1
|
Yan H, Liu W, Xiang R, Li X, Hou S, Xu L, Wang L, Zhao D, Liu X, Wang G, Chi Y, Yang J. Ribosomal modification protein rimK-like family member A activates betaine-homocysteine S-methyltransferase 1 to ameliorate hepatic steatosis. Signal Transduct Target Ther 2024; 9:214. [PMID: 39117631 PMCID: PMC11310345 DOI: 10.1038/s41392-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious threat to public health, but its underlying mechanism remains poorly understood. In screening important genes using Gene Importance Calculator (GIC) we developed previously, ribosomal modification protein rimK-like family member A (RIMKLA) was predicted as one essential gene but its functions remained largely unknown. The current study determined the roles of RIMKLA in regulating glucose and lipid metabolism. RIMKLA expression was reduced in livers of human and mouse with NAFLD. Hepatic RIMKLA overexpression ameliorated steatosis and hyperglycemia in obese mice. Hepatocyte-specific RIMKLA knockout aggravated high-fat diet (HFD)-induced dysregulated glucose/lipid metabolism in mice. Mechanistically, RIMKLA is a new protein kinase that phosphorylates betaine-homocysteine S-methyltransferase 1 (BHMT1) at threonine 45 (Thr45) site. Upon phosphorylation at Thr45 and activation, BHMT1 eliminated homocysteine (Hcy) to inhibit the activity of transcription factor activator protein 1 (AP1) and its induction on fatty acid synthase (FASn) and cluster of differentiation 36 (CD36) gene transcriptions, concurrently repressing lipid synthesis and uptake in hepatocytes. Thr45 to alanine (T45A) mutation inactivated BHMT1 to abolish RIMKLA's repression on Hcy level, AP1 activity, FASn/CD36 expressions, and lipid deposition. BHMT1 overexpression rescued the dysregulated lipid metabolism in RIMKLA-deficient hepatocytes. In summary, RIMKLA is a novel protein kinase that phosphorylates BHMT1 at Thr45 to repress lipid synthesis and uptake. Under obese condition, inhibition of RIMKLA impairs BHMT1 activity to promote hepatic lipid deposition.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, Changchun, 130061, China.
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130012, China.
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Xie S, Yang Y, Jin Z, Liu X, Zhang S, Su N, Liu J, Li C, Zhang D, Gao L, Yang Z. Mouse KL2 is a unique MTSE involved in chromosome-based spindle organization and regulated by multiple kinases during female meiosis. J Biomed Res 2024; 38:1-15. [PMID: 38808565 PMCID: PMC11461529 DOI: 10.7555/jbr.37.20230290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/30/2024] Open
Abstract
Microtubule-severing enzymes (MTSEs) play important roles in mitosis and meiosis of the primitive organisms. However, no studies have assessed their roles in mammalian meiosis of females, whose abnormality accounts for over 80% of the cases of gamete-originated human reproductive disease. In the current study, we reported that katanin-like 2 (KL2) was the only MTSE concentrating at chromosomes. Furthermore, the knockdown of KL2 significantly reduced chromosome-based increase in the microtubule (MT) polymer, increased aberrant kinetochore-MT (K-MT) attachment, delayed meiosis, and severely affected normal fertility. Importantly, we demonstrated that the inhibition of aurora B, a key kinase for correcting aberrant K-MT attachment, eliminated KL2 from chromosomes completely. KL2 also interacted with phosphorylated eukaryotic elongation factor-2 kinase; they competed for chromosome binding. We also observed that the phosphorylated KL2 was localized at spindle poles, and that KL2 phosphorylation was regulated by extracellular signal-regulated kinase 1/2. In summary, our study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.
