1
|
Schwarz L, Heise J, Liu Z, Bennewitz J, Thaller G, Tetens J. Mendelian randomisation to uncover causal associations between conformation, metabolism, and production as potential exposure to reproduction in German Holstein dairy cattle. Genet Sel Evol 2025; 57:7. [PMID: 40000939 PMCID: PMC11863791 DOI: 10.1186/s12711-025-00950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Reproduction is vital to welfare, health, and economics in animal husbandry and breeding. Health and reproduction are increasingly being considered because of the observed genetic correlations between reproduction, health, conformation, and performance traits in dairy cattle. Understanding the detailed genetic architecture underlying these traits would represent a major step in comprehending their interplay. Identifying known, putative or novel associations in genomics could improve animal health, welfare, and performance while allowing further adjustments in animal breeding. RESULTS We conducted genome-wide association studies for 25 different traits belonging to four different complexes, namely reproduction (n = 13), conformation (n = 6), production (n = 3), and metabolism (n = 3), using a cohort of over 235,000 dairy cows. As a result, we identified genome-wide significant signals for all the studied traits. The obtained summary statistics collected served as the input for a Mendelian randomisation approach (GSMR) to infer causal associations between putative exposure and reproduction traits. The study considered conformation, production, and metabolism as exposure and reproduction as outcome. A range of 139 to 252 genome-wide significant SNPs per combination were identified as instrumental variables (IVs). Out of 156 trait combinations, 135 demonstrated statistically significant effects, thereby enabling the identification of the responsible IVs. Combinations of traits related to metabolism (38 out of 39), conformation (68 out of 78), or production (29 out of 39) were found to have significant effects on reproduction. These relationships were partially non-linear. Moreover, a separate variance component estimation supported these findings, strongly correlating with the GSMR results and offering suggestions for improvement. Downstream analyses of selected representative traits per complex resulted in identifying and investigating potential physiological mechanisms. Notably, we identified both trait-specific SNPs and genes that appeared to influence specific traits per complex, as well as more general SNPs that were common between exposure and outcome traits. CONCLUSIONS Our study confirms the known genetic associations between reproduction traits and the three complexes tested. It provides new insights into causality, indicating a non-linear relationship between conformation and reproduction. In addition, the downstream analyses have identified several clustered genes that may mediate this association.
Collapse
Affiliation(s)
- Leopold Schwarz
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany.
| | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Zengting Liu
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| |
Collapse
|
2
|
van den Berg I, Chamberlain AJ, MacLeod IM, Nguyen TV, Goddard ME, Xiang R, Mason B, Meier S, Phyn CVC, Burke CR, Pryce JE. Using expression data to fine map QTL associated with fertility in dairy cattle. Genet Sel Evol 2024; 56:42. [PMID: 38844868 PMCID: PMC11154999 DOI: 10.1186/s12711-024-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to combine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated with fertility in both Australia and New Zealand dairy cattle populations. RESULTS Variants that were significantly associated with calving interval (CI) were strongly enriched for variants associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial overlap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read sequencing may be useful. CONCLUSIONS Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped with eQTL, providing candidate genes for fertility in dairy cattle.
Collapse
Affiliation(s)
- Irene van den Berg
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia.
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Tuan V Nguyen
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Mike E Goddard
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brett Mason
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | | | | | | | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
3
|
Sharma P, Senapati S, Goyal LD, Kaur B, Kamra P, Khetarpal P. Genome-wide association study (GWAS) identified PCOS susceptibility variants and replicates reported risk variants. Arch Gynecol Obstet 2024; 309:2009-2019. [PMID: 38421422 DOI: 10.1007/s00404-024-07400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Genetic predisposition and environmental factors are considered risk factors for polycystic ovary syndrome (PCOS). Genome-wide association studies (GWAS) have been reported from various subpopulations to evaluate SNPs associated with PCOS risk. No PCOS-associated GWAS study has been reported from India so far. PURPOSE The current study was conducted to identify the PCOS-susceptible loci among the North Indian population and to validate the significant loci reported by previous GWAS studies. METHODS A total of 272 participants with 134 PCOS patients and 138 age-matched healthy controls were recruited. Genomic DNA was isolated and genotyped by using Infinium Global Screening Array v3.0 microchip considering HWE 10e-5 statistically significant. RESULTS A total of fifteen markers have been identified as candidate PCOS risk factors. Only two SNPs, namely rs17186366 and rs11171739 have been identified through replication analysis while comparing the previously reported PCOS GWAS data. In-silico analysis was performed to study the functional impact of identified significant genes for gene ontology, pathways related to gene set, and cluster analysis to determine protein-protein interaction among genes or gene products. CONCLUSION The study suggests that multiple variants play an important role in PCOS pathogenesis and emphasizes the importance of further genetic studies among Indian subpopulations. The study also validates two previously reported SNPs in the Indian population. What this study adds to clinical work Study summarizes the importance of candidate gene markers validated by replication and in-silico functional study, significantly involved in PCOS pathogenesis in the studied population. These markers can be used in the future as diagnostic markers for clinical phenotype identification.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sabyasachi Senapati
