to normal appearing grey matter, in agreement with dynamic susceptibility contrast MRI literature. • Arterial spin labelling MRI, which does not involve the injection of a contrast agent, is a safe and appropriate technique for repeat scanning of an individual patient.
Collapse
Affiliation(s)
- Richard J Dury
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Yasser Falah
- Clinical Neurology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Nikos Evangelou
- Clinical Neurology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Molly G Bright
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK. .,Clinical Neurology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK. .,Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA. .,Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
14
|
Bede P, Finegan E, Chipika RH, Li Hi Shing S, Lambe J, Meaney J, Redmond J. Occulomotor Neural Integrator Dysfunction in Multiple Sclerosis: Insights From Neuroimaging. Front Neurol 2018; 9:691. [PMID: 30190700 PMCID: PMC6116658 DOI: 10.3389/fneur.2018.00691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/31/2018] [Indexed: 02/03/2023] Open
Abstract
Background: Magnetic resonance imaging is a key diagnostic and monitoring tool in multiple Sclerosis (MS). While the substrates of motor and neuropsychological symptoms in MS have been extensively investigated, nystagmus-associated imaging signatures are relatively under studied. Accordingly, the objective of this study is the comprehensive characterisation of cortical, subcortical, and brainstem involvement in a cohort of MS patients with gaze-evoked nystagmus. Methods: Patients were recruited from a specialist MS clinic and underwent multimodal neuroimaging including high-resolution structural and diffusion tensor data acquisitions. Morphometric analyses were carried out to evaluate patterns of cortical, subcortical, brainstem, and cerebellar gray matter pathology. Volumetric analyses were also performed to further characterize subcortical gray matter degeneration. White matter integrity was evaluated using axial-, mean-, and radial diffusivity as well as fractional anisotropy. Results: Whole-brain morphometry highlighted considerable brainstem and cerebellar gray matter atrophy, and the tract-wise evaluation of white matter metrics revealed widespread pathology in frontotemporal and parietal regions. Nystagmus-associated gray matter degeneration was identified in medial cerebellar, posterior medullar, central pontine, and superior collicular regions. Volume reductions were identified in the putamen, thalamus and hippocampus. Conclusions: Multiple sclerosis is associated with widespread gray matter pathology which is not limited to cortical regions but involves striatal, thalamic, cerebellar, and hippocampal foci. The imaging signature of gaze-evoked nystagmus in MS confirms the degeneration of key structures of the neural integrator network.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland.,Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Jeffrey Lambe
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | - James Meaney
- Centre for Advanced Medical Imaging (CAMI), St James's Hospital, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Janice Redmond
- Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
15
|
Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage 2018; 187:32-55. [PMID: 29729392 DOI: 10.1016/j.neuroimage.2018.04.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
In the context of neurologic disorders, dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI provide valuable insights into cerebral vascular function, integrity, and architecture. Even after two decades of use, these modalities continue to evolve as their biophysical and kinetic basis is better understood, with improvements in pulse sequences and accelerated imaging techniques and through application of more robust and automated data analysis strategies. Here, we systematically review each of these elements, with a focus on how their integration improves kinetic parameter accuracy and the development of new hemodynamic biomarkers that provide sub-voxel sensitivity (e.g., capillary transit time and flow heterogeneity). Regarding contrast mechanisms, we discuss the dipole-dipole interactions and susceptibility effects that give rise to simultaneous T1, T2 and T2∗ relaxation effects, including their quantification, influence on pulse sequence parameter optimization, and use in methods such as vessel size and vessel architectural imaging. The application of technologic advancements, such as parallel imaging, simultaneous multi-slice, undersampled k-space acquisitions, and sliding window strategies, enables improved spatial and/or temporal resolution of DSC and DCE acquisitions. Such acceleration techniques have also enabled the implementation of, clinically feasible, simultaneous multi-echo spin- and gradient echo acquisitions, providing more comprehensive and quantitative interrogation of T1, T2 and T2∗ changes. Characterizing these relaxation rate changes through different post-processing options allows for the quantification of hemodynamics and vascular permeability. The application of different biophysical models provides insight into traditional hemodynamic parameters (e.g., cerebral blood volume) and more advanced parameters (e.g., capillary transit time heterogeneity). We provide insight into the appropriate selection of biophysical models and the necessary post-processing steps to ensure reliable measurements while minimizing potential sources of error. We show representative examples of advanced DSC- and DCE-MRI methods applied to pathologic conditions affecting the cerebral microcirculation, including brain tumors, stroke, aging, and multiple sclerosis. The maturation and standardization of conventional DSC- and DCE-MRI techniques has enabled their increased integration into clinical practice and use in clinical trials, which has, in turn, spurred renewed interest in their technological and biophysical development, paving the way towards a more comprehensive assessment of cerebral hemodynamics.