Collapse
Affiliation(s)
- Shiya Xie
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanjie Yang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zhen Jin
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaocong Liu
- Laboratory Department of Shihezi People's Hospital, Shihezi, Xinjiang 832099, China
| | - Shuping Zhang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ning Su
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaqi Liu
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Congrong Li
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dong Zhang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Leilei Gao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhixia Yang
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
3
|
Carbajal A, Gryniuk I, de Castro RO, Pezza RJ. Efficient Enrichment of Synchronized Mouse Spermatocytes Suitable for Genome-Wide Analysis. Methods Mol Biol 2024; 2818:65-80. [PMID: 39126467 DOI: 10.1007/978-1-0716-3906-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Chromatin undergoes extensive remodeling during meiosis, leading to specific patterns of gene expression and chromosome organization, which ultimately controls fundamental meiotic processes such as recombination and homologous chromosome associations. Recent game-changing advances have been made by analysis of chromatin binding sites of meiotic specific proteins genome-wide in mouse spermatocytes. However, further progress is still highly dependent on the reliable isolation of sufficient quantities of spermatocytes at specific stages of prophase I. Here, we describe a combination of methodologies we adapted for rapid and reliable isolation of synchronized fixed mouse spermatocytes. We show that chromatin isolated from these cells can be used to study chromatin-binding sites by ChIP-seq. High-quality data we obtained from INO80 ChIP-seq in zygotene cells was used for functional analysis of chromatin-binding sites.
Collapse
Affiliation(s)
- Agustin Carbajal
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Irma Gryniuk
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Rodrigo O de Castro
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Roberto J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur 2022; 73:427-439. [PMID: 36402935 DOI: 10.1007/s42977-022-00138-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Heat shock transcription factors (HSFs) are widely known as master regulators of the heat shock response. In invertebrates, a single heat shock factor, HSF1, is responsible for the maintenance of protein homeostasis. In vertebrates, seven members of the HSF family have been identified, namely HSF1, HSF2, HSF3, HSF4, HSF5, HSFX, and HSFY, of which HSF1 and HSF2 are clearly associated with heat shock response, while HSF4 is involved in development. Other members of the family have not yet been studied as extensively. Besides their role in cellular proteostasis, HSFs influence a plethora of biological processes such as aging, development, cell proliferation, and cell differentiation, and they are implicated in several pathologies such as neurodegeneration and cancer. This is achieved by regulating the expression of a great variety of genes including chaperones. Here, we review our current knowledge on the function of HSF family members and important aspects that made possible the functional diversification of HSFs.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Márton Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Saqib Ahmed
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary. .,ELKH-ELTE Genetics Research Group, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary.
| |
Collapse
|
5
|
Microtubule-severing protein Fidgetin-like 1 promotes spindle organization during meiosis of mouse oocytes. ZYGOTE 2022; 30:872-881. [PMID: 36148793 DOI: 10.1017/s0967199422000417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microtubule-severing proteins (MTSPs) play important roles in mitosis and interphase. However, to the best of our knowledge, no previous studies have evaluated the role of MTSPs in female meiosis in mammals. It was found that FIGNL1, a member of MTSPs, was predominantly expressed in mouse oocytes and distributed at the spindle poles during meiosis in the present study. FIGNL1 was co-localized and interacted with γ-tubulin, an important component of the microtubule tissue centre (MTOC). Fignl1 knockdown by specific small interfering RNA caused spindle defects characterized by an abnormal length:width ratio and decreased microtubule density, which consequently led to aberrant chromosome arrangement, oocyte maturation and fertilization obstacles. In conclusion, the present results suggested that FIGNL1 may be an essential factor in oocyte maturation by influencing the meiosis process via the formation of spindles.
Collapse
|
6
|
Citrylglutamate synthase deficient male mice are subfertile with impaired histone and transition protein 2 removal in late spermatids. Biochem J 2022; 479:953-972. [PMID: 35419597 DOI: 10.1042/bcj20210844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Chromatin remodelling in spermatids is an essential step in spermiogenesis and involves the exchange of most histones by protamines, which drives chromatin condensation in late spermatids. The gene Rimklb encodes a citrylglutamate synthase highly expressed in testes of vertebrates and the increase of its reaction product, β-citrylglutamate, correlates in time with the appearance of spermatids. Here we show that deficiency in a functional Rimklb gene leads to male subfertility, which could be partially rescued by in vitro fertilization. Rimklb-deficient mice are impaired in a late step of spermiogenesis and produce spermatozoa with abnormally shaped heads and nuclei. Sperm chromatin in Rimklb-deficient mice was less condensed and showed impaired histone to protamine exchange and retained transition protein 2. These observations suggest that citrylglutamate synthase, probably via its reaction product β-citrylglutamate, is essential for efficient chromatin remodelling during spermiogenesis and may be a possible candidate gene for male subfertility or infertility in humans.
