1
|
Khare M, Piparia S, Tantisira KG. Pharmacogenetics of childhood uncontrolled asthma. Expert Rev Clin Immunol 2025; 21:181-194. [PMID: 37190963 PMCID: PMC10657335 DOI: 10.1080/1744666x.2023.2214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.
Collapse
Affiliation(s)
- Manaswitha Khare
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Hospital Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Wu D, Liu Y, Liu Y, Cui N, Zhu Y, Zheng S, Wang S. Correlation between LTC4S -444 A>C polymorphism and susceptibility to asthma: A meta-analysis and trial sequential analysis. J Med Biochem 2024; 43:106-115. [PMID: 38496016 PMCID: PMC10943467 DOI: 10.5937/jomb0-44538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/14/2023] [Indexed: 03/19/2024] Open
Abstract
Background This study aims to uncover the potential correlation between LTC4S -444 A>C polymorphism and susceptibility to asthma. Methods Literatures reporting the correlation between LTC4S -444 A>C polymorphism and susceptibility to asthma published before 1st June, 2019 were searched in PubMed, Embase, Cochrane, Wanfang and CNKI. Eligible literatures were enrolled and their data were extracted. OR and its 95% CI were calculated for assessing the correlation between LTC4S -444 A>C polymorphism and susceptibility to asthma. The included data were weighted by an inverse variance and then analyzed by a fixed or random effects model. Heterogeneity test and sensitivity analysis were performed on the enrolled reports. STATA12.1 and TSA (trial sequential analysis) were utilized for analyses.
Collapse
Affiliation(s)
- Delin Wu
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Department of Respiratory, Beijing, China
| | - Yuna Liu
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Department of Science & education, Beijing, China
| | - Yan Liu
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Department of Respiratory, Beijing, China
| | - Najuan Cui
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Department of Respiratory, Beijing, China
| | - Yan Zhu
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Department of Respiratory, Beijing, China
| | - Sidao Zheng
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Department of Cardiology, Beijing, China
| | - Shaohua Wang
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Department of Respiratory, Beijing, China
| |
Collapse
|
3
|
Zhao Y, Zhang X, Han C, Cai Y, Li S, Hu X, Wu C, Guan X, Lu C, Nie X. Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:1068. [PMID: 35887565 PMCID: PMC9316609 DOI: 10.3390/jpm12071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacogenetics research on leukotriene modifiers (LTMs) for asthma has been developing rapidly, although pharmacogenetic testing for LTMs is not yet used in clinical practice. We performed a systematic review and meta-analysis on the impact of pharmacogenomics on LTMs response. Studies published until May 2022 were searched using PubMed, EMBASE, and Cochrane databases. Pharmacogenomics/genetics studies of patients with asthma using LTMs with or without other anti-asthmatic drugs were included. Statistical tests of the meta-analysis were performed with Review Manager (Revman, version 5.4, The Cochrane Collaboration, Copenhagen, Denmark) and R language and environment for statistical computing (version 4.1.0 for Windows, R Core Team, Vienna, Austria) software. In total, 31 studies with 8084 participants were included in the systematic review and five studies were also used to perform the meta-analysis. Two included studies were genome-wide association studies (GWAS), which showed different results. Furthermore, none of the SNPs investigated in candidate gene studies were identified in GWAS. In candidate gene studies, the most widely studied SNPs were ALOX5 (tandem repeats of the Sp1-binding domain and rs2115819), LTC4S-444A/C (rs730012), and SLCO2B1 (rs12422149), with relatively inconsistent conclusions. LTC4S-444A/C polymorphism did not show a significant effect in our meta-analysis (AA vs. AC (or AC + CC): −0.06, 95%CI: −0.16 to 0.05, p = 0.31). AA homozygotes had smaller improvements in parameters pertaining to lung functions (−0.14, 95%CI: −0.23 to −0.05, p = 0.002) in a subgroup of patients with non-selective CysLT receptor antagonists and patients without inhaled corticosteroids (ICS) (−0.11, 95%CI: −0.14 to −0.08, p < 0.00001), but not in other subgroups. Variability exists in the pharmacogenomics of LTMs treatment response. Our meta-analysis and systematic review found that LTC4S-444A/C may influence the treatment response of patients taking non-selective CysLT receptor antagonists for asthma, and patients taking LTMs not in combination with ICS for asthma. Future studies are needed to validate the pharmacogenomic influence on LTMs response.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xinyi Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Congxiao Han
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Yuchun Cai
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Sicong Li
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaowen Hu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Caiying Wu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaodong Guan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Christine Lu
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA;
| | - Xiaoyan Nie
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| |
Collapse
|
4
|
Pharmacogenomics and Pediatric Asthmatic Medications. JOURNAL OF RESPIRATION 2022. [DOI: 10.3390/jor2010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asthma is a respiratory condition often stemming from childhood, characterized by difficulty breathing and/or chest tightness. Current treatment options for both adults and children include beta-2 agonists, inhaled corticosteroids (ICS), and leukotriene modifiers (LTM). Despite recommendations by the Global Initiative for Asthma, a substantial number of patients are unresponsive to treatment and unable to control symptoms. Pharmacogenomics have increasingly become the front line of precision medicine, especially with the recent use of candidate gene and genome- wide association studies (GWAS). Screening patients preemptively could likely decrease adverse events and therapeutic failure. However, research in asthma, specifically in pediatrics, has been low. Although numerous adult trials have evaluated the impact of pharmacogenomics and treatment response, the lack of evidence in children has hindered progress towards clinical application. This review aims to discuss the impact of genetic variability and response to asthmatic medications in the pediatric population.