Collapse
Affiliation(s)
- C Chad Quarles
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA.
| | - Laura C Bell
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| |
Collapse
|
16
|
Brain perfusion alterations in tick-borne encephalitis-preliminary report. Int J Infect Dis 2018; 68:26-30. [PMID: 29337197 DOI: 10.1016/j.ijid.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) changes in tick-borne encephalitis (TBE) are non-specific and the pathophysiological mechanisms leading to their formation remain unclear. This study investigated brain perfusion in TBE patients using dynamic susceptibility-weighted contrast-enhanced magnetic resonance perfusion imaging (DSC-MRI perfusion). METHODS MRI scans were performed for 12 patients in the acute phase, 3-5days after the diagnosis of TBE. Conventional MRI and DSC-MRI perfusion studies were performed. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) parametric maps were created. The bilateral frontal, parietal, and temporal subcortical regions and thalamus were selected as regions of interest. Perfusion parameters of TBE patients were compared to those of a control group. RESULTS There was a slight increase in CBF and CBV, with significant prolongation of TTP in subcortical areas in the study subjects, while MTT values were comparable to those of the control group. A significant increase in thalamic CBF (p<0.001) and increased CBV (p<0.05) were observed. Increased TTP and a slight reduction in MTT were also observed within this area. CONCLUSIONS The DSC-MRI perfusion study showed that TBE patients had brain perfusion disturbances, expressed mainly in the thalami. These results suggest that DSC-MRI perfusion may provide important information regarding the areas affected in TBE patients.
Collapse
|
17
|
Lapointe E, Li DKB, Traboulsee AL, Rauscher A. What Have We Learned from Perfusion MRI in Multiple Sclerosis? AJNR Am J Neuroradiol 2018; 39:994-1000. [PMID: 29301779 DOI: 10.3174/ajnr.a5504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Using MR imaging, perfusion can be assessed either by dynamic susceptibility contrast MR imaging or arterial spin-labeling. Alterations of cerebral perfusion have repeatedly been described in multiple sclerosis compared with healthy controls. Acute lesions exhibit relative hyperperfusion in comparison with normal-appearing white matter, a finding mostly attributed to inflammation in this stage of lesion development. In contrast, normal-appearing white and gray matter of patients with MS has been mostly found to be hypoperfused compared with controls, and correlations with cognitive impairment as well as fatigue in multiple sclerosis have been described. Mitochondrial failure, axonal degeneration, and vascular dysfunction have been hypothesized to underlie the perfusion MR imaging findings. Clinically, perfusion MR imaging could allow earlier detection of the acute focal inflammatory changes underlying relapses and new lesions, and could constitute a marker for cognitive dysfunction in MS. Nevertheless, the clinical relevance and pathogenesis of the brain perfusion changes in MS remain to be clarified.
Collapse
Affiliation(s)
- E Lapointe
- From the Division of Neurology (E.L., A.L.T.) .,Department of Medicine (E.L., A.L.T.)
| | - D K B Li
- Radiology (D.K.B.L.), University of British Columbia, Djavad Mowafaghian Center for Brain Health, Vancouver, British Columbia, Canada
| | - A L Traboulsee
- From the Division of Neurology (E.L., A.L.T.).,Department of Medicine (E.L., A.L.T.)
| | - A Rauscher
- MRI Research Center (A.R.).,Departments of Pediatrics (A.R.)
| |
Collapse
|
18
|
Mulholland AD, Vitorino R, Hojjat SP, Ma AY, Zhang L, Lee L, Carroll TJ, Cantrell CG, Figley CR, Aviv RI. Spatial Correlation of Pathology and Perfusion Changes within the Cortex and White Matter in Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 39:91-96. [PMID: 29097413 DOI: 10.3174/ajnr.a5410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE The spatial correlation between WM and cortical GM disease in multiple sclerosis is controversial and has not been previously assessed with perfusion MR imaging. We sought to determine the nature of association between lobar WM, cortical GM, volume and perfusion. MATERIALS AND METHODS Nineteen individuals with secondary-progressive multiple sclerosis, 19 with relapsing-remitting multiple sclerosis, and 19 age-matched healthy controls were recruited. Quantitative MR perfusion imaging was used to derive CBF, CBV, and MTT within cortical GM, WM, and T2-hyperintense lesions. A 2-step multivariate linear regression (corrected for age, disease duration, and Expanded Disability Status Scale) was used to assess correlations between perfusion and volume measures in global and lobar normal-appearing WM, cortical GM, and T2-hyperintense lesions. The Bonferroni adjustment was applied as appropriate. RESULTS Global cortical GM and WM volume was significantly reduced for each group comparison, except cortical GM volume of those with relapsing-remitting multiple sclerosis versus controls. Global and lobar cortical GM CBF and CBV were reduced in secondary-progressive multiple sclerosis compared with other groups but not for relapsing-remitting multiple sclerosis versus controls. Global and lobar WM CBF and CBV were not significantly different across groups. The distribution of lobar cortical GM and WM volume reduction was disparate, except for the occipital lobes in patients with secondary-progressive multiple sclerosis versus those with relapsing-remitting multiple sclerosis. Moderate associations were identified between lobar cortical GM and lobar normal-appearing WM volume in controls and in the left temporal lobe in relapsing-remitting multiple sclerosis. No significant associations occurred between cortical GM and WM perfusion or volume. Strong correlations were observed between cortical-GM perfusion, normal appearing WM and lesional perfusion, with respect to each global and lobar region within HC, and RRMS and SPMS patients (R2 ≤ 0.96, P < .006 and R2 ≤ 0.738, P < .006). CONCLUSIONS The weak correlation between lobar WM and cortical GM volume loss and perfusion reduction suggests the independent pathophysiology of WM and cortical GM disease.