- Laboratory of Immunogenomics, Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, 151401, India
| | - Lajya Devi Goyal
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, 151001, India
| | - Balpreet Kaur
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, 151001, India
| | - Pooja Kamra
- Department of Obstetrics and Gynaecology, Kamra Hospital, Malout, 152107, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Stamou MI, Smith KT, Kim H, Balasubramanian R, Gray KJ, Udler MS. Polycystic Ovary Syndrome Physiologic Pathways Implicated Through Clustering of Genetic Loci. J Clin Endocrinol Metab 2024; 109:968-977. [PMID: 37967238 PMCID: PMC10940264 DOI: 10.1210/clinem/dgad664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, with disease loci identified from genome-wide association studies (GWAS) having largely unknown relationships to disease pathogenesis. OBJECTIVE This work aimed to group PCOS GWAS loci into genetic clusters associated with disease pathophysiology. METHODS Cluster analysis was performed for 60 PCOS-associated genetic variants and 49 traits using GWAS summary statistics. Cluster-specific PCOS partitioned polygenic scores (pPS) were generated and tested for association with clinical phenotypes in the Mass General Brigham Biobank (MGBB, N = 62 252). Associations with clinical outcomes (type 2 diabetes [T2D], coronary artery disease [CAD], and female reproductive traits) were assessed using both GWAS-based pPS (DIAMANTE, N = 898,130, CARDIOGRAM/UKBB, N = 547 261) and individual-level pPS in MGBB. RESULTS Four PCOS genetic clusters were identified with top loci indicated as following: (i) cluster 1/obesity/insulin resistance (FTO); (ii) cluster 2/hormonal/menstrual cycle changes (FSHB); (iii) cluster 3/blood markers/inflammation (ATXN2/SH2B3); (iv) cluster 4/metabolic changes (MAF, SLC38A11). Cluster pPS were associated with distinct clinical traits: Cluster 1 with increased body mass index (P = 6.6 × 10-29); cluster 2 with increased age of menarche (P = 1.5 × 10-4); cluster 3 with multiple decreased blood markers, including mean platelet volume (P = 3.1 ×10-5); and cluster 4 with increased alkaline phosphatase (P = .007). PCOS genetic clusters GWAS-pPSs were also associated with disease outcomes: cluster 1 pPS with increased T2D (odds ratio [OR] 1.07; P = 7.3 × 10-50), with replication in MGBB all participants (OR 1.09, P = 2.7 × 10-7) and females only (OR 1.11, 4.8 × 10-5). CONCLUSION Distinct genetic backgrounds in individuals with PCOS may underlie clinical heterogeneity and disease outcomes.
Collapse
Affiliation(s)
- Maria I Stamou
- Reproductive Endocrine Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kirk T Smith
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyunkyung Kim
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kathryn J Gray
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
5
|
Liu H, Tu M, Yin Z, Zhang D, Ma J, He F. Unraveling the complexity of polycystic ovary syndrome with animal models. J Genet Genomics 2024; 51:144-158. [PMID: 37777062 DOI: 10.1016/j.jgg.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatment of PCOS is currently hindered by the complexity of its clinical manifestations and incomplete knowledge of its etiopathogenesis. Various animal models, including experimentally induced, naturally occurring, and spontaneously arising ones, have been established to emulate a wide range of phenotypical and pathological traits of human PCOS. These studies have led to a paradigm shift in understanding the genetic, developmental, and evolutionary origins of this disorder. Furthermore, emerging evidence suggests that animal models are useful in evaluating state-of-the-art drugs and treatments for PCOS. This review aims to provide a comprehensive summary of recent studies of PCOS in animal models, highlighting the power of these disease models in understanding the biology of PCOS and aiding high-throughput approaches.
Collapse
Affiliation(s)
- Huanju Liu
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mixue Tu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyong Yin
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | - Jun Ma
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| | - Feng He
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Nisa KU, Tarfeen N, Mir SA, Waza AA, Ahmad MB, Ganai BA. Molecular Mechanisms in the Etiology of Polycystic Ovary Syndrome (PCOS): A Multifaceted Hypothesis Towards the Disease with Potential Therapeutics. Indian J Clin Biochem 2024; 39:18-36. [PMID: 38223007 PMCID: PMC10784448 DOI: 10.1007/s12291-023-01130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023]
Abstract
Among the premenopausal women, Polycystic Ovary Syndrome (PCOS) is the most prevalent endocrinopathy affecting the reproductive system and metabolic rhythms leading to disrupted menstrual cycle. Being heterogeneous in nature it is characterized by complex symptomology of oligomennorhoea, excess of androgens triggering masculine phenotypic appearance and/or multiple follicular ovaries. The etiology of this complex disorder remains somewhat doubtful and the researchers hypothesize multisystem links in the pathogenesis of this disease. In this review, we attempt to present several hypotheses that tend to contribute to the etiology of PCOS. Metabolic inflexibility, aberrant pattern of gonadotropin signaling along with the evolutionary, genetic and environmental factors have been discussed. Considered a lifelong endocrinological implication, no universal treatment is available for PCOS so far however; multiple drug therapy is often advised along with simple life style intervention is mainly advised to manage its cardinal symptoms. Here we aimed to present a summarized view of pathophysiological links of PCOS with potential therapeutic strategies.
