1
|
Guo J, Tang T, Li J, Yang Y, Quan Y, Zhang L, Huang W, Zhou M. Overexpression of MicroRNA 142-5p Suppresses the Progression of Cervical Cancer through Targeting Phosphoinositol-3-Kinase Adaptor Protein 1 Expression. Mol Cell Biol 2021; 41:e0036320. [PMID: 33288643 PMCID: PMC8316050 DOI: 10.1128/mcb.00363-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/22/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of current study was to explore the mechanism of microRNA 142-5p (miR-142-5p) in cervical cancer through mediating the phosphoinositol-3-kinase adaptor protein 1 (PIK3AP1)/PI3K/AKT axis. To this end, reverse transcription-quantitative PCR (RT-qPCR) and Western blot analysis results revealed that miR-142-5p was poorly expressed, whereas PIK3AP1 was highly expressed, in cervical cancer tissues and cells. Furthermore, miR-142-5p was hypermethylated in cervical cancer, as reflected by methylation-specific PCR (MS-PCR) and chromatin immunoprecipitation (ChIP) assessment of enrichment of DNMT1/DNMT3a/DNMT3b in the promoter region of miR-142-5p. A target binding relationship between miR-142-5p and PIK3AP1 was established, showing that miR-142-5p targeted and inhibited the expression of PIK3AP1. Loss- and gain-of-function assays were conducted to determine the roles of miR-142-5p and PIK3AP1 in cervical cancer cells. CCK-8, flow cytometry, and Transwell assay results revealed that overexpression of miR-142-5p in cervical cancer cells downregulated PIK3AP1 and inhibited the PI3K/AKT signaling pathway, leading to reduced proliferation, migration, and invasion capacity of cervical cancer cells but enhanced apoptosis. Collectively, epigenetic regulation of miR-142-5p targeted PIK3AP1 to inactivate the PI3K/AKT signaling pathway, thus suppressing development of cervical cancer, which presents new targets for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Junliang Guo
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tian Tang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Jinhong Li
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Yihong Yang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Yi Quan
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Long Zhang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Muchuan Zhou
- Department of Anesthesia, Sichuan Integrative Medicine Hospital, Sichuan Academy of Chinese Medicine Science, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Fiorino S, Di Saverio S, Leandri P, Tura A, Birtolo C, Silingardi M, de Biase D, Avisar E. The role of matricellular proteins and tissue stiffness in breast cancer: a systematic review. Future Oncol 2018; 14:1601-1627. [PMID: 29939077 DOI: 10.2217/fon-2017-0510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Malignancies consist not only of cancerous and nonmalignant cells, but also of additional elements, as extracellular matrix. The aim of this review is to summarize meta-analyses, describing breast tissue stiffness and risk of breast carcinoma (BC) assessing the potential relationship between matricellular proteins (MPs) and survival. A systematic computer-based search of published articles, according to PRISMA statement, was conducted through Ovid interface. Mammographic density and tissue stiffness are associated with the risk of BC development, suggesting that MPs may influence BC prognosis. No definitive conclusions are available and additional researches are required to definitively clarify the role of each MP, mammographic density and stiffness in BC development and the mechanisms involved in the onset of this malignancy.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine 'C' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Salomone Di Saverio
- Cambridge Colorectal Unit, Box 201, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Paolo Leandri
- Internal Medicine 'C' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Chiara Birtolo
- Geriatric Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Mauro Silingardi
- Internal Medicine 'A' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy & Biotechnology, Molecular Pathology Unit, University of Bologna, Bologna, Italy
| | - Eli Avisar
- Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Encinas G, Sabelnykova VY, de Lyra EC, Hirata Katayama ML, Maistro S, de Vasconcellos Valle PWM, de Lima Pereira GF, Rodrigues LM, de Menezes Pacheco Serio PA, de Gouvêa ACRC, Geyer FC, Basso RA, Pasini FS, del Pilar Esteves Diz M, Brentani MM, Guedes Sampaio Góes JC, Chammas R, Boutros PC, Koike Folgueira MAA. Somatic mutations in early onset luminal breast cancer. Oncotarget 2018; 9:22460-22479. [PMID: 29854292 PMCID: PMC5976478 DOI: 10.18632/oncotarget.25123] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation.