Collapse
Affiliation(s)
- A D Mulholland
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - R Vitorino
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - S-P Hojjat
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - A Y Ma
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - L Zhang
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada.,Departments of Medical Imaging (L.Z., R.I.A.)
| | - L Lee
- Neurology (L.L.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - T J Carroll
- Department of Biomedical Engineering and Radiology (T.J.C.), University of Chicago, Chicago, Illinois
| | - C G Cantrell
- Department of Biomedical Engineering (C.G.C.), Northwestern University, Chicago, Illinois
| | - C R Figley
- Department of Radiology and Biomedical Engineering (C.R.F.), University of Manitoba, Winnipeg, Manitoba, Canada
| | - R I Aviv
- Departments of Medical Imaging (L.Z., R.I.A.) .,Department of Medical Imaging (R.I.A.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Castellaro M, Magliozzi R, Palombit A, Pitteri M, Silvestri E, Camera V, Montemezzi S, Pizzini FB, Bertoldo A, Reynolds R, Monaco S, Calabrese M. Heterogeneity of Cortical Lesion Susceptibility Mapping in Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:1087-1095. [PMID: 28408633 DOI: 10.3174/ajnr.a5150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/21/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping has been used to characterize iron and myelin content in the deep gray matter of patients with multiple sclerosis. Our aim was to characterize the susceptibility mapping of cortical lesions in patients with MS and compare it with neuropathologic observations. MATERIALS AND METHODS The pattern of microglial activation was studied in postmortem brain tissues from 16 patients with secondary-progressive MS and 5 age-matched controls. Thirty-six patients with MS underwent 3T MR imaging, including 3D double inversion recovery and 3D-echo-planar SWI. RESULTS Neuropathologic analysis revealed the presence of an intense band of microglia activation close to the pial membrane in subpial cortical lesions or to the WM border of leukocortical cortical lesions. The quantitative susceptibility mapping analysis revealed 131 cortical lesions classified as hyperintense; 33, as isointense; and 84, as hypointense. Quantitative susceptibility mapping hyperintensity edge found in the proximity of the pial surface or at the white matter/gray matter interface in some of the quantitative susceptibility mapping-hyperintense cortical lesions accurately mirrors the microglia activation observed in the neuropathology analysis. CONCLUSIONS Cortical lesion susceptibility maps are highly heterogeneous, even at individual levels. Quantitative susceptibility mapping hyperintensity edge found in proximity to the pial surface might be due to the subpial gradient of microglial activation.
Collapse
Affiliation(s)
- M Castellaro
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - R Magliozzi
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
- Division of Brain Sciences (R.M., R.R.), Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - A Palombit
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - M Pitteri
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - E Silvestri
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - V Camera
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - S Montemezzi
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
- Neuroradiology and Radiology Units (S.M., F.B.P.), Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - F B Pizzini
- Neuroradiology and Radiology Units (S.M., F.B.P.), Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - A Bertoldo
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - R Reynolds
- Division of Brain Sciences (R.M., R.R.), Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - S Monaco
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - M Calabrese
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Abstract
Several neuropathologic and imaging studies have consistently confirmed that multiple sclerosis affects both white (WM) and gray matter (GM) and that GM damage plays a key role in disability progression. However, differently from WM damage, the less inflammatory cell infiltration, the absence of significant blood-brain barrier damage, the low myelin density in upper cortical layers, as well as technical constraints, make the GM damage almost undetectable by means of conventional MR imaging.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, Piazzale LA Scuro 10, Verona 37134, Italy.