Collapse
Affiliation(s)
- Khair Ul Nisa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006 India
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Najeebul Tarfeen
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Shahnaz Ahmad Mir
- Department of Endocrinology, Government Medical College, Shireen Bagh, Srinagar, 190010 India
| | - Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical Collage (GMC), Srinagar, 190010 India
| | - Mir Bilal Ahmad
- Department of Biochemistry, University of Kashmir, Srinagar, 190006 India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| |
Collapse
|
7
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Babu A, Ramanathan G. Multi-omics insights and therapeutic implications in polycystic ovary syndrome: a review. Funct Integr Genomics 2023; 23:130. [PMID: 37079114 DOI: 10.1007/s10142-023-01053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease that causes adverse effects in women in their reproductive phase. Nonetheless, the molecular mechanisms remain unclear. Over the last decade, sequencing and omics approaches have advanced at an increased pace. Omics initiatives have come to the forefront of biomedical research by presenting the significance of biological functions and processes. Thus, multi-omics profiling has yielded important insights into understanding the biology of PCOS by identifying potential biomarkers and therapeutic targets. Multi-omics platforms provide high-throughput data to leverage the molecular mechanisms and pathways involving genetic alteration, epigenetic regulation, transcriptional regulation, protein interaction, and metabolic alterations in PCOS. The purpose of this review is to outline the prospects of multi-omics technologies in PCOS research by revealing novel biomarkers and therapeutic targets. Finally, we address the knowledge gaps and emerging treatment strategies for the management of PCOS. Future PCOS research in multi-omics at the single-cell level may enhance diagnostic and treatment options.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Singh R, Kaur S, Yadav S, Bhatia S. Gonadotropins as pharmacological agents in assisted reproductive technology and polycystic ovary syndrome. Trends Endocrinol Metab 2023; 34:194-215. [PMID: 36863888 DOI: 10.1016/j.tem.2023.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 03/04/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrinopathy associated with subfertility/infertility and pregnancy complications. Most PCOS women opt for assisted reproductive technologies (ART) for successful conception; however, optimization of the relative doses of the gonadotropins [follicle-stimulating hormone (FSH), luteinizing hormone (LH)/human chorionic gonadotropin (hCG)] for appropriate steroidogenesis, without causing ovarian hyperstimulatory syndrome (OHSS), is challenging. Embryonic factors probably do not contribute to pregnancy loss in PCOS women, albeit hormonal imbalance impairs the metabolic microenvironment critical for oocyte maturation and endometrial receptivity. Certain clinical studies have confirmed the role of metabolic corrections in increasing the rate of pregnancy in PCOS women. This review focuses on the impact of untimely high LHCGR and/or LH levels on oocyte/embryo quality, pregnancy outcomes in ART, and exploring LHCGR as a potential drug target in PCOS women.
Collapse
Affiliation(s)
- Rita Singh
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi, India.
| | - Surleen Kaur
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi, India
| | - Suman Yadav
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi, India
| | - Smita Bhatia
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Tamaoka S, Saito K, Yoshida T, Nakabayashi K, Tatsumi K, Kawamura T, Matsuzaki T, Matsubara K, Ogata‐Kawata H, Hata K, Kato‐Fukui Y, Fukami M. Exome-based genome-wide screening of rare variants associated with the risk of polycystic ovary syndrome. Reprod Med Biol 2023; 22:e12504. [PMID: 36845002 PMCID: PMC9947624 DOI: 10.1002/rmb2.12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023] Open
Abstract
Purpose Genetic factors associated with the risk of polycystic ovary syndrome (PCOS) remain largely unknown. Here, we conducted an optimal sequence kernel association test (SKAT-O), an exome-based rare variant association study, to clarify whether rare variants in specific genes contribute to the development of PCOS. Methods SKAT-O was performed using exome data of 44 Japanese patients with PCOS and 301 control women. We analyzed frequencies of rare probably damaging variants in the genome. Results Rare variants of GSTO2 were more commonly identified in the patient group than in the control group (6/44 vs. 1/301; Bonferroni-corrected p-value, 0.028), while the frequencies of variants in other genes were comparable between the two groups. The identified GSTO2 variants were predicted to affect the function, structure, stability, hydrophobicity, and/or the formation of intrinsically disordered regions of the protein. GSTO2 encodes a glutathione transferase that mediates the oxidative stress response and arsenic metabolism. Previously, common variants in GSTO2 and its paralog GSTO1 were associated with the risk of PCOS. Conclusions The results indicate that there are no genes whose rare variants account for a large fraction of the etiology of PCOS, although rare damaging variants in GSTO2 may constitute a risk factor in some cases.
