1
|
Stowe NA, Singh AP, Barnett BR, Yi SY, Frautschi PC, Messing A, Hagemann TL, Yu JPJ. Quantitative diffusion imaging and genotype-by-sex interactions in a rat model of Alexander disease. Magn Reson Med 2024; 91:1087-1098. [PMID: 37946544 PMCID: PMC10842025 DOI: 10.1002/mrm.29917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE The clinical diagnosis and classification of Alexander disease (AxD) relies in part on qualitative neuroimaging biomarkers; however, these biomarkers fail to distinguish and discriminate different subtypes of AxD, especially in the presence of overlap in clinical symptoms. To address this gap in knowledge, we applied neurite orientation dispersion and density imaging (NODDI) to an innovative CRISPR-Cas9 rat genetic model of AxD to gain quantitative insights into the neural substrates and brain microstructural changes seen in AxD and to potentially identify novel quantitative NODDI biomarkers of AxD. METHODS Multi-shell DWI of age- and sex-matched AxD and wild-type Sprague Dawley rats (n = 6 per sex per genotype) was performed and DTI and NODDI measures calculated. A 3 × 2 × 2 analysis of variance model was used to determine the effect of genotype, biological sex, and laterality on quantitative measures of DTI and NODDI across regions of interest implicated in AxD. RESULTS There is a significant effect of genotype in the amygdala, hippocampus, neocortex, and thalamus in measures of both DTI and NODDI brain microstructure. A genotype by biological sex interaction was identified in DTI and NODDI measures in the corpus callosum, hippocampus, and neocortex. CONCLUSION We present the first application of NODDI to the study of AxD using a rat genetic model of AxD. Our analysis identifies alterations in NODDI and DTI measures to large white matter tracts and subcortical gray nuclei. We further identified genotype by sex interactions, suggesting a possible role for biological sex in the neuropathogenesis of AxD.
Collapse
Affiliation(s)
- Nicholas A. Stowe
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ajay P. Singh
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian R. Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paloma C. Frautschi
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Tracy L Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - John-Paul J. Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
2
|
Pajares MA, Hernández-Gerez E, Pekny M, Pérez-Sala D. Alexander disease: the road ahead. Neural Regen Res 2023; 18:2156-2160. [PMID: 37056123 DOI: 10.4103/1673-5374.369097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein, a type III intermediate filament protein expressed in astrocytes. Both early (infantile or juvenile) and adult onsets of the disease are known and, in both cases, astrocytes present characteristic aggregates, named Rosenthal fibers. Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner. Although the presence of aggregates suggests a proteostasis problem of the mutant forms, this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased. Additionally, several isoforms of glial fibrillary acidic protein have been described to date, while the impact of the mutations on their expression and proportion has not been exhaustively studied. Moreover, the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered, leading to functional changes that may modify the morphology, positioning, and/or the function of several organelles, in turn, impairing astrocyte normal function and subsequently affecting neurons. In particular, mitochondrial function, redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes. To study the disease and to develop putative therapeutic strategies, several experimental models have been developed, a collection that is in constant growth. The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations, together with the availability of new and more relevant experimental models, holds promise for the design and assay of novel therapeutic strategies.