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/a, Padova 35135, Italy
| |
Collapse
|
21
|
Peruzzo D, Castellaro M, Pillonetto G, Bertoldo A. Stable spline deconvolution for dynamic susceptibility contrast MRI. Magn Reson Med 2017; 78:1801-1811. [PMID: 28070897 DOI: 10.1002/mrm.26582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE To present the stable spline (SS) deconvolution method for the quantification of the cerebral blood flow (CBF) from dynamic susceptibility contrast MRI. METHODS The SS method was compared with both the block-circulant singular value decomposition (oSVD) and nonlinear stochastic regularization (NSR) methods. oSVD is one of the most popular deconvolution methods in dynamic susceptibility contrast MRI (DSC-MRI). NSR is an alternative approach that we proposed previously. The three methods were compared using simulated data and two clinical data sets. RESULTS The SS method correctly reconstructed the dispersed residue function and its peak in presence of dispersion, regardless of the delay. In absence of dispersion, SS performs similarly to oSVD and does not correctly reconstruct the residue function and its peak. SS and NSR better differentiate healthy and pathologic CBF values compared with oSVD in all simulated conditions. Using acquired data, SS and NSR provide more clinically plausible and physiological estimates of the residue function and CBF maps compared with oSVD. CONCLUSION The SS method overcomes some of the limitations of oSVD, such as unphysiological estimates of the residue function and NSR, the latter of which is too computationally expensive to be applied to large data sets. Thus, the SS method is a valuable alternative for CBF quantification using DSC-MRI data. Magn Reson Med 78:1801-1811, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Denis Peruzzo
- Department of Neuroimage, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Italy
| | - Marco Castellaro
- Department of Information Engineering at the University of Padova, Italy
| | | | | |
Collapse
|
22
|
Marshall O, Chawla S, Lu H, Pape L, Ge Y. Cerebral blood flow modulation insufficiency in brain networks in multiple sclerosis: A hypercapnia MRI study. J Cereb Blood Flow Metab 2016; 36:2087-2095. [PMID: 27306754 PMCID: PMC5363669 DOI: 10.1177/0271678x16654922] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
Abstract
Cerebrovascular reactivity measures vascular regulation of cerebral blood flow and is responsible for maintaining healthy neurovascular coupling. Multiple sclerosis exhibits progressive neurodegeneration and global cerebrovascular reactivity deficits. This study investigates varied degrees of cerebrovascular reactivity impairment in different brain networks, which may be an underlying cause for functional changes in the brain, affecting long-distance projection integrity and cognitive function; 28 multiple sclerosis and 28 control subjects underwent pseudocontinuous arterial spin labeling perfusion MRI to measure cerebral blood flow under normocapnia (room air) and hypercapnia (5% carbon dioxide gas mixture) breathing. Cerebrovascular reactivity, measured as normocapnic to hypercapnic cerebral blood flow percent increase normalized by end-tidal carbon dioxide change, was determined from seven functional networks (default mode, frontoparietal, somatomotor, visual, limbic, dorsal, and ventral attention networks). Group analysis showed significantly decreased cerebrovascular reactivity in patients compared to controls within the default mode, frontoparietal, somatomotor, and ventral attention networks after multiple comparison correction. Regression analysis showed a significant correlation of cerebrovascular reactivity with lesion load in the default mode and ventral attention networks and with gray matter atrophy in the default mode network. Functional networks in multiple sclerosis patients exhibit varied amounts of cerebrovascular reactivity deficits. Such blood flow regulation abnormalities may contribute to functional communication disruption in multiple sclerosis.
Collapse
Affiliation(s)
- Olga Marshall
- Radiology/Center for Biomedical Imaging, New York University School of Medicine, NY, USA
| | - Sanjeev Chawla
- Radiology/Center for Biomedical Imaging, New York University School of Medicine, NY, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louise Pape
- Radiology/Center for Biomedical Imaging, New York University School of Medicine, NY, USA
| | - Yulin Ge
- Radiology/Center for Biomedical Imaging, New York University School of Medicine, NY, USA
| |
Collapse
|
23
|
Hojjat SP, Kincal M, Vitorino R, Cantrell CG, Feinstein A, Zhang L, Lee L, O'Connor P, Carroll TJ, Aviv RI. Cortical Perfusion Alteration in Normal-Appearing Gray Matter Is Most Sensitive to Disease Progression in Relapsing-Remitting Multiple Sclerosis. AJNR Am J Neuroradiol 2016; 37:1454-61. [PMID: 27012299 DOI: 10.3174/ajnr.a4737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE The role of gray matter in multiple sclerosis is increasingly evident; however, conventional images demonstrate limitations in cortical lesion identification. Perfusion imaging appears sensitive to changes in tissue type and disease severity in MS. We sought to use bookend perfusion to quantify parameters in healthy controls and normal-appearing and lesional tissue at different relapsing-remitting MS stages. MATERIALS AND METHODS Thirty-nine patients with relapsing-remitting MS and 19 age-matched healthy controls were prospectively recruited. The Minimal Assessment of Cognitive Function in MS battery was used to assess cognitive performance. Perfusion parameters, including cerebral blood flow and volume and mean transit time, were compared for healthy controls and normal-appearing and lesional tissue for all study groups. Dispersion of perfusion measures for white matter lesions and cortical lesions was assessed. RESULTS Twenty of the 39 patients with relapsing-remitting MS were cognitively impaired. Significant differences were displayed between all relapsing-remitting MS subgroups and healthy controls in all comparisons except for normal-appearing gray matter CBV between healthy controls and unimpaired patients with relapsing-remitting MS and for all normal-appearing white matter perfusion parameters between healthy controls and unimpaired patients with relapsing-remitting MS. White matter lesion but not cortical lesion perfusion was significantly reduced in cognitively impaired patients with relapsing-remitting MS versus unimpaired patients with relapsing-remitting MS. Perfusion reduction with disease progression was greater in normal-appearing gray matter and normal-appearing white matter compared with cortical lesions and white matter lesions. Smaller dispersion was observed for cortical lesions compared with white matter lesions for each perfusion parameter. CONCLUSIONS Quantitative GM and WM analysis demonstrated significant but disproportionate white matter lesion, cortical lesion, normal-appearing white matter, and normal-appearing gray matter changes present between healthy controls and patients with relapsing-remitting MS with and without cognitive impairment, necessitating absolute rather than relative lesion perfusion measurement.