Collapse
|
7
|
Spastin interacts with CRMP5 to promote spindle organization in mouse oocytes by severing microtubules. ZYGOTE 2021; 30:80-91. [PMID: 34034836 DOI: 10.1017/s0967199421000344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubule-severing protein (MTSP) is critical for the survival of both mitotic and postmitotic cells. However, the study of MTSP during meiosis of mammalian oocytes has not been reported. We found that spastin, a member of the MTSP family, was highly expressed in oocytes and aggregated in spindle microtubules. After knocking down spastin by specific siRNA, the spindle microtubule density of meiotic oocytes decreased significantly. When the oocytes were cultured in vitro, the oocytes lacking spastin showed an obvious maturation disorder. Considering the microtubule-severing activity of spastin, we speculate that spastin on spindles may increase the number of microtubule broken ends by severing the microtubules, therefore playing a nucleating role, promoting spindle assembly and ensuring normal meiosis. In addition, we found the colocalization and interaction of collapsin response mediator protein 5 (CRMP5) and spastin in oocytes. CRMP5 can provide structural support and promote microtubule aggregation, creating transportation routes, and can interact with spastin in the microtubule activity of nerve cells (30). Knocking down CRMP5 may lead to spindle abnormalities and developmental disorders in oocytes. Overexpression of spastin may reverse the abnormal phenotype caused by the deletion of CRMP5. In summary, our data support a model in which the interaction between spastin and CRMP5 promotes the assembly of spindle microtubules in oocytes by controlling microtubule dynamics, therefore ensuring normal meiosis.
Collapse
|
8
|
Saju JM, Hossain MS, Liew WC, Pradhan A, Thevasagayam NM, Tan LSE, Anand A, Olsson PE, Orbán L. Heat Shock Factor 5 Is Essential for Spermatogenesis in Zebrafish. Cell Rep 2019; 25:3252-3261.e4. [PMID: 30566854 DOI: 10.1016/j.celrep.2018.11.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/24/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
Heat shock factors (Hsfs) are transcription factors that regulate responses to heat shock and other environmental stimuli. Four heat shock factors (Hsf1-4) have been characterized from vertebrates to date. In addition to stress response, they also play important roles in development and gametogenesis. Here, we study the fifth member of heat shock factor family, Hsf5, using zebrafish as a model organism. Mutant hsf5-/- males, generated by CRISPR/Cas9 technique, were infertile with drastically reduced sperm count, increased sperm head size, and abnormal tail architecture, whereas females remained fertile. We show that Hsf5 is required for progression through meiotic prophase 1 during spermatogenesis as suggested by the accumulation of cells in the leptotene and zygotene-pachytene stages and increased apoptosis in post-meiotic cells. hsf5-/- mutants show gonadal misregulation of a substantial number of genes with roles in cell cycle, apoptosis, protein modifications, and signal transduction, indicating an important role of Hsf5 in early stages of spermatogenesis.
Collapse
Affiliation(s)
- Jolly M Saju
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Mohammad Sorowar Hossain
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Lydia Shun En Tan
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Amit Anand
- Bioimaging and Biocomputing, Temasek Life Sciences Laboratory, Singapore, Singapore.
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden.
| | - László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore; Frontline Fish Genomics Research Group, Department of Animal Sciences, Georgikon Faculty, University of Pannonia, Keszthely, Hungary; Centre for Comparative Genomics, Murdoch University, Murdoch, Australia.
| |
Collapse
|
9
|
Pnma5 is essential to the progression of meiosis in mouse oocytes through a chain of phosphorylation. Oncotarget 2017; 8:96809-96825. [PMID: 29228573 PMCID: PMC5722525 DOI: 10.18632/oncotarget.18425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
PNMA (paraneoplastic antigen MA) family includes Pnma1–6. Although other members have been found to be involved in paraneoplastic neurological disorders, death receptor-dependent apoptosis, and tumorigenesis, Pnma5 was thought to be a female fertility factor, as indicated by one genome-wide study. But until now there have not been any further functional studies about Pnma5 in female meiosis. Our preliminary study indicated that Pnma5 might play important roles in meiosis. To further address this, Pnma5 was knocked down in in-vitro maturated (IVM) mouse oocytes, which are common models for mammalian female meiosis, by specific siRNA, and results showed that the loss of Pnma5 significantly delayed the progression of meiosis I and increased chromosome segregation errors during anaphase I. In in-vitro fertilization (IVF), Pnma5 knockdown caused significantly lower fertilization. To assess how it affects meiosis, Pnma5 knockdown was found to significantly decrease the stability of spindle microtubules and altered F-actin organization within actin cap regions, cause significantly abnormal mitochondria aggregation and lower ATP concentration. Next we have found that phosphorylation at Thr533 re-located Pnma5 strongly to spindles & cortex and was required for the phosphorylation of Akt and Gsk3β, while Src and Erk1/2 phosphorylation was required for the phosphorylation of Pnma5, indicating that phosphorylated Pnma5 is the active form and subsequently activates Akt and Gsk3β. Collectively this study suggests that Pnma5 is important for meiosis and is the pivot of Src→Erk1/2→Pnma5→Akt→Gsk3β pathway.