Collapse
Affiliation(s)
- María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Elena Hernández-Gerez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; University of Newcastle, Newcastle, NSW, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
3
|
Alexander AL, Lim SY, Massingham LJ, Phillips O, Chambers MK, Donahue JE. Pathologic Alexander Disease with Normal GFAP Sequencing: An Autopsy Case Report and Literature Review. J Neuropathol Exp Neurol 2022; 81:1033-1036. [PMID: 36137250 DOI: 10.1093/jnen/nlac086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Abigail L Alexander
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Swee Yang Lim
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | | | - Oliver Phillips
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | | | - John E Donahue
- Division of Neuropathology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Heshmatzad K, Naderi N, Masoumi T, Pouraliakbar H, Kalayinia S. Identification of a novel de novo pathogenic variant in GFAP in an Iranian family with Alexander disease by whole-exome sequencing. Eur J Med Res 2022; 27:174. [PMID: 36088400 PMCID: PMC9464415 DOI: 10.1186/s40001-022-00799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Alexander disease (AxD) is a rare leukodystrophy with an autosomal dominant inheritance mode. Variants in GFAP lead to this disorder and it is classified into three distinguishable subgroups: infantile, juvenile, and adult-onset types. Objective The aim of this study is to report a novel variant causing AxD and collect all the associated variants with juvenile and adult-onset as well. Methods We report a 2-year-old female with infantile AxD. All relevant clinical and genetic data were evaluated. Search strategy for all AxD types was performed on PubMed. The extracted data include total recruited patients, number of patients carrying a GFAP variant, nucleotide and protein change, zygosity and all the clinical symptoms. Results A novel de novo variant c.217A > G: p. Met73Val was found in our case by whole-exome sequencing. In silico analysis categorized this variant as pathogenic. Totally 377 patients clinically diagnosed with juvenile or adult-onset forms were recruited in these articles, among them 212 patients were affected with juvenile or adult-onset form carrier of an alteration in GFAP. A total of 98 variants were collected. Among these variants c.262C > T 11/212 (5.18%), c.1246C > T 9/212 (4.24%), c.827G > T 8/212 (3.77%), c.232G > A 6/212 (2.83%) account for the majority of reported variants. Conclusion This study highlighted the role of genetic in AxD diagnosing. It also helps to provide more information in order to expand the genetic spectrum of Iranian patients with AxD. Our literature review is beneficial in defining a better genotype–phenotype correlation of AxD disorder.
Collapse
|
5
|
Zardadi S, Razmara E, Rasoulinezhad M, Babaei M, Ashrafi MR, Pak N, Garshasbi M, Tavasoli AR. Symptomatic care of late-onset Alexander disease presenting with area postrema-like syndrome with prednisolone; a case report. BMC Pediatr 2022; 22:412. [PMID: 35831840 PMCID: PMC9277918 DOI: 10.1186/s12887-022-03468-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alexander disease (AxD) is classified into AxD type I (infantile) and AxD type II (juvenile and adult form). We aimed to determine the potential genetic cause(s) contributing to the AxD type II manifestations in a 9-year-old male who presented area postrema-like syndrome and his vomiting and weight loss improved after taking prednisolone. Case presentation A normal cognitive 9-year-old boy with persistent nausea, vomiting, and a significant weight loss at the age of 6 years was noticed. He also experienced an episode of status epilepticus with generalized atonic seizures. He showed non-febrile infrequent multifocal motor seizures at the age of 40 days which were treated with phenobarbital. He exhibited normal physical growth and neurologic developmental milestones by the age of six. Occasionally vomiting unrelated to feeding was reported. Upon examination at 9 years, a weak gag reflex, prominent drooling, exaggerated knee-deep tendon reflexes (3+), and nasal tone speech was detected. All gastroenterological, biochemical, and metabolic assessments were normal. Brain magnetic resonance imaging (MRI) revealed bifrontal confluent deep and periventricular white matter signal changes, fine symmetric frontal white matter and bilateral caudate nucleus involvements with garland changes, and a hyperintense tumefactive-like lesion in the brain stem around the floor of the fourth ventricle and area postrema with contrast uptake in post-contrast T1-W images. Latter MRI at the age of 8 years showed enlarged area postrema lesion and bilateral middle cerebellar peduncles and dentate nuclei involvements. Due to clinical and genetic heterogeneities, whole-exome sequencing was performed and the candidate variant was confirmed by Sanger sequencing. A de novo heterozygous mutation, NM_001242376.1:c.262 C > T;R88C in exon 1 of the GFAP (OMIM: 137,780) was verified. Because of persistent vomiting and weight loss of 6.0 kg, prednisolone was prescribed which brought about ceasing vomiting and led to weight gaining of 3.0 kg over the next 3 months after treatment. Occasional attempts to discontinue prednisolone had been resulting in the reappearance of vomiting. Conclusions This study broadens the spectrum of symptomatic treatment in leukodystrophies and also shows that R88C mutation may lead to a broad range of phenotypes in AxD type II patients.