Collapse
Affiliation(s)
- S-P Hojjat
- Medical Imaging (S.-P.H., M.K., R.V., R.I.A., L.Z.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada Medical Imaging (S.-P.H., R.I.A.), University of Toronto, Toronto, Ontario, Canada
| | - M Kincal
- Medical Imaging (S.-P.H., M.K., R.V., R.I.A., L.Z.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - R Vitorino
- Medical Imaging (S.-P.H., M.K., R.V., R.I.A., L.Z.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - C G Cantrell
- Departments of Biomedical Engineering (C.G.C., T.J.C.)
| | - A Feinstein
- From the Departments of Psychiatry (A.F.) Psychiatry (A.F.)
| | - L Zhang
- Medical Imaging (S.-P.H., M.K., R.V., R.I.A., L.Z.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - L Lee
- Neurology (L.L.) Departments of Medicine (P.O., L.L.)
| | | | - T J Carroll
- Departments of Biomedical Engineering (C.G.C., T.J.C.) Radiology (T.J.C.), Northwestern University, Chicago, Illinois
| | - R I Aviv
- Medical Imaging (S.-P.H., M.K., R.V., R.I.A., L.Z.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada Medical Imaging (S.-P.H., R.I.A.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Hojjat SP, Cantrell CG, Carroll TJ, Vitorino R, Feinstein A, Zhang L, Symons SP, Morrow SA, Lee L, O'Connor P, Aviv RI. Perfusion reduction in the absence of structural differences in cognitively impaired versus unimpaired RRMS patients. Mult Scler 2016; 22:1685-1694. [PMID: 26846987 DOI: 10.1177/1352458516628656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/31/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cognitive impairment affects 40%-68% of relapsing-remitting multiple sclerosis (RRMS) patients. Gray matter (GM) demyelination is complicit in cognitive impairment, yet cortical lesions are challenging to image clinically. We wanted to determine whether cortical cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) differences exist between cognitively impaired (CI) and unimpaired (NI) RRMS. METHODS Prospective study of healthy controls (n = 19), CI (n = 20), and NI (n = 19) undergoing magnetic resonance imaging (MRI) and cognitive testing <1 week apart. White matter (WM) T2 hyperintense lesions and T1 black holes were traced. General linear regression assessed the relationship between lobar WM volume and cortical and WM CBF, CBV, and MTT. Relationship between global and lobar cortical CBF, CBV, and MTT and cognitive impairment was tested using a generalized linear model. Adjusted Bonferroni p < 0.005 was considered significant. RESULTS No significant differences for age, gender, disease duration, and any fractional brain or lesion volume were demonstrated for RRMS subgroups. Expanded Disability Status Scale (EDSS) and Hospital Anxiety and Depression Scale-Depression (HADS-D) were higher in CI. Lobar cortical CBF and CBV were associated with cognitive impairment (p < 0.0001) after controlling for confounders. Cortical CBV accounted for 7.2% of cognitive impairment increasing to 8.7% with cortical CBF (p = 0.06), while WM and cortical CBF accounted for 8.2% of variance (p = 0.04). CONCLUSION Significant cortical CBF and CBV reduction was present in CI compared to NI in the absence of structural differences.