Collapse
|
5
|
Al-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Epigenome-wide analysis of common warts reveals aberrant promoter methylation. Int J Med Sci 2020; 17:191-206. [PMID: 32038103 PMCID: PMC6990892 DOI: 10.7150/ijms.39261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alteration of host DNA is a common occurrence in both low- and high-risk human papillomavirus (HPV) infection. Although changes in promoter methylation have been widely studied in HPV-associated cancers, they have not been the subject of much investigation in HPV-induced warts, which are a temporary manifestation of HPV infection. The present study sought to examine the differences in promoter methylation between warts and normal skin. To achieve this, DNA was extracted from 24 paired wart and normal skin samples and inputted into the Infinium MethylationEPIC BeadChip microarray. Differential methylation analysis revealed a clear pattern of hyper- and hypomethylation in warts compared to normal skin, and the most differentially methylated promoters were found within the EIF3EP2, CYSLTR1, C10orf99, KRT6B, LAMA4, and H3F3B genes as well as the C9orf30 pseudogene. Moreover, pathway analysis showed that the H3F3A, CDKN1A, and MAPK13 genes were the most common regulators among the most differentially methylated promoters. Since the tissue samples were excised from active warts, however, this differential methylation could either be a cellular response to HPV infection or an HPV-driven process to establish the wart and/or promote disease progression. Conclusively, it is apparent that HPV infection alters the methylation status of certain genes to possibly initiate the formation of a wart and maintain its presence.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Amneh H Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Firas A Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.,Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
6
|
Venter C, Meyer RW, Nwaru BI, Roduit C, Untersmayr E, Adel‐Patient K, Agache I, Agostoni C, Akdis CA, Bischoff S, du Toit G, Feeney M, Frei R, Garn H, Greenhawt M, Hoffmann‐Sommergruber K, Lunjani N, Maslin K, Mills C, Muraro A, Pali I, Poulson L, Reese I, Renz H, Roberts GC, Smith P, Smolinska S, Sokolowska M, Stanton C, Vlieg‐Boerstra B, O'Mahony L. EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy 2019; 74:1429-1444. [PMID: 31032983 DOI: 10.1111/all.13764] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
The prevalence of allergic diseases such as allergic rhinitis, asthma, food allergy, and atopic dermatitis has increased dramatically during the last decades, which is associated with altered environmental exposures and lifestyle practices. The purpose of this review was to highlight the potential role for dietary fatty acids, in the prevention and management of these disorders. In addition to their nutritive value, fatty acids have important immunoregulatory effects. Fatty acid-associated biological mechanisms, human epidemiology, and intervention studies are summarized in this review. The influence of genetics and the microbiome on fatty acid metabolism is also discussed. Despite critical gaps in our current knowledge, it is increasingly apparent that dietary intake of fatty acids may influence the development of inflammatory and tolerogenic immune responses. However, the lack of standardized formats (ie, food versus supplement) and standardized doses, and frequently a lack of prestudy serum fatty acid level assessments in clinical studies significantly limit our ability to compare allergy outcomes across studies and to provide clear recommendations at this time. Future studies must address these limitations and individualized medical approaches should consider the inclusion of specific dietary factors for the prevention and management of asthma, food allergy, and atopic dermatitis.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy and Immunology University of Colorado Denver School of Medicine, Children's Hospital Colorado Colorado
| | | | - Bright I. Nwaru
- Krefting Research Centre, Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Caroline Roduit
- University Children's Hospital Zurich Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Eva Untersmayr
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Karine Adel‐Patient
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Immuno‐Allergie Alimentaire (LIAA) INRA, CEA, Université Paris Saclay Gif sur Yvette Cedex France
| | | | - Carlo Agostoni
- Fondazione IRCCS Ca' Granda ‐ Ospedale Maggiore Policlinico Milano Italy