Collapse
Affiliation(s)
- Safoura Zardadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Present affiliation: Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ehsan Razmara
- Present affiliation: Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia.,Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Rasoulinezhad
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Reza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Pediatric Radiology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Kang YR, Lee SH, Lin NH, Lee SJ, Yang AW, Chandrasekaran G, Kang KW, Jin MS, Kim MK, Perng MD, Choi SY, Nam TS. A novel in-frame GFAP p.E138_L148del mutation in Type II Alexander disease with atypical phenotypes. Eur J Hum Genet 2022; 30:687-694. [PMID: 35246666 DOI: 10.1038/s41431-022-01073-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alexander disease (AxD) is a neurodegenerative astrogliopathy caused by mutation in the glial fibrillary acidic protein (GFAP) gene. A 42-year-old Korean man presented with temporary gait disturbance and psychiatric regression after a minor head trauma in the absence of bulbar symptoms and signs. Magnetic resonance images of the brain and spinal cord showed significant atrophy of the medulla oblongata and the entire spinal cord as well as contrast-enhanced T2 hypointensity in the basal ganglia. DNA sequencing revealed a novel 33-bp in-frame deletion mutation (p.Glu138_Leu148del) within the 1B rod domain of GFAP, which was predicted to be deleterious by PROVEAN analysis. To test whether the deletion mutant is disease-causing, we performed in vitro GFAP assembly and sedimentation assays, and GFAP aggregation assays in human adrenal carcinoma SW13 (Vim-) cells and rat primary astrocytes. All the assays revealed that GFAP p.Glu138_Leu148del is aggregation prone. Based on these findings, we diagnosed the patient with Type II AxD. This is a report that demonstrates the pathogenicity of InDel mutation of GFAP through functional studies. This patient's atypical presentation as well as the discrepancy between clinical symptoms and radiologic findings may extend the scope of AxD.
Collapse
Affiliation(s)
- You-Ri Kang
- Department of Neurology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - So-Hyun Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Seung-Jin Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Ai-Wen Yang
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | - Kyung Wook Kang
- Department of Neurology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
7
|
Grossi A, Morelli F, Di Duca M, Caroli F, Moroni I, Tonduti D, Bachetti T, Ceccherini I. Parental Somatic Mosaicism Uncovers Inheritance of an Apparently De Novo GFAP Mutation. Front Genet 2021; 12:744068. [PMID: 34950187 PMCID: PMC8688950 DOI: 10.3389/fgene.2021.744068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Alexander disease is a leukodystrophy caused by heterozygous mutations of GFAP gene. Recurrence in siblings from healthy parents provides a confirmation to the transmission of variants through germinal mosaicism. With the use of DNA isolated from peripheral blood, next-generation sequencing (NGS) of GFAP locus was performed with deep coverage (≥500×) in 11 probands and their parents (trios) with probands heterozygous for apparently de novo GFAP mutations. Indeed, one parent had somatic mosaicism, estimated in the range of 8.9%–16%, for the mutant allele transmitted to the affected sibling. Parental germline mosaicism deserves attention, as it is critical in assessing the risk of recurrence in families with Alexander disease.