Collapse
Affiliation(s)
- Seyed-Parsa Hojjat
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada .,University of Toronto, Toronto, ON, Canada
| | | | - Timothy J Carroll
- Department of Radiology, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.,Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Rita Vitorino
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Anthony Feinstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Lying Zhang
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sean P Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Liesly Lee
- Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Paul O'Connor
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Richard I Aviv
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Revenaz A, Ruggeri M, Laganà M, Bergsland N, Groppo E, Rovaris M, Fainardi E. A semi-automated measuring system of brain diffusion and perfusion magnetic resonance imaging abnormalities in patients with multiple sclerosis based on the integration of coregistration and tissue segmentation procedures. BMC Med Imaging 2016; 16:4. [PMID: 26762399 PMCID: PMC4712616 DOI: 10.1186/s12880-016-0108-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022] Open
Abstract
Background Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) abnormalities in patients with multiple sclerosis (MS) are currently measured by a complex combination of separate procedures. Therefore, the purpose of this study was to provide a reliable method for reducing analysis complexity and obtaining reproducible results. Methods We implemented a semi-automated measuring system in which different well-known software components for magnetic resonance imaging (MRI) analysis are integrated to obtain reliable measurements of DWI and PWI disturbances in MS. Results We generated the Diffusion/Perfusion Project (DPP) Suite, in which a series of external software programs are managed and harmonically and hierarchically incorporated by in-house developed Matlab software to perform the following processes: 1) image pre-processing, including imaging data anonymization and conversion from DICOM to Nifti format; 2) co-registration of 2D and 3D non-enhanced and Gd-enhanced T1-weighted images in fluid-attenuated inversion recovery (FLAIR) space; 3) lesion segmentation and classification, in which FLAIR lesions are at first segmented and then categorized according to their presumed evolution; 4) co-registration of segmented FLAIR lesion in T1 space to obtain the FLAIR lesion mask in the T1 space; 5) normal appearing tissue segmentation, in which T1 lesion mask is used to segment basal ganglia/thalami, normal appearing grey matter (NAGM) and normal appearing white matter (NAWM); 6) DWI and PWI map generation; 7) co-registration of basal ganglia/thalami, NAGM, NAWM, DWI and PWI maps in previously segmented FLAIR space; 8) data analysis. All these steps are automatic, except for lesion segmentation and classification. Conclusion We developed a promising method to limit misclassifications and user errors, providing clinical researchers with a practical and reproducible tool to measure DWI and PWI changes in MS.
Collapse
Affiliation(s)
- Alfredo Revenaz
- Unità Operativa di Neuroradiologia, Dipartimento di Neuroscienze e Riabilitazione, Azienda Ospedaliero-Universitaria of Ferrara, Arcispedale S. Anna, Via Aldo Moro 8, 44124, Cona, Ferrara, Italy.
| | | | - Marcella Laganà
- MR Research Laboratory, IRCCS Don Gnocchi Foundation ONLUS, Milan, Italy.
| | - Niels Bergsland
- MR Research Laboratory, IRCCS Don Gnocchi Foundation ONLUS, Milan, Italy. .,Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo SUNY, Buffalo, NY, USA.
| | - Elisabetta Groppo
- Sezione di Neurologia, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Università di Ferrara, Ferrara, Italy.
| | - Marco Rovaris
- Unità Operativa di Sclerosi Multipla, Fondazione Don Gnocchi ONLUS, IRCCS S. Maria Nascente, 20148, Milano, Italy.
| | - Enrico Fainardi
- Unità Operativa di Neuroradiologia, Dipartimento di Neuroscienze e Riabilitazione, Azienda Ospedaliero-Universitaria of Ferrara, Arcispedale S. Anna, Via Aldo Moro 8, 44124, Cona, Ferrara, Italy.