- Dipartimento di Scienze Cliniche e di Comunita Universita' degli Studi Milano Italy
| | - Cezmi A. Akdis
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Stephan Bischoff
- Institut für Ernährungsmedizin Universität Hohenheim Stuttgart Germany
| | - George du Toit
- Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy King's College London London UK
- Guy's & St Thomas' Hospital London UK
| | - Mary Feeney
- Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy King's College London London UK
- Guy's & St Thomas' Hospital London UK
| | - Remo Frei
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Holger Garn
- Center for Tumor‐ and Immunobiology (ZTI), Institute of Laboratory Medicine and Pathobiochemistry Philipps University of Marburg ‐ Medical Faculty Marburg Germany
| | - Matthew Greenhawt
- School of Medicine, Section of Allergy and Immunology Children's Hospital Colorado, University of Colorado Aurora Colorado
| | - Karin Hoffmann‐Sommergruber
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- University of Cape Town Cape Town South Africa
| | - Kate Maslin
- MRC Lifecourse Epidemiology Unit University of Southampton Southampton UK
| | - Clare Mills
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology The University of Manchester Manchester UK
| | - Antonella Muraro
- Centro di Specializzazione Regionale per lo Studio e la Cura delle Allergie e delle Intolleranze Alimentari presso l'Azienda Ospedaliera Università di Padova Padova Italy
| | - Isabella Pali
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna Vienna Austria
| | - Lars Poulson
- Allergy Clinic, Dept. of Skin and Allergy Diseases Copenhagen University Hospital at Gentofte Copenhagen Denmark
| | - Imke Reese
- Dietary Counseling and Nutrition Therapy Centre Munich Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Graham C. Roberts
- The David Hide Asthma and Allergy Research Centre St Mary's Hospital Newport UK
- NIHR Biomedical Research Centre University Hospital Southampton NHS Foundation Trust Southampton UK
- Faculty of Medicine, Clinical and Experimental Sciences and Human Development in Health Academic Units University of Southampton Southampton UK
| | - Peter Smith
- School of Medicine Griffith University Southport Australia
| | - Sylwia Smolinska
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | | | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Depts of Medicine and Microbiology APC Microbiome Ireland, National University of Ireland Cork Ireland
| |
Collapse
|
7
|
Farzan N, Vijverberg SJH, Arets HG, Raaijmakers JAM, Maitland-van der Zee AH. Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers: a systematic review. Clin Exp Allergy 2016; 47:271-293. [PMID: 27790783 DOI: 10.1111/cea.12844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Pharmacogenetics studies of anti-inflammatory medication of asthma have expanded rapidly in recent decades, but the clinical value of their findings remains limited. OBJECTIVE To perform a systematic review of pharmacogenomics and pharmacogenetics of inhaled corticosteroids (ICS) and leukotriene modifiers (LTMs) in patients with asthma. METHODS Articles published between 1999 and June 2015 were searched using PubMed and EMBASE. Pharmacogenomics/genetics studies of patients with asthma using ICS or LTMs were included if ≥1 of the following outcomes were studied: lung function, exacerbation rates or asthma symptoms. The studies of Single Nucleotide Polymorphisms (SNPs) that had been replicated at least once were assessed in more detail. RESULTS In total, 59 publications were included in the systematic review: 26 addressed LTMs (including two genomewide Genome-Wide association studies [GWAS]) and 33 addressed ICS (including four GWAS). None of the GWAS reported similar results. Furthermore, none of the SNPs assessed in candidate gene studies were identified in a GWAS. No consistent reports were found for candidate gene studies of LTMs. In candidate gene studies of ICS, the most consistent results were found for rs28364072 in FCER2. This SNP was associated with all three outcomes of poor response, and the largest effect was reported with the risk of exacerbations (hazard ratio, 3.95; 95% CI, 1.64-9.51). CONCLUSION AND CLINICAL RELEVANCE There is a lack of replication of genetic variants associated with poor ICS or LTM response. The most consistent results were found for the FCER2 gene [encoding for a low-affinity IgE receptor (CD23)] and poor ICS response. Larger studies with well-phenotyped patients are needed to assess the clinical applicability of ICS and LTM pharmacogenomics/genetics.