Collapse
Affiliation(s)
- Giselly Encinas
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Maria Lucia Hirata Katayama
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Simone Maistro
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Gláucia Fernanda de Lima Pereira
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Lívia Munhoz Rodrigues
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Pedro Adolpho de Menezes Pacheco Serio
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Carolina Ribeiro Chaves de Gouvêa
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Felipe Correa Geyer
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Fátima Solange Pasini
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria del Pilar Esteves Diz
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Mitzi Brentani
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Roger Chammas
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Paul C. Boutros
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Maria Aparecida Azevedo Koike Folgueira
- Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Varga N, Mózes J, Keegan H, White C, Kelly L, Pilkington L, Benczik M, Zsuzsanna S, Sobel G, Koiss R, Babarczi E, Nyíri M, Kovács L, Attila S, Kaltenecker B, Géresi A, Kocsis A, O'Leary J, Martin CM, Jeney C. The Value of a Novel Panel of Cervical Cancer Biomarkers for Triage of HPV Positive Patients and for Detecting Disease Progression. Pathol Oncol Res 2016; 23:295-305. [PMID: 27497597 DOI: 10.1007/s12253-016-0094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023]
Abstract
In the era of primary vaccination against HPV and at the beginning of the low prevalence of cervical lesions, introduction of screening methods that can distinguish between low- and high-grade lesions is necessary in order to maintain the positive predictive value of screening. This case-control study included 562 women who attended cervical screening or were referred for colposcopy and 140 disease free controls, confirmed by histology and/or cytology. The cases were stratified by age. Using routine exfoliated liquid based cytological samples RT-PCR measurements of biomarker genes, high-risk HPV testing and liquid based cytology were performed and used to evaluate different testing protocols including sets of genes/tests with different test cut-offs for the diagnostic panels. Three new panels of cellular biomarkers for improved triage of hrHPV positive women (diagnostic panel) and for prognostic assessment of CIN lesions were proposed. The diagnostic panel (PIK3AP1, TP63 and DSG3) has the potential to distinguish cytologically normal hrHPV+ women from hrHPV+ women with CIN2+. The prognostic gene panels (KRT78, MUC5AC, BPIFB1 and CXCL13, TP63, DSG3) have the ability to differentiate hrHPV+ CIN1 and carcinoma cases. The diagnostic triage panel showed good likelihood ratios for all age groups. The panel showed age-unrelated performance and even better diagnostic value under age 30, a unique feature among the established cervical triage tests. The prognostic gene-panels demonstrated good discriminatory power and oncogenic, anti-oncogenic grouping of genes. The study highlights the potential for the gene expression panels to be used for diagnostic triage and lesion prognostics in cervical cancer screening.