| |
Collapse
|
26
|
Abstract
Due to its sensitivity to the different multiple sclerosis (MS)-related abnormalities, magnetic resonance imaging (MRI) has become an established tool to diagnose MS and to monitor its evolution. MRI has been included in the diagnostic workup of patients with clinically isolated syndromes suggestive of MS, and ad hoc criteria have been proposed and are regularly updated. In patients with definite MS, the ability of conventional MRI techniques to explain patients' clinical status and progression of disability is still suboptimal. Several advanced MRI-based technologies have been applied to estimate overall MS burden in the different phases of the disease. Their use has allowed the heterogeneity of MS pathology in focal lesions, normal-appearing white matter and gray matter to be graded in vivo. Recently, additional features of MS pathology, including macrophage infiltration and abnormal iron deposition, have become quantifiable. All of this, combined with functional imaging techniques, is improving our understanding of the mechanisms associated with MS evolution. In the near future, the use of ultrahigh-field systems is likely to provide additional insight into disease pathophysiology. However, the utility of advanced MRI techniques in clinical trial monitoring and in assessing individual patients' response to treatment still needs to be assessed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
27
|
Sowa P, Bjørnerud A, Nygaard GO, Damangir S, Spulber G, Celius EG, Due-Tønnessen P, Harbo HF, Beyer MK. Reduced perfusion in white matter lesions in multiple sclerosis. Eur J Radiol 2015; 84:2605-12. [PMID: 26391230 DOI: 10.1016/j.ejrad.2015.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/14/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate dynamic susceptibility contrast (DSC) perfusion weighted imaging (PWI) in white matter lesions (WML) in patients with multiple sclerosis (MS), using automatically generated binary masks of brain tissue. BACKGROUND WML in MS have in some studies demonstrated perfusion abnormalities compared to normal appearing white matter (NAWM), however perfusion changes in WML in MS have in general not been well documented. METHODS DSC PWI was performed at 1.5 Tesla in 69 newly diagnosed MS patients. Parametric perfusion maps representing cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT) were obtained. Binary masks of WML, white matter (WM) and grey matter (GM) were automatically generated and co-registered to the perfusion maps. The WML mask was manually edited and modified to correct for errors in the automatic lesion detection. Perfusion parameters were derived both from WML and NAWM using the manually modified WML mask, and using the original non-modified WML mask (with and without GM exclusion mask). Differences in perfusion measures between WML and NAWM were analyzed. RESULTS CBF was significantly lower (p<0.001) and MTT significantly higher (p<0.001) in WML compared to NAWM. CBV did not show significant difference between WML and NAWM. The non-modified WML mask gave similar results as manually modified WML mask if the GM exclusion mask was used in the analysis. CONCLUSIONS DSC PWI revealed lower CBF and higher MTT, consistent with reduced perfusion, in WML compared to NAWM in patients with early MS. Automatically generated binary masks are a promising tool in perfusion analysis of WML.
Collapse
Affiliation(s)
- Piotr Sowa
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Atle Bjørnerud
- Intervention Center, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway.
| | - Gro O Nygaard
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Soheil Damangir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
| | - Gabriela Spulber
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
| | - Elisabeth G Celius
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Paulina Due-Tønnessen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Mona K Beyer
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, Oslo, Norway.
| |
Collapse
|
28
|
Gonyea JV, Watts R, Applebee A, Andrews T, Hipko S, Nickerson JP, Thornton L, Filippi CG. In vivo quantitative whole‐brain T
1
rho MRI of multiple sclerosis. J Magn Reson Imaging 2015; 42:1623-30. [DOI: 10.1002/jmri.24954] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jay V. Gonyea
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Richard Watts
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Angela Applebee
- Department of Neurological SciencesUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Trevor Andrews
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
- Philips HealthTechCleveland Ohio USA
| | - Scott Hipko
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Joshua P. Nickerson
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Lindsay Thornton
- Department of RadiologyUniversity of FloridaGainesville Florida USA
| | - Christopher G. Filippi
- Department of Neurological SciencesUniversity of Vermont College of MedicineBurlington Vermont USA
- Department of RadiologyNorth Shore University Hospital‐Long Island JewishNew York New York USA
| |
Collapse
|
29
|
Mainero C, Louapre C, Govindarajan ST, Giannì C, Nielsen AS, Cohen-Adad J, Sloane J, Kinkel RP. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. ACTA ACUST UNITED AC 2015; 138:932-45. [PMID: 25681411 DOI: 10.1093/brain/awv011] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We used a surface-based analysis of T2* relaxation rates at 7 T magnetic resonance imaging, which allows sampling quantitative T2* throughout the cortical width, to map in vivo the spatial distribution of intracortical pathology in multiple sclerosis. Ultra-high resolution quantitative T2* maps were obtained in 10 subjects with clinically isolated syndrome/early multiple sclerosis (≤ 3 years disease duration), 18 subjects with relapsing-remitting multiple sclerosis (≥ 4 years disease duration), 13 subjects with secondary progressive multiple sclerosis, and in 17 age-matched healthy controls. Quantitative T2* maps were registered to anatomical cortical surfaces for sampling T2* at 25%, 50% and 75% depth from the pial surface. Differences in laminar quantitative T2* between each patient group and controls were assessed using general linear model (P < 0.05 corrected for multiple comparisons). In all 41 multiple sclerosis cases, we tested for associations between laminar quantitative T2*, neurological disability, Multiple Sclerosis Severity Score, cortical thickness, and white matter lesions. In patients, we measured, T2* in intracortical lesions and in the intracortical portion of leukocortical lesions visually detected on 7 T scans. Cortical lesional T2* was compared with patients' normal-appearing cortical grey matter T2* (paired t-test) and with mean cortical T2* in controls (linear regression using age as nuisance factor). Subjects with multiple sclerosis exhibited relative to controls, independent from cortical thickness, significantly increased T2*, consistent with cortical myelin and iron loss. In early disease, T2* changes were focal and mainly confined at 25% depth, and in cortical sulci. In later disease stages T2* changes involved deeper cortical laminae, multiple cortical areas and gyri. In patients, T2* in intracortical and leukocortical lesions was increased compared with normal-appearing cortical grey matter (P < 10(-10) and P < 10(-7)), and mean cortical T2* in controls (P < 10(-5) and P < 10(-6)). In secondary progressive multiple sclerosis, T2* in normal-appearing cortical grey matter was significantly increased relative to controls (P < 0.001). Laminar T2* changes may, thus, result from cortical pathology within and outside focal cortical lesions. Neurological disability and Multiple Sclerosis Severity Score correlated each with the degree of laminar quantitative T2* changes, independently from white matter lesions, the greatest association being at 25% depth, while they did not correlate with cortical thickness and volume. These findings demonstrate a gradient in the expression of cortical pathology throughout stages of multiple sclerosis, which was associated with worse disability and provides in vivo evidence for the existence of a cortical pathological process driven from the pial surface.