Collapse
Affiliation(s)
- Satoshi Tamaoka
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Kazuki Saito
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of Perinatal and Maternal Medicine (Ibaraki), Graduate SchoolTokyo Medical and Dental UniversityTokyoJapan
| | - Tomoko Yoshida
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Kazuhiko Nakabayashi
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | | | | | - Toshiya Matsuzaki
- Department of Obstetrics and GynecologyYoshinogawa Medical CenterTokushimaJapan
| | - Keiko Matsubara
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Hiroko Ogata‐Kawata
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Kenichiro Hata
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Yuko Kato‐Fukui
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Maki Fukami
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
11
|
Rani S, Chandna P. Multiomics Analysis-Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod Sci 2023; 30:1-27. [PMID: 35084716 PMCID: PMC10010205 DOI: 10.1007/s43032-022-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Polycystic ovarian syndrome is an utmost communal endocrine, psychological, reproductive, and metabolic disorder that occurs in women of reproductive age with extensive range of clinical manifestations. This may even lead to long-term multiple morbidities including obesity, diabetes mellitus, insulin resistance, cardiovascular disease, infertility, cerebrovascular diseases, and ovarian and endometrial cancer. Women affliction from PCOS in midst assemblage of manifestations allied with menstrual dysfunction and androgen exorbitance, which considerably affects eminence of life. PCOS is recognized as a multifactorial disorder and systemic syndrome in first-degree family members; therefore, the etiology of PCOS syndrome has not been copiously interpreted. The disorder of PCOS comprehends numerous allied health conditions and has influenced various metabolic processes. Due to multifaceted pathophysiology engaging several pathways and proteins, single genetic diagnostic tests cannot be supportive to determine in straight way. Clarification of cellular and biochemical pathways and various genetic players underlying PCOS could upsurge our consideration of pathophysiology of this syndrome. It is requisite to know pathophysiological relationship between biomarker and their reflection towards PCOS disease. Biomarkers deliver vibrantly and potent ways to apprehend the spectrum of PCOS with applications in screening, diagnosis, characterization, and monitoring. This paper relies on the endeavor to point out many candidates as potential biomarkers based on omics technologies, thus highlighting correlation between PCOS disease with innovative technologies. Therefore, the objective of existing review is to encapsulate more findings towards cutting-edge advances in prospective use of biomarkers for PCOS disease. Discussed biomarkers may be fruitful in guiding therapies, addressing disease risk, and predicting clinical outcomes in future.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi , 110021, India.
| | - Piyush Chandna
- Natdynamics Biosciences Confederation, Gurgaon, Haryana, 122001, India
| |
Collapse
|
12
|
Dapas M, Dunaif A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr Rev 2022; 43:927-965. [PMID: 35026001 PMCID: PMC9695127 DOI: 10.1210/endrev/bnac001] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is among the most common disorders in women of reproductive age, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities, including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Alarcón-Granados MC, Moreno-Ortíz H, Esteban-Pérez CI, Ferrebuz-Cardozo A, Camargo-Villalba GE, Forero-Castro M. Assessment of THADA gene polymorphisms in a sample of Colombian women with polycystic ovary syndrome: A pilot study. Heliyon 2022; 8:e09673. [PMID: 35711992 PMCID: PMC9194581 DOI: 10.1016/j.heliyon.2022.e09673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/20/2021] [Accepted: 05/31/2022] [Indexed: 01/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial and polygenic endocrine-metabolic disorder in women of reproductive age. SNPs in the THADA gene have been identified as PCOS risk loci. In this study, we evaluated the frequency of five polymorphisms in a sample of Colombian women with PCOS, and their association with clinical and endocrine-metabolic parameters. Forty-nine women with PCOS and forty-nine healthy women were included. Allelic discrimination was performed in the THADA gene by iPLEX and the MassARRAY system (Agena Bioscience). Haploview software was conducted to analyze the linkage disequilibrium (LD) and haplotypes of polymorphisms. There was an association between the genotypes TT of rs12468394, CC + AA of rs12468394, and GG of rs6544661 and an increase in the levels of free testosterone. The CC + AA of rs12468394 genotype also was associated with an increase of androstenedione levels. THADA gene SNPs were not associated with PCOS risk. There was very strong LD among the SNPs. No significant differences in the frequency of haplotypes between groups were observed. The statistical power of this analysis is low because of the small number of samples analyzed. Additional studies involving large populations of Colombian women with PCOS are needed to verify the role of the THADA gene in this disorder.