Collapse
Affiliation(s)
- Norbert Varga
- CellCall Ltd, Röppentyű utca 48, Budapest, 1134, Hungary
| | - Johanna Mózes
- CellCall Ltd, Röppentyű utca 48, Budapest, 1134, Hungary
| | - Helen Keegan
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Molecular Pathology Laboratory, Department of Pathology, Coombe Women and Infants University Hospital, Dublin, 8, Ireland
| | - Christine White
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Molecular Pathology Laboratory, Department of Pathology, Coombe Women and Infants University Hospital, Dublin, 8, Ireland
| | - Lynne Kelly
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Molecular Pathology Laboratory, Department of Pathology, Coombe Women and Infants University Hospital, Dublin, 8, Ireland
| | - Loretto Pilkington
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Molecular Pathology Laboratory, Department of Pathology, Coombe Women and Infants University Hospital, Dublin, 8, Ireland
| | - Márta Benczik
- CellCall Ltd, Röppentyű utca 48, Budapest, 1134, Hungary
| | - Schaff Zsuzsanna
- 2nd Department of Pathology, Semmelweis University, Üllöi út 93, Budapest, 1091, Hungary
| | - Gábor Sobel
- 2nd Department of Obstetrics and Gynecology, Semmelweis University, Üllői út 78/a, Budapest, 1082, Hungary
| | - Róbert Koiss
- Department of Gynecology-Oncology, United Hospital of St. Stephan and Laszlo, Nagyvárad tér 1, Budapest, 1087, Hungary
| | - Edit Babarczi
- Department of Gynecology-Oncology, United Hospital of St. Stephan and Laszlo, Nagyvárad tér 1, Budapest, 1087, Hungary
| | - Miklos Nyíri
- CellCall Ltd, Röppentyű utca 48, Budapest, 1134, Hungary
| | - Laura Kovács
- CellCall Ltd, Röppentyű utca 48, Budapest, 1134, Hungary
| | - Sebe Attila
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | | | - Adrienn Géresi
- CellCall Ltd, Röppentyű utca 48, Budapest, 1134, Hungary
| | - Adrienn Kocsis
- CellCall Ltd, Röppentyű utca 48, Budapest, 1134, Hungary
| | - John O'Leary
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Molecular Pathology Laboratory, Department of Pathology, Coombe Women and Infants University Hospital, Dublin, 8, Ireland
| | - Cara M Martin
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Molecular Pathology Laboratory, Department of Pathology, Coombe Women and Infants University Hospital, Dublin, 8, Ireland
| | - Csaba Jeney
- Department of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
5
|
Selvaraj N, Kedage V, Hollenhorst PC. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal 2015; 13:12. [PMID: 25885538 PMCID: PMC4338625 DOI: 10.1186/s12964-015-0089-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/04/2015] [Indexed: 01/01/2023] Open
Abstract
Background The RAS/MAPK signaling pathway can regulate gene expression by phosphorylating and altering the function of some, but not all, ETS transcription factors. ETS family transcription factors bind similar DNA sequences and can compete for genomic binding sites. However, MAPK regulation varies across the ETS family. Therefore, changing the ETS factor bound to a cis-regulatory element can alter MAPK regulation of gene expression. To understand RAS/MAPK regulated gene expression programs, comprehensive knowledge of the ETS family members that are MAPK targets and relative MAPK targeting efficiency across the family is needed. Results An in vitro kinase assay was used to rank-order 27 human ETS family transcription factors based on phosphorylation by ERK2, JNK1, and p38α. Many novel MAPK targets and specificities were identified within the ETS family, including the identification of the prostate cancer oncoprotein ERG as a specific target of ERK2. ERK2 phosphorylation of ERG S215 required a DEF docking domain and was necessary for ERG to activate transcription of cell migration genes and promote prostate cell migration. The ability of ERK2 to bind ERG with higher affinity than ETS1 provided a potential molecular explanation for why ERG overexpression drives migration of prostate cells with low levels of RAS/ERK signaling, while ETS1 has a similar function only when RAS/ERK signaling is high. Conclusions The rank ordering of ETS transcription factors as MAPK targets provides an important resource for understanding ETS proteins as mediators of MAPK signaling. This is emphasized by the difference in rank order of ERG and ETS1, which allows these factors to have distinct roles based on the level of RAS/ERK signaling present in the cell. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0089-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nagarathinam Selvaraj
- Medical Sciences, Indiana University School of Medicine, 1001 E 3rd St, Bloomington, IN, 47405, USA.
| | - Vivekananda Kedage
- Medical Sciences, Indiana University School of Medicine, 1001 E 3rd St, Bloomington, IN, 47405, USA.
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, 1001 E 3rd St, Bloomington, IN, 47405, USA.
| |
Collapse
|