Collapse
Affiliation(s)
- Alice Grossi
- UOSD Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Morelli
- UOSD Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Caroli
- UOSD Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology - C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Tiziana Bachetti
- UOSD Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Laboratory of Developmental Neuro-Biology, DISTAV, University of Genoa, Genoa, Italy
| | - Isabella Ceccherini
- UOSD Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
8
|
Heshmatzad K, Haghi Panah M, Tavasoli AR, Ashrafi MR, Mahdieh N, Rabbani B. GFAP variants leading to infantile Alexander disease: Phenotype and genotype analysis of 135 cases and report of a de novo variant. Clin Neurol Neurosurg 2021; 207:106754. [PMID: 34146839 DOI: 10.1016/j.clineuro.2021.106754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Alexander disease (AxD) is a rare autosomal dominant disorder due to GFAP mutations; infantile AxD is the most common severe form which usually results in death. In this study, phenotype and genotype analysis of all reported cases with IAxD are reported as well as a de novo variant. METHODS We conduct a comprehensive review on all reported Infantile AxD due to GFAP mutation. Clinical data and genetics of the reported patients were analyzed. Clinical evaluations, pedigree drawing, MRI and sequencing of GFAP were performed. RESULTS 135 patients clinically diagnosed with IAxD had GFAP mutations. A total of fifty three variants of GFAP were determined; 19 of them were located at 1A domain. The four common prevalent variants (c 0.715C>T, c 0.236G˃A, c 0.716G˃A, and c 0.235C˃T) were responsible for 64/135 (47.4%) of the patients. Seizure was the dominant clinical symptom (62.3%) followed by macrocephaly (41%), developmental delay (23.9%) and spasticity (23.9%). A de novo variant c 0.715C˃T was found in the presented Iranian case. DISCUSSION The majority of GFAP variant are located in a specific domain of the protein. Seizure as the most common symptom of IAxD could be considered. This study highlighted the role of genetic testing for diagnosing AxD.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Haghi Panah
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Iranian Comprehensive Hemophilia Care Center, Tehran, Iran.
| |
Collapse
|
9
|
Does genetic anticipation occur in familial Alexander disease? Neurogenetics 2021; 22:215-219. [PMID: 34046764 PMCID: PMC8241638 DOI: 10.1007/s10048-021-00642-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022]
Abstract
Alexander Disease (AxD) is a rare leukodystrophy caused by missense mutations of glial fibrillary acidic protein (GFAP). Primarily seen in infants and juveniles, it can present in adulthood. We report a family with inherited AxD in which the mother presented with symptoms many years after her daughter. We reviewed the age of onset in all published cases of familial AxD and found that 32 of 34 instances of parent–offspring pairs demonstrated an earlier age of onset in offspring compared to the parent. We suggest that genetic anticipation occurs in familial AxD and speculate that genetic mosaicism could explain this phenomenon.
Collapse
|
10
|
Liang JS, Lin LJ, Lin HC, Yang MT, Wang JS, Lu JF. An unusual GFAP mutation in a Taiwanese child with infantile Alexander disease. Pediatr Neonatol 2018; 59:624-627. [PMID: 29339051 DOI: 10.1016/j.pedneo.2017.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
- Jao-Shwann Liang
- Departments of Pediatrics, Far Eastern Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Li-Ju Lin
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Haung-Chi Lin
- Departments of Pediatrics, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Ming-Tao Yang
- Departments of Pediatrics, Far Eastern Hospital, Taipei, Taiwan; Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan
| | - Jinn-Shyan Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jyh-Feng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Abstract
We describe the rare condition known as Alexander's disease or Alexander's leukodystrophy, which is essentially a childhood dementia. We then present the case of Louise Davies (we are using Louise's real name with the permission and special request of her mother), a woman who was diagnosed with this disease at the age of 5 years and is still alive at the age of 38, making her the longest known survivor of this condition. Although now severely impaired, both physically and mentally, and able to do very little, she has lived far longer than expected. We present some neuropsychological results from her childhood before measuring her decline over the past four years. We conclude by considering whether or not the diagnosis was correct and why she has lived so long.
Collapse
Affiliation(s)
- Barbara A Wilson
- a Neuropsychology, The Oliver Zangwill Centre , Ely , UK.,b Neuropsychology, The Raphael Medical Centre , London , UK
| | - Faraneh Vargha-Khadem
- c Head Office , UCL Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust , Tonbridge , UK
| | | |
Collapse
|