Collapse
|
10
|
Liu XX, Shen XF, Liu FJ. Screening targeted testis‑specific genes for molecular assessment of aberrant sperm quality. Mol Med Rep 2016; 14:1594-600. [PMID: 27356588 PMCID: PMC4940090 DOI: 10.3892/mmr.2016.5434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Teratospermia is a heterogeneous and complex disorder, which is closely associated with male fertility. Genes and gene products associated with teratospermia may serve as targeted biomarkers that help understand the underlying mechanisms of male infertility; however, systematic information on the subject remains to be elucidated. The present study performed a comparative bioinformatics analysis to identify biomarkers associated with sperm quality, particular focusing on testis-specific biomarkers. A stepwise screening approach identified 1,085 testis/epididymis-specific genes and 3,406 teratospermia-associated genes, resulting in 348 testis-specific genes associated with aberrant sperm quality. These genes were functionally associated with the reproduction process. Gene products corresponding to heat shock protein family A (Hsp70) member 4 like (HSPA4L) and phosphoglycerate kinase 2 were characterized at the cellular level in human testes and ejaculated spermatozoa. HSPA4L expression in sperm was revealed to be associated with sperm quality. The present study provided a novel insight into the understanding of sperm quality, and a potential method for the diagnosis and assessment of sperm quality in the event of male infertility.
Collapse
Affiliation(s)
- Xue Xia Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiao Fang Shen
- Central Laboratory, Yantai Yu Huang Ding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Fu-Jun Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
11
|
Huang Y, Xiong Y, Lin Z, Feng X, Jiang X, Songyang Z, Huang J. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells. PLoS One 2015; 10:e0145417. [PMID: 26713853 PMCID: PMC4699828 DOI: 10.1371/journal.pone.0145417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/03/2015] [Indexed: 12/14/2022] Open
Abstract
A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and these data provide new insights into the processes potentially involved in the GSC life cycle and spermatogenesis.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Yuanyan Xiong
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
- SYSU-CMU Shunde International Joint Research Institute, Shunde, China
| | - Zhuoheng Lin
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Xuyang Feng
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Xue Jiang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Zhou Songyang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
- * E-mail:
| |
Collapse
|
12
|
Mariotti M, Smith TF, Sudmant PH, Goldberger G. Pseudogenization of testis-specific Lfg5 predates human/Neanderthal divergence. J Hum Genet 2014; 59:288-91. [PMID: 24599118 DOI: 10.1038/jhg.2014.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Recent reviews discussed the critical roles of apoptosis in human spermatogenesis and infertility. These reviews highlight the FasL-induced caspase cascade in apoptosis lending importance to our discovery of the pseudogene status of the Lfg5 gene in modern humans, Neanderthal and the Denisovan. This gene is a member of the ancient and highly conserved apoptosis Lifeguard family. This pseudogenization is the result of a premature stop codon at the 3'-end of exon 8 not found in any other ortholog. With the current exception of the domesticated bovine and buffalo, Lfg5's expression in mammals is testis-specific. A full analysis of this gene, its phylogenetic context and its recent hominin changes suggest its inactivation was likely under selection in human evolution.