Collapse
Affiliation(s)
- N Farzan
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - S J H Vijverberg
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - H G Arets
- Department of Paediatric Pulmonology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - J A M Raaijmakers
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - A H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Thompson MD, Capra V, Clunes MT, Rovati GE, Stankova J, Maj MC, Duffy DL. Cysteinyl Leukotrienes Pathway Genes, Atopic Asthma and Drug Response: From Population Isolates to Large Genome-Wide Association Studies. Front Pharmacol 2016; 7:299. [PMID: 27990118 PMCID: PMC5131607 DOI: 10.3389/fphar.2016.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/24/2016] [Indexed: 02/05/2023] Open
Abstract
Genetic variants associated with asthma pathogenesis and altered response to drug therapy are discussed. Many studies implicate polymorphisms in genes encoding the enzymes responsible for leukotriene synthesis and intracellular signaling through activation of seven transmembrane domain receptors, such as the cysteinyl leukotriene 1 (CYSLTR1) and 2 (CYSLTR2) receptors. The leukotrienes are polyunsaturated lipoxygenated eicosatetraenoic acids that exhibit a wide range of pharmacological and physiological actions. Of the three enzymes involved in the formation of the leukotrienes, arachidonate 5 lipoxygenase 5 (ALOX5), leukotriene C4 synthase (LTC4S), and leukotriene hydrolase (LTA4H) are all polymorphic. These polymorphisms often result in variable production of the CysLTs (LTC4, LTD4, and LTE4) and LTB4. Variable number tandem repeat sequences located in the Sp1-binding motif within the promotor region of the ALOX5 gene are associated with leukotriene burden and bronchoconstriction independent of asthma risk. A 444A > C SNP polymorphism in the LTC4S gene, encoding an enzyme required for the formation of a glutathione adduct at the C-6 position of the arachidonic acid backbone, is associated with severe asthma and altered response to the CYSLTR1 receptor antagonist zafirlukast. Genetic variability in the CysLT pathway may contribute additively or synergistically to altered drug responses. The 601 A > G variant of the CYSLTR2 gene, encoding the Met201Val CYSLTR2 receptor variant, is associated with atopic asthma in the general European population, where it is present at a frequency of ∼2.6%. The variant was originally found in the founder population of Tristan da Cunha, a remote island in the South Atlantic, in which the prevalence of atopy is approximately 45% and the prevalence of asthma is 36%. In vitro work showed that the atopy-associated Met201Val variant was inactivating with respect to ligand binding, Ca2+ flux and inositol phosphate generation. In addition, the CYSLTR1 gene, located at Xq13-21.1, has been associated with atopic asthma. The activating Gly300Ser CYSLTR1 variant is discussed. In addition to genetic loci, risk for asthma may be influenced by environmental factors such as smoking. The contribution of CysLT pathway gene sequence variants to atopic asthma is discussed in the context of other genes and environmental influences known to influence asthma.
Collapse
Affiliation(s)
- Miles D Thompson
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La JollaCA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONCanada
| | - Valerie Capra
- Department of Health Sciences, San Paolo Hospital, Università degli Studi di Milano Milano, Italy
| | - Mark T Clunes
- Department of Physiology/Neuroscience, School of Medicine, Saint George's University Saint George's, Grenada
| | - G E Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milano, Italy
| | - Jana Stankova
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke QC, Canada
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University Saint George's, Grenada
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| |
Collapse
|
9
|
Abstract
There is evidence that genetic factors are implicated in the observed differences in therapeutic responses to the common classes of asthma therapy such as β2-agonists, corticosteroids, and leukotriene modifiers. Pharmacogenomics explores the roles of genetic variation in drug response and continues to be a field of great interest in asthma therapy. Prior studies have focused on candidate genes and recently emphasized genome-wide association analyses. Newer integrative omics and system-level approaches have recently revealed novel understanding of drug response pathways. However, the current known genetic loci only account for a fraction of variability in drug response and ongoing research is needed. While the field of asthma pharmacogenomics is not yet fully translatable to clinical practice, ongoing research should hopefully achieve this goal in the near future buttressed by the recent precision medicine efforts in the USA and worldwide.