Collapse
Affiliation(s)
- Caterina Mainero
- 1 A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA 2 Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,USA
| | - Céline Louapre
- 1 A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA 2 Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,USA
| | - Sindhuja T Govindarajan
- 1 A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Costanza Giannì
- 1 A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA 2 Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,USA
| | - A Scott Nielsen
- 2 Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,USA 3 Beth Israel Deaconess Medical Center, Boston, MA, USA 4 Virginia Mason Medical Center, Seattle, WA, USA
| | - Julien Cohen-Adad
- 1 A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA 5 Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Jacob Sloane
- 2 Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,USA 3 Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Revere P Kinkel
- 2 Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,USA 3 Beth Israel Deaconess Medical Center, Boston, MA, USA 6 University of California San Diego, USA
| |
Collapse
|
30
|
Debernard L, Melzer TR, Van Stockum S, Graham C, Wheeler-Kingshott CA, Dalrymple-Alford JC, Miller DH, Mason DF. Reduced grey matter perfusion without volume loss in early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2014; 85:544-51. [PMID: 24039024 DOI: 10.1136/jnnp-2013-305612] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Grey matter (GM) pathology in multiple sclerosis (MS) is associated with progressive long-term disability. Detection of GM abnormalities in early MS may therefore be valuable in understanding and predicting the long-term course. However, structural MRI measures such as volume loss have shown only modest abnormalities in early relapsing-remitting MS (RRMS). We therefore investigated for evidence of abnormality in GM perfusion, consistent with metabolic dysfunction, in early RRMS. METHODS 25 RRMS patients with ≤5 years disease duration and 25 age-matched healthy controls underwent 3 Tesla MRI with a pseudo-continuous arterial spin labelling sequence to quantify GM perfusion and a volumetric T1-weighted sequence to measure GM volume. Neurological status was assessed in patients and neuropsychological evaluation undertaken in all subjects. Voxel-based analysis was used to compare regional GM perfusion and volume measures in patients and controls. RESULTS There was reduced global GM perfusion in patients versus controls (50.6±5.8 mL/100 g/min vs 54.4±7.6 mL/100 g/min, p=0.04). Voxel-based analysis revealed extensive regions of decreased cortical and deep GM perfusion in MS subjects. Reduced perfusion was associated with impaired memory scores. There was no reduction in global or regional analysis of GM volume in patients versus controls. CONCLUSIONS The decrease in GM perfusion in the absence of volume loss is consistent with neuronal metabolic dysfunction in early RRMS. Future studies in larger cohorts and longitudinal follow-up are needed to investigate the functional and prognostic significance of the early GM perfusion deficits observed.
Collapse
|
31
|
Papadaki EZ, Simos PG, Panou T, Mastorodemos VC, Maris TG, Karantanas AH, Plaitakis A. Hemodynamic evidence linking cognitive deficits in clinically isolated syndrome to regional brain inflammation. Eur J Neurol 2013; 21:499-505. [PMID: 24373026 DOI: 10.1111/ene.12338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/18/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE To investigate the relation between hemodynamic measurements and memory function in patients with clinically isolated syndrome (CIS). METHODS Forty CIS patients were administered tests of verbal short-term/working memory and passage learning. Using dynamic susceptibility contrast MRI cerebral blood volume (CBV), cerebral blood flow and mean transit time values were estimated in 20 cerebral regions of interest, placed in normal appearing white matter (NAWM) and normal appearing deep gray matter structures, bilaterally. RESULTS CIS patients showed significantly impaired scores on working memory and secondary verbal memory that correlated inversely with elevated CBV values in the left frontal and periventricular NAWM, thalamus, right caudate and corpus callosum. CONCLUSIONS Verbal memory in CIS correlates inversely with elevated CBV values of brain structures involved in memory. As these hemodynamic changes, detected in CIS, are indicative of inflammation, the observed cognitive disturbances may relate to widespread brain inflammatory processes that prevail in early multiple sclerosis.
Collapse
Affiliation(s)
- E Z Papadaki
- Department of Radiology, University of Crete, Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|