Collapse
Affiliation(s)
| | - Temple F Smith
- Department of BioMedical Engineering, Boston University, Boston, MA, USA
| | - Peter H Sudmant
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gabriel Goldberger
- Department of Psychiatry, Beth Israel Deaconess Medical Center, BSHC, Boston, MA, USA
| |
Collapse
|
13
|
MEIOB targets single-strand DNA and is necessary for meiotic recombination. PLoS Genet 2013; 9:e1003784. [PMID: 24068956 PMCID: PMC3778009 DOI: 10.1371/journal.pgen.1003784] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination is a mandatory process for sexual reproduction. We identified a protein specifically implicated in meiotic homologous recombination that we named: meiosis specific with OB domain (MEIOB). This protein is conserved among metazoan species and contains single-strand DNA binding sites similar to those of RPA1. Our studies in vitro revealed that both recombinant and endogenous MEIOB can be retained on single-strand DNA. Those in vivo demonstrated the specific expression of Meiob in early meiotic germ cells and the co-localization of MEIOB protein with RPA on chromosome axes. MEIOB localization in Dmc1 (-/-) spermatocytes indicated that it accumulates on resected DNA. Homologous Meiob deletion in mice caused infertility in both sexes, due to a meiotic arrest at a zygotene/pachytene-like stage. DNA double strand break repair and homologous chromosome synapsis were impaired in Meiob (-/-) meiocytes. Interestingly MEIOB appeared to be dispensable for the initial loading of recombinases but was required to maintain a proper number of RAD51 and DMC1 foci beyond the zygotene stage. In light of these findings, we propose that RPA and this new single-strand DNA binding protein MEIOB, are essential to ensure the proper stabilization of recombinases which is required for successful homology search and meiotic recombination.
Collapse
|
14
|
Arango NA, Li L, Dabir D, Nicolau F, Pieretti-Vanmarcke R, Koehler C, McCarrey JR, Lu N, Donahoe PK. Meiosis I arrest abnormalities lead to severe oligozoospermia in meiosis 1 arresting protein (M1ap)-deficient mice. Biol Reprod 2013; 88:76. [PMID: 23269666 DOI: 10.1095/biolreprod.111.098673] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiosis 1 arresting protein (M1ap) is a novel vertebrate gene expressed exclusively in germ cells of the embryonic ovary and the adult testis. In male mice, M1ap expression, which is present from spermatogonia to secondary spermatocytes, is evolutionarily conserved and has a specific spatial and temporal pattern suggestive of a role during germ cell development. To test its function, mice deficient in M1ap were created. Whereas females had histologically normal ovaries, males exhibited reduced testicular size and a myriad of tubular defects, which led to severe oligozoospermia and infertility. Although some germ cells arrested at the zygotene/pachytene stages, most cells advanced to metaphase I before arresting and entering apoptosis. Cells that reached metaphase I were unable to properly align their chromosomes at the metaphase plate due to abnormal chromosome synapses and failure to form crossover foci. Depending on the state of tubular degeneration, all germ cells, with the exemption of spermatogonia, disappeared; with further deterioration, tubules displaying only Sertoli cells reminiscent of Sertoli cell-only syndrome in humans were observed. Our results uncovered an essential role for M1ap as a novel germ cell gene not previously implicated in male germ cell development and suggest that mutations in M1AP could account for some cases of nonobstructive oligozoospermia in men.
Collapse
Affiliation(s)
- Nelson Alexander Arango
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kurahashi H, Kogo H, Tsutsumi M, Inagaki H, Ohye T. Failure of homologous synapsis and sex-specific reproduction problems. Front Genet 2012; 3:112. [PMID: 22719750 PMCID: PMC3376420 DOI: 10.3389/fgene.2012.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/30/2012] [Indexed: 01/15/2023] Open
Abstract
The prophase of meiosis I ensures the correct segregation of chromosomes to each daughter cell. This includes the pairing, synapsis, and recombination of homologous chromosomes. A subset of chromosomal abnormalities, including translocation and inversion, disturbs these processes, resulting in the failure to complete synapsis. This activates the meiotic pachytene checkpoint, and the gametes are fated to undergo cell cycle arrest and subsequent apoptosis. Spermatogenic cells appear to be more vulnerable to the pachytene checkpoint, and male carriers of chromosomal abnormalities are more susceptible to infertility. In contrast, oocytes tend to bypass the checkpoint and instead generate other problems, such as chromosome imbalance that often leads to recurrent pregnancy loss in female carriers. Recent advances in genetic manipulation technologies have increased our knowledge about the pachytene checkpoint and surveillance systems that detect chromosomal synapsis. This review focuses on the consequences of synapsis failure in humans and provides an overview of the mechanisms involved. We also discuss the sexual dimorphism of the involved pathways that leads to the differences in reproductive outcomes between males and females.