Collapse
|
10
|
Genome-Wide Association Study Identifies Novel Pharmacogenomic Loci For Therapeutic Response to Montelukast in Asthma. PLoS One 2015; 10:e0129385. [PMID: 26083242 PMCID: PMC4470685 DOI: 10.1371/journal.pone.0129385] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022] Open
Abstract
Background Genome-wide association study (GWAS) is a powerful tool to identify novel pharmacogenetic single nucleotide polymorphisms (SNPs). Leukotriene receptor antagonists (LTRAs) are a major class of asthma medications, and genetic factors contribute to variable responses to these drugs. We used GWAS to identify novel SNPs associated with the response to the LTRA, montelukast, in asthmatics. Methods Using genome-wide genotype and phenotypic data available from American Lung Association - Asthma Clinical Research Center (ALA-ACRC) cohorts, we evaluated 8-week change in FEV1 related to montelukast administration in a discovery population of 133 asthmatics. The top 200 SNPs from the discovery GWAS were then tested in 184 additional samples from two independent cohorts. Results Twenty-eight SNP associations from the discovery GWAS were replicated. Of these, rs6475448 achieved genome-wide significance (combined P = 1.97 x 10-09), and subjects from all four studies who were homozygous for rs6475448 showed increased ΔFEV1 from baseline in response to montelukast. Conclusions Through GWAS, we identified a novel pharmacogenomic locus related to improved montelukast response in asthmatics.
Collapse
|
11
|
Vijverberg SJH, Hilvering B, Raaijmakers JAM, Lammers JWJ, Maitland-van der Zee AH, Koenderman L. Clinical utility of asthma biomarkers: from bench to bedside. Biologics 2013; 7:199-210. [PMID: 24009412 PMCID: PMC3762671 DOI: 10.2147/btt.s29976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Asthma is a chronic disease characterized by airway inflammation, bronchial hyperresponsiveness, and recurrent episodes of reversible airway obstruction. The disease is very heterogeneous in onset, course, and response to treatment, and seems to encompass a broad collection of heterogeneous disease subtypes with different underlying pathophysiological mechanisms. There is a strong need for easily interpreted clinical biomarkers to assess the nature and severity of the disease. Currently available biomarkers for clinical practice - for example markers in bronchial lavage, bronchial biopsies, sputum, or fraction of exhaled nitric oxide (FeNO) - are limited due to invasiveness or lack of specificity. The assessment of markers in peripheral blood might be a good alternative to study airway inflammation more specifically, compared to FeNO, and in a less invasive manner, compared to bronchoalveolar lavage, biopsies, or sputum induction. In addition, promising novel biomarkers are discovered in the field of breath metabolomics (eg, volatile organic compounds) and (pharmaco)genomics. Biomarker research in asthma is increasingly shifting from the assessment of the value of single biomarkers to multidimensional approaches in which the clinical value of a combination of various markers is studied. This could eventually lead to the development of a clinically applicable algorithm composed of various markers and clinical features to phenotype asthma and improve diagnosis and asthma management.
Collapse
Affiliation(s)
- Susanne JH Vijverberg
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart Hilvering
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jan AM Raaijmakers
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jan-Willem J Lammers
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Abstract
The aim of this study was to explore whether prostaglandin D2 receptor (PTGDR) polymorphisms confer susceptibility to asthma. A meta-analysis was conducted on the associations between the PTGDR -549 C/T, -441 C/T, and -197 C/T polymorphisms and asthma using: (1) allele contrast, (2) the recessive model, (3) the dominant model, and (4) the additive model. Three polymorphism haplotypes were constructed in the order -549/-441/-179. Meta-analysis was performed on the haplotype CCC (high transcriptional activity) and of TCT (low transcriptional activity). A total of 13 separate comparative studies in 9 articles involving 7,155 patients with asthma and 7,285 control subjects were included in this meta-analysis. An association between asthma and the PTGDR -549 C/T polymorphism was found by allele contrast (OR = 1.133, 95 % CI = 1.004-1.279, P = 0.043). Ethnicity-specific meta-analysis showed an association between asthma and the PTGDR -549 C allele in Europeans (OR = 1.192, 95 % CI = 1.032-1.377, P = 0.017). Furthermore, stratifying subjects by age indicated an association between the PTGDR -549 C allele and asthma in adults (OR = 1.248, 95 % CI = 1.076-1.447, P = 0.003), but no association in children (OR = 0.933, 95 % CI = 0.756-1.154, P = 0.324). Analyses using the dominant and additive models showed the similar pattern as that observed for the PTGDR -549 C allele, that is, a significant association in Europeans and adults, but not in children. No association was found between asthma and the PTGDR -441 C/T or -197 C/T polymorphisms, and meta-analysis stratified by ethnicity and age also revealed no association between asthma and these polymorphisms. Furthermore, no association was found between asthma and the CCC and TCT haplotypes of PTGDR, and meta-analysis stratified by ethnicity and age revealed no association between asthma and the CCC and TCT PTGDR haplotypes. This meta-analysis demonstrates that the PTGDR -549 C/T polymorphism confers susceptibility to asthma in Europeans and adults. However, no association was found between the PTGDR 441 C/T and -197 C/T polymorphisms or the CCC and TCT haplotypes and asthma susceptibility.