Collapse
Affiliation(s)
- Maria Camila Alarcón-Granados
- Facultad de Ciencias. Grupo de Investigación en Ciencias Biomédicas (GICBUPTC). Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | | | | | - Atilio Ferrebuz-Cardozo
- Programa de Medicina. Facultad de Ciencias de La Salud. Universidad de Boyacá, Tunja, Colombia
| | | | - Maribel Forero-Castro
- Facultad de Ciencias. Grupo de Investigación en Ciencias Biomédicas (GICBUPTC). Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
14
|
Nautiyal H, Imam SS, Alshehri S, Ghoneim MM, Afzal M, Alzarea SI, Güven E, Al-Abbasi FA, Kazmi I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 2022; 10:biomedicines10030540. [PMID: 35327342 PMCID: PMC8945152 DOI: 10.3390/biomedicines10030540] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine disorder affecting females in their reproductive age. The early diagnosis of PCOS is complicated and complex due to overlapping symptoms of this disease. The most accepted diagnostic approach today is the Rotterdam Consensus (2003), which supports the positive diagnosis of PCOS when patients present two out of the following three symptoms: biochemical and clinical signs of hyperandrogenism, oligo, and anovulation, also polycystic ovarian morphology on sonography. Genetic variance, epigenetic changes, and disturbed lifestyle lead to the development of pathophysiological disturbances, which include hyperandrogenism, insulin resistance, and chronic inflammation in PCOS females. At the molecular level, different proteins and molecular and signaling pathways are involved in disease progression, which leads to the failure of a single genetic diagnostic approach. The genetic approach to elucidate the mechanism of pathogenesis of PCOS was recently developed, whereby four phenotypic variances of PCOS categorize PCOS patients into classic, ovulatory, and non-hyperandrogenic types. Genetic studies help to identify the root cause for the development of this PCOS. PCOS genetic inheritance is autosomal dominant but the latest investigations revealed it as a multigene origin disease. Different genetic loci and specific genes have been identified so far as being associated with this disease. Genome-wide association studies (GWAS) and related genetic studies have changed the scenario for the diagnosis and treatment of this reproductive and metabolic condition known as PCOS. This review article briefly discusses different genes associated directly or indirectly with disease development and progression.
Collapse
Affiliation(s)
- Himani Nautiyal
- Siddhartha Institute of Pharmacy, Near IT-Park, Sahastradhara Road, Dehradun 248001, India;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Emine Güven
- Biomedical Engineering Department, Faculty of Engineering, Düzce University, Düzce 81620, Turkey;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| |
Collapse
|
15
|
Epistasis Detection via the Joint Cumulant. STATISTICS IN BIOSCIENCES 2022. [DOI: 10.1007/s12561-022-09336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
A S, Wu H, Wang X, Wang X, Yang J, Xia L, Xia Y. Value of glycogen synthase 2 in intrahepatic cholangiocarcinoma prognosis assessment and its influence on the activity of cancer cells. Bioengineered 2021; 12:12167-12178. [PMID: 34783271 PMCID: PMC8810034 DOI: 10.1080/21655979.2021.2005224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver tumor with increasing incidence worldwide. Metabolic reprogramming caused by metabolic related gene disorders is a prominent hallmark of tumors, among which Glycogen Synthase 2 (GYS2) is the key gene responsible for regulating cellular energy metabolism, and its expression disorders are closely related to various tumors and glycometabolic diseases. However, we still know nothing about its role in ICC. This study is intended to reveal the functional role of GYS2 in the ICC progress and explore the underlying mechanism. Based on the integrated pan-cancer analysis of GYS2 in the GEPIA database, the expression of GYS2 in paired ICC and adjacent non tumor tissues was detected by qPCR. It was found that the expression of GYS2 was significantly down-regulated in ICC. Further analysis showed that its low expression was not only associated with the degree of pathological differentiation, tumor size, microvascular invasion and lymph node metastasis, but also an independent risk factor for unfavorable prognosis. Functional studies have shown that GYS2 overexpression can significantly impair the proliferation, replication, cloning, migration and invasion of cholangiocarcinoma cells, while the silencing GYS2 dramatically promotes the development of the aforementioned phenotypes, the underlying mechanism may be that GYS2 activates the P53 pathway. In conclusions,low GYS2 expression in ICC predicted unfavorable patient outcomes; GYS2 overexpression could significantly impair the proliferation, migration and invasion of cholangiocarcinoma cells via activating the P53 pathway and GYS2 was expected to become a potential therapeutic target for such patients.
Collapse
Affiliation(s)
- Sigen A
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Huijun Wu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Xiaodong Wang
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Xidong Wang
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Jiarui Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Xia
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Yijun Xia
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| |
Collapse
|
17
|
Tarbeeva S, Lyamtseva E, Lisitsa A, Kozlova A, Ponomarenko E, Ilgisonis E. ScanBious: Survey for Obesity Genes Using PubMed Abstracts and DisGeNET. J Pers Med 2021; 11:246. [PMID: 33805313 PMCID: PMC8065449 DOI: 10.3390/jpm11040246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
We used automatic text-mining of PubMed abstracts of papers related to obesity, with the aim of revealing that the information used in abstracts reflects the current understanding and key concepts of this widely explored problem. We compared expert data from DisGeNET to the results of an automated MeSH (Medical Subject Heading) search, which was performed by the ScanBious web tool. The analysis provided an overview of the obesity field, highlighting major trends such as physiological conditions, age, and diet, as well as key well-studied genes, such as adiponectin and its receptor. By intersecting the DisGeNET knowledge with the ScanBious results, we deciphered four clusters of obesity-related genes. An initial set of 100+ thousand abstracts and 622 genes was reduced to 19 genes, distributed among just a few groups: heredity, inflammation, intercellular signaling, and cancer. Rapid profiling of articles could drive personalized medicine: if the disease signs of a particular person were superimposed on a general network, then it would be possible to understand which are non-specific (observed in cohorts and, therefore, most likely have known treatment solutions) and which are less investigated, and probably represent a personalized case.