Collapse
Affiliation(s)
- Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | |
Collapse
|
16
|
Screening of genes involved in chromosome segregation during meiosis I: in vitro gene transfer to mouse fetal oocytes. J Hum Genet 2012; 57:515-22. [PMID: 22648182 DOI: 10.1038/jhg.2012.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The events that take place during the prophase of meiosis I are essential for the correct segregation of homologous chromosomes. Defects in these processes likely contribute to infertility or recurrent pregnancy loss in humans. To screen for candidate genes for reproductive failure due to meiotic defects, we have analyzed the gene expression patterns in fetal, neonatal and adult gonads of both male and female mice by microarray and thereby identified 241 genes that are expressed specifically during prophase of meiosis I. Combined with our previous data obtained from developing spermatocytes, a total of 99 genes were identified that are upregulated in early prophase I. We confirmed the meiotic prophase I-specific expression of these genes using qRT-PCR. To further screen this panel for candidate genes that fulfill important roles in homologous pairing, synapsis and recombination, we established a gene transfer system for prophase I oocytes in combination with in vitro organ culture of ovaries, and successfully determined the localization of the selected genes. This gene set can thus serve as a resource for targeted sequence analysis via next-generation sequencing to identify the genes associated with human reproduction failure due to meiotic defects.
Collapse
|
17
|
Kogo H, Tsutsumi M, Ohye T, Inagaki H, Abe T, Kurahashi H. HORMAD1-dependent checkpoint/surveillance mechanism eliminates asynaptic oocytes. Genes Cells 2012; 17:439-54. [PMID: 22530760 DOI: 10.1111/j.1365-2443.2012.01600.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Meiotic pachytene checkpoints monitor the failure of homologous recombination and synapsis to ensure faithful chromosome segregation during gamete formation. To date, the molecular basis of the mammalian pachytene checkpoints has remained largely unknown. We here report that mouse HORMAD1 is required for a meiotic prophase checkpoint that eliminates asynaptic oocytes. Hormad1-deficient mice are infertile and show an extensive failure of homologous pairing and synapsis, consistent with the evolutionarily conserved function of meiotic HORMA domain proteins. Unexpectedly, Hormad1-deficient ovaries contain a normal number of oocytes despite asynapsis and consequently produce aneuploid oocytes, indicating a checkpoint failure. By the analysis of Hormad1/Spo11 double mutants, the Hormad1 deficiency was found to abrogate the massive oocyte loss in the Spo11-deficient ovary. The Hormad1 deficiency also causes the eventual loss of pseudo sex body in the Spo11-deficient ovary and testis. These results suggest the involvement of HORMAD1 in the repressive chromatin domain formation that is proposed to be important in the meiotic prophase checkpoints. We also show the extensive phosphorylation of HORMAD1 in the Spo11-deficient testis and ovary, suggesting an involvement of novel DNA damage-independent phosphorylation signaling in the surveillance mechanism. Our present results provide clues to HORMAD1-dependent checkpoint in response to asynapsis in mammalian meiosis.
Collapse
Affiliation(s)
- Hiroshi Kogo
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Salzman J, Marinelli RJ, Wang PL, Green AE, Nielsen JS, Nelson BH, Drescher CW, Brown PO. ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma. PLoS Biol 2011; 9:e1001156. [PMID: 21949640 PMCID: PMC3176749 DOI: 10.1371/journal.pbio.1001156] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
Every year, ovarian cancer kills approximately 14,000 women in the United States and more than 140,000 women worldwide. Most of these deaths are caused by tumors of the serous histological type, which is rarely diagnosed before it has disseminated. By deep paired-end sequencing of mRNA from serous ovarian cancers, followed by deep sequencing of the corresponding genomic region, we identified a recurrent fusion transcript. The fusion transcript joins the 5' exons of ESRRA, encoding a ligand-independent member of the nuclear-hormone receptor superfamily, to the 3' exons of C11orf20, a conserved but uncharacterized gene located immediately upstream of ESRRA in the reference genome. To estimate the prevalence of the fusion, we tested 67 cases of serous ovarian cancer by RT-PCR and sequencing and confirmed its presence in 10 of these. Targeted resequencing of the corresponding genomic region from two fusion-positive tumor samples identified a nearly clonal chromosomal rearrangement positioning ESRRA upstream of C11orf20 in one tumor, and evidence of local copy number variation in the ESRRA locus in the second tumor. We hypothesize that the recurrent novel fusion transcript may play a role in pathogenesis of a substantial fraction of serous ovarian cancers and could provide a molecular marker for detection of the cancer. Gene fusions involving adjacent or nearby genes can readily escape detection but may play important roles in the development and progression of cancer.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Biomarkers, Tumor/genetics