Collapse
|
13
|
The -444A/C polymorphism in the LTC4S gene and the risk of asthma: a meta-analysis. Arch Med Res 2012; 43:444-50. [PMID: 22884858 DOI: 10.1016/j.arcmed.2012.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 06/05/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS The -444A/C polymorphism in the leukotriene C4 synthase (LTC4S) gene has been implicated in susceptibility to asthma, but a large number of studies have reported inconclusive results. The aim of this study was to investigate the association between the -444A/C polymorphism in the LTC4S gene and asthma risk using meta-analysis. METHODS We searched Pubmed, Embase, CNKI and Wanfang databases. Statistical analysis was performed using the software Revman4.2 and STATA10.0. RESULTS A total of 3042 cases and 1902 controls in 13 case-control studies were included in the meta-analysis. The results indicated that the variant C allele carriers (CC + AC) did not have increased/decreased risk of asthma when compared with the homozygote AA (CC + AC vs. AA: OR = 1.13, 95% CI = 1.00-1.28, p = 0.06). In the subgroup analysis by age, ethnicity and aspirin sensitivity, significantly elevated risks were found only in Caucasians (OR = 1.21, 95% CI = 1.02-1.44, p = 0.03) and aspirin-tolerant populations (OR = 1.36, 95% CI = 1.12-1.65, p = 0.002) but not in other subgroups. CONCLUSIONS This meta-analysis suggested that the -444A/C polymorphism in the LTC4S gene would be a risk factor for asthma in Caucasians and aspirin-tolerant populations. Future studies are needed to validate our results.
Collapse
|
14
|
Portelli M, Sayers I. Genetic basis for personalized medicine in asthma. Expert Rev Respir Med 2012; 6:223-36. [PMID: 22455494 DOI: 10.1586/ers.12.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is heterogeneity in patient responses to current asthma medications. Significant progress has been made identifying genetic polymorphisms that influence the efficacy and potential for adverse effects to asthma drugs, including; β(2)-adrenergic receptor agonists, corticosteroids and leukotriene modifiers. Pharmacogenetics holds great promise to maximise clinical outcomes and minimize adverse effects. Asthma is heterogeneous with respect to clinical presentation and inflammatory mechanisms underlying the disease, which is likely to contribute to variable results in clinical trials targeting specific inflammatory mediators. Genome-wide association studies have begun to identify genes underlying asthma (e.g., IL1RL1), which represent future therapeutic targets. In this article, we review and update the pharmacogenetics of current asthma therapies and discuss the genetics underlying selected Phase II and future targets.
Collapse
Affiliation(s)
- Michael Portelli
- Division of Therapeutics and Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
15
|
Current World Literature. Curr Opin Allergy Clin Immunol 2012; 12:91-4. [DOI: 10.1097/aci.0b013e32834fd85c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Tse SM, Tantisira K, Weiss ST. The pharmacogenetics and pharmacogenomics of asthma therapy. THE PHARMACOGENOMICS JOURNAL 2011; 11:383-92. [PMID: 21987090 DOI: 10.1038/tpj.2011.46] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the availability of several classes of asthma medications and their overall effectiveness, a significant portion of patients fail to respond to these therapeutic agents. Evidence suggests that genetic factors may partly mediate the heterogeneity in asthma treatment response. This review discusses important findings in asthma pharmacogenetic and pharmacogenomic studies conducted to date, examines limitations of these studies and, finally, proposes future research directions in this field. The focus will be on the three major classes of asthma medications: β-adrenergic receptor agonists, inhaled corticosteroids and leukotriene modifiers. Although many studies are limited by small sample sizes and replication of the findings is needed, several candidate genes have been identified. High-throughput technologies are also allowing for large-scale genetic investigations. Thus, the future is promising for a personalized treatment of asthma, which will improve therapeutic outcomes, minimize side effects and lead to a more cost-effective care.
Collapse
Affiliation(s)
- S M Tse
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|