Collapse
Affiliation(s)
- Svetlana Tarbeeva
- International School “Medicine of the Future”, Sechenov University, 119991 Moscow, Russia
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
| | | | - Andrey Lisitsa
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
| | - Anna Kozlova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
- Laboratory of Molecular Design and Synthesis, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elena Ponomarenko
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
| | - Ekaterina Ilgisonis
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
| |
Collapse
|
18
|
Zeber-Lubecka N, Hennig EE. Genetic Susceptibility to Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto's Thyroiditis: How Far Is Our Understanding? Front Immunol 2021; 12:606620. [PMID: 33746952 PMCID: PMC7968419 DOI: 10.3389/fimmu.2021.606620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and Hashimoto’s thyroiditis (HT) are endocrine disorders that commonly occur among young women. A higher prevalence of HT in women with PCOS, relative to healthy individuals, is observed consistently. Combined occurrence of both diseases is associated with a higher risk of severe metabolic and reproductive complications. Genetic factors strongly impact the pathogenesis of both PCOS and HT and several susceptibility loci associated with a higher risk of both disorders have been identified. Furthermore, some candidate gene polymorphisms are thought to be functionally relevant; however, few genetic variants are proposed to be causally associated with the incidence of both disorders together.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Ewa E Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
19
|
A genome-wide association study of polycystic ovary syndrome identified from electronic health records. Am J Obstet Gynecol 2020; 223:559.e1-559.e21. [PMID: 32289280 DOI: 10.1016/j.ajog.2020.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Polycystic ovary syndrome is the most common endocrine disorder affecting women of reproductive age. A number of criteria have been developed for clinical diagnosis of polycystic ovary syndrome, with the Rotterdam criteria being the most inclusive. Evidence suggests that polycystic ovary syndrome is significantly heritable, and previous studies have identified genetic variants associated with polycystic ovary syndrome diagnosed using different criteria. The widely adopted electronic health record system provides an opportunity to identify patients with polycystic ovary syndrome using the Rotterdam criteria for genetic studies. OBJECTIVE To identify novel associated genetic variants under the same phenotype definition, we extracted polycystic ovary syndrome cases and unaffected controls based on the Rotterdam criteria from the electronic health records and performed a discovery-validation genome-wide association study. STUDY DESIGN We developed a polycystic ovary syndrome phenotyping algorithm on the basis of the Rotterdam criteria and applied it to 3 electronic health record-linked biobanks to identify cases and controls for genetic study. In the discovery phase, we performed an individual genome-wide association study using the Geisinger MyCode and the Electronic Medical Records and Genomics cohorts, which were then meta-analyzed. We attempted validation of the significant association loci (P<1×10-6) in the BioVU cohort. All association analyses used logistic regression, assuming an additive genetic model, and adjusted for principal components to control for population stratification. An inverse-variance fixed-effect model was adopted for meta-analysis. In addition, we examined the top variants to evaluate their associations with each criterion in the phenotyping algorithm. We used the STRING database to characterize protein-protein interaction network. RESULTS Using the same algorithm based on the Rotterdam criteria, we identified 2995 patients with polycystic ovary syndrome and 53,599 population controls in total (2742 cases and 51,438 controls from the discovery phase; 253 cases and 2161 controls in the validation phase). We identified 1 novel genome-wide significant variant rs17186366 (odds ratio [OR]=1.37 [1.23, 1.54], P=2.8×10-8) located near SOD2. In addition, 2 loci with suggestive association were also identified: rs113168128 (OR=1.72 [1.42, 2.10], P=5.2×10-8), an intronic variant of ERBB4 that is independent from the previously published variants, and rs144248326 (OR=2.13 [1.52, 2.86], P=8.45×10-7), a novel intronic variant in WWTR1. In the further association tests of the top 3 single-nucleotide polymorphisms with each criterion in the polycystic ovary syndrome algorithm, we found that rs17186366 (SOD2) was associated with polycystic ovaries and hyperandrogenism, whereas rs11316812 (ERBB4) and rs144248326 (WWTR1) were mainly associated with oligomenorrhea or infertility. We also validated the previously reported association with DENND1A1. Using the STRING database to characterize protein-protein interactions, we found both ERBB4 and WWTR1 can interact with YAP1, which has been previously associated with polycystic ovary syndrome. CONCLUSION Through a discovery-validation genome-wide association study on polycystic ovary syndrome identified from electronic health records using an algorithm based on Rotterdam criteria, we identified and validated a novel genome-wide significant association with a variant near SOD2. We also identified a novel independent variant within ERBB4 and a suggestive association with WWTR1. With previously identified polycystic ovary syndrome gene YAP1, the ERBB4-YAP1-WWTR1 network suggests involvement of the epidermal growth factor receptor and the Hippo pathway in the multifactorial etiology of polycystic ovary syndrome.