- Canada
- Carcinoma, Ovarian Epithelial
- Case-Control Studies
- Chromosome Aberrations
- Chromosomes, Human, Pair 11/chemistry
- Chromosomes, Human, Pair 11/genetics
- Cystadenocarcinoma, Serous/epidemiology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- DNA Copy Number Variations
- Exons
- Female
- Humans
- Molecular Sequence Data
- Neoplasm Staging
- Neoplasms, Glandular and Epithelial/epidemiology
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Oncogene Proteins, Fusion/genetics
- Ovarian Neoplasms/epidemiology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Prevalence
- RNA, Messenger
- Receptors, Estrogen/genetics
- Sequence Analysis, DNA
- Sequence Analysis, RNA
- United States
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Robert J. Marinelli
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter L. Wang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ann E. Green
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julie S. Nielsen
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Brad H. Nelson
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Charles W. Drescher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
19
|
Tsutsumi M, Kogo H, Kowa-Sugiyama H, Inagaki H, Ohye T, Kurahashi H. Characterization of a Novel Mouse Gene Encoding an SYCP3-Like Protein That Relocalizes from the XY Body to the Nucleolus During Prophase of Male Meiosis I1. Biol Reprod 2011; 85:165-71. [DOI: 10.1095/biolreprod.110.087270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
20
|
Hann MC, Lau PE, Tempest HG. Meiotic recombination and male infertility: from basic science to clinical reality? Asian J Androl 2011; 13:212-8. [PMID: 21297654 PMCID: PMC3739220 DOI: 10.1038/aja.2011.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/06/2011] [Indexed: 12/26/2022] Open
Abstract
Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the treatment of infertility, the molecular and genetic causes of male infertility remain largely elusive. This review will present a summary of our current knowledge on the genetic origin of male infertility and the key events of male meiosis. It focuses on chromosome synapsis and meiotic recombination and the problems that arise when errors in these processes occur, specifically meiotic arrest and chromosome aneuploidy, the leading cause of pregnancy loss in humans. In addition, meiosis-specific candidate genes will be discussed, including a discussion on why we have been largely unsuccessful at identifying disease-causing mutations in infertile men. Finally clinical applications of sperm aneuploidy screening will be touched upon along with future prospective clinical tests to better characterize male infertility in a move towards personalized medicine.
Collapse
Affiliation(s)
- Michael C Hann
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | |
Collapse
|
21
|
Collard F, Stroobant V, Lamosa P, Kapanda CN, Lambert DM, Muccioli GG, Poupaert JH, Opperdoes F, Van Schaftingen E. Molecular identification of N-acetylaspartylglutamate synthase and beta-citrylglutamate synthase. J Biol Chem 2010; 285:29826-33. [PMID: 20657015 DOI: 10.1074/jbc.m110.152629] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The purpose of the present work was to determine the identity of the enzymes that synthesize N-acetylaspartylglutamate (NAAG), the most abundant dipeptide present in vertebrate central nervous system (CNS), and β-citrylglutamate, a structural analogue of NAAG present in testis and immature brain. Previous evidence suggests that NAAG is not synthesized on ribosomes but presumably is synthesized by a ligase. As attempts to detect this ligase in brain extracts failed, we searched the mammalian genomes for putative enzymes that could catalyze this type of reaction. Mammalian genomes were found to encode two putative ligases homologous to Escherichia coli RIMK, which ligates glutamates to the C terminus of ribosomal protein S6. One of them, named RIMKLA, is almost exclusively expressed in the CNS, whereas RIMKLB, which shares 65% sequence identity with RIMKLA, is expressed in CNS and testis. Both proteins were expressed in bacteria or HEK293T cells and purified. RIMKLA catalyzed the ATP-dependent synthesis of N-acetylaspartylglutamate from N-acetylaspartate and l-glutamate. RIMKLB catalyzed this reaction as well as the synthesis of β-citrylglutamate. The nature of the reaction products was confirmed by mass spectrometry and NMR. RIMKLA was shown to produce stoichiometric amounts of NAAG and ADP, in agreement with its belonging to the ATP-grasp family of ligases. The molecular identification of these two enzymes will facilitate progress in the understanding of the function of NAAG and β-citrylglutamate.
Collapse
Affiliation(s)
- François Collard
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|