Collapse
|
20
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
21
|
The Genetics of Polycystic Ovary Syndrome: An Overview of Candidate Gene Systematic Reviews and Genome-Wide Association Studies. J Clin Med 2019; 8:jcm8101606. [PMID: 31623391 PMCID: PMC6832583 DOI: 10.3390/jcm8101606] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/08/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a complex condition with mechanisms likely to involve the interaction between genetics and lifestyle. Familial clustering of PCOS symptoms is well documented, providing evidence for a genetic contribution to the condition. This overview aims firstly to systematically summarise the current literature surrounding genetics and PCOS, and secondly, to assess the methodological quality of current systematic reviews and identify limitations. Four databases were searched to identify candidate gene systematic reviews, and quality was assessed with the AMSTAR tool. Genome-wide association studies (GWAS) were identified by a semi structured literature search. Of the candidate gene systematic reviews, 17 were of high to moderate quality and four were of low quality. A total of 19 gene loci have been associated with risk of PCOS in GWAS, and 11 of these have been replicated across two different ancestries. Gene loci were located in the neuroendocrine, metabolic, and reproductive pathways. Overall, the gene loci with the most robust findings were THADA, FSHR, INS-VNTR, and DENND1A, that now require validation. This overview also identified limitations of the current literature and important methodological considerations for future genetic studies. Much work remains to identify causal variants and functional relevance of genes associated with PCOS.
Collapse
|
22
|
Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism 2019; 92:108-120. [PMID: 30445140 DOI: 10.1016/j.metabol.2018.11.002] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) has multiple etiologies including ovarian and adrenal hyperandrogenism, neuro-endocrine and hypothalamic-pituitary dysfunction, and disorders of peripheral insulin resistance. Obesity is neither necessary nor sufficient for the PCOS phenotype, and the association of PCOS with obesity is not universal, with national, cultural, and ethnic differences. Obesity, particularly visceral adiposity which is common in obese and non-obese women with PCOS, amplifies and worsens all metabolic and reproductive outcomes in PCOS. Obesity increases insulin resistance and compensatory hyperinsulinemia, which in turn increases adipogenesis and decreases lipolysis. Obesity sensitizes thecal cells to LH stimulation and amplifies functional ovarian hyperandrogenism by upregulating ovarian androgen production. Obesity increases inflammatory adipokines which, in turn, increase insulin resistance and adipogenesis. Lifestyle interventions focused on diet-weight loss and concurrent exercise are central to therapy which also commonly subsequently needs to include pharmacologic therapy. PCOS symptoms commonly improve with 5% to 10% weight loss, but 25% to 50% weight loss, usually achievable only through bariatric surgery, may be required for morbid obesity unresponsive to lifestyle-medical treatment. Bariatric surgery is a valuable approach to weight loss in PCOS where BMI is ≥40 kg/m2 when non-surgical treatment and/or induction of pregnancy have failed, and can be an initial treatment when BMI is ≥50 kg/m2. Further research in PCOS is needed to better understand the fundamental basis of the disorder, to ameliorate obesity, to correct hyperandrogenism, ovulation, hyperinsulinemia, and to optimize metabolic homeostasis.
Collapse
Affiliation(s)
- Charles J Glueck
- The Cholesterol, Metabolism, and Thrombosis Research Center, 3906 Middleton Avenue, Cincinnati, OH 45220, United States of America.
| | - Naila Goldenberg
- The Cholesterol, Metabolism, and Thrombosis Research Center, 3906 Middleton Avenue, Cincinnati, OH 45220, United States of America
| |
Collapse
|
23
|
Filippou P, Homburg R. Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update 2017; 23:421-432. [PMID: 28531286 DOI: 10.1093/humupd/dmx013] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive-aged women. The pathophysiology of this syndrome is still not completely understood but recent evidence suggests that the intra-uterine environment may be a key factor in the pathogenesis of PCOS, in particular, hyperexposure of the foetus to androgens. High concentrations of maternal serum testosterone during pregnancy have been shown to influence behaviour during childhood, the prevalence of autism disorders and anti-Mullerian hormone (AMH) concentrations in adolescence. They are also thought to re-programme the female reproductive axis to induce the features of PCOS in later life: oligo/anovulation, polycystic ovaries, hyperandrogenism and insulin resistance (IR). Support for this developmental theory for the aetiology of PCOS is gathering momentum, following results from first animal studies and now human data, which lend credence to many aspects of this hypothesis. OBJECTIVE AND RATIONALE In this review the recent available evidence is presented to support the hypothesis that hyperandrogenic changes in the intra-uterine environment could play a major part in the aetiological basis of PCOS. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies were identified using a combination of search terms: 'polycystic ovary syndrome', 'PCOS', 'aetiology', 'anti-Mullerian hormone', 'AMH', 'pathogenesis', 'kisspeptin', 'hyperandrogenism', 'insulin resistance', 'metabolic factors', 'placenta', 'developmental hypothesis', 'genetic and epigenetic origins'. OUTCOMES A total of 82 studies were finally included in this review. There is robust evidence that a hyperandrogenic intra-uterine environment 'programmes' the genes concerned with ovarian steroidogenesis, insulin metabolism, gonadotrophin secretion and ovarian follicle development resulting in the development of PCOS in adult life. WIDER IMPLICATIONS Once the evidence supporting this hypothesis has been expanded by additional studies, the door would be open to find innovative treatments and preventative measures for this very prevalent condition. Such measures could considerably ease the human and economic burden that PCOS creates.
Collapse
Affiliation(s)
- Panagiota Filippou
- Homerton Fertility Centre, Homerton University Hospital, London E9 6SR, UK
| | | |
Collapse
|
24
|
Mykhalchenko K, Lizneva D, Trofimova T, Walker W, Suturina L, Diamond MP, Azziz R. Genetics of polycystic ovary syndrome. Expert Rev Mol Diagn 2017; 17:723-733. [DOI: 10.1080/14737159.2017.1340833] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Daria Lizneva
- Department of OB/GYN, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Reproductive Health Protection, Scientific Center of Family Health and Human Reproduction, Irkutsk, Russian Federation
| | - Tatiana Trofimova
- Department of Reproductive Health Protection, Scientific Center of Family Health and Human Reproduction, Irkutsk, Russian Federation
| | - Walidah Walker
- Department of OB/GYN, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Larisa Suturina
- Department of Reproductive Health Protection, Scientific Center of Family Health and Human Reproduction, Irkutsk, Russian Federation
| | - Michael P. Diamond
- Department of OB/GYN, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ricardo Azziz
- Chief Officer of Academic Health and Hospital Affairs, State University Plaza, The State University of New York, Albany, NY, USA
| |
Collapse
|
25
|
Zhao H, Lv Y, Li L, Chen ZJ. Genetic Studies on Polycystic Ovary Syndrome. Best Pract Res Clin Obstet Gynaecol 2016; 37:56-65. [DOI: 10.1016/j.bpobgyn.2016.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/21/2016] [Accepted: 04/19/2016] [Indexed: 01/19/2023]
|
26
|
Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril 2016; 106:25-32. [PMID: 27179787 DOI: 10.1016/j.fertnstert.2016.04.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023]
Abstract
The field of the genetics of polycystic ovary syndrome (PCOS) has relatively recently moved into the era of genome-wide association studies. This has led to the discovery of 16 robust loci for PCOS. Some loci contain genes with clear roles in reproductive (LHCGR, FSHR, and FSHB) and metabolic (INSR and HMGA2) dysfunction in the syndrome. The next challenge facing the field is the identification of causal variants and genes and the role they play in PCOS pathophysiology. The potential for gene discovery to improve diagnosis and treatment of PCOS is promising, though there is much to be done in the field before the current findings can be translated to the clinic.
Collapse
|
27
|
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a common complex genetic disease. It is characterized by hyperandrogenism, gonadotropin secretory changes, polycystic ovarian morphology, and insulin resistance. The etiology of PCOS remains unknown, but modern genetic approaches, such as genome-wide association studies (GWAS), Mendelian randomization, and next-generation sequencing, promise to identify the pathways that are primarily disrupted. EVIDENCE ACQUISITION The literature on PCOS, including the author's research, is discussed. EVIDENCE SYNTHESIS Recent genetic analyses are reviewed. CONCLUSIONS Considerable progress has been made mapping PCOS susceptibility genes. GWAS have implicated gonadotropin secretion and action as important primary defects in disease pathogenesis in European and Han Chinese PCOS cohorts, respectively. European women with the National Institutes of Health and Rotterdam phenotypes as well as those with self-reported PCOS have some gene regions in common, such as chromosome 11p14.1 region containing the FSH B polypeptide (FSHB) gene, suggesting shared genetic susceptibility. Several chromosomal signals are significant in both Han Chinese and European PCOS cohorts, suggesting that the susceptibility genes in these regions are evolutionarily conserved. In addition, GWAS have suggested that DENND1A, epidermal growth factor signaling, and DNA repair pathways play a role in PCOS pathogenesis. Only a small amount of the heritability of PCOS is accounted for by the common susceptibility variants mapped so far. Future studies should clarify the contribution of rare genetic variants and epigenetic factors to the PCOS phenotype. Furthermore, Mendelian randomization can be used to clarify causal relationships, and phenome-wide association studies can provide insight into health risks associated with PCOS susceptibility variants.
Collapse
Affiliation(s)
- Andrea Dunaif
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
28
|
Wang T, Leng J, Li N, Martins de Carvalho A, Huang T, Zheng Y, Li W, Liu H, Wang L, Hu G, Qi L. Genetic Predisposition to Polycystic Ovary Syndrome, Postpartum Weight Reduction, and Glycemic Changes: A Longitudinal Study in Women With Prior Gestational Diabetes. J Clin Endocrinol Metab 2015; 100:E1560-7. [PMID: 26431507 PMCID: PMC4667164 DOI: 10.1210/jc.2015-2664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a common condition in reproductive-aged women and a major female-specific risk factor of obesity, impaired glucose tolerance, and diabetes. OBJECTIVE We examined whether the genetic variation predisposing to PCOS affected glycemic changes in women with prior gestational diabetes mellitus (GDM) and whether such an effect was modified by changes in body adiposity, especially during and after pregnancy. DESIGN, SETTING, AND PARTICIPANTS This is a longitudinal study in Tianjin, China. We genotyped 7 genome-wide association study-identified PCOS single nucleotide polymorphisms and assessed gestational weight gain and changes in glycemic traits and weight at 1 to 5 years postpartum in 1133 women with prior GDM. MAIN OUTCOME MEASURES The main outcome measure was postpartum glycemic changes. RESULTS The PCOS genetic risk score significantly interacted with postpartum weight reduction on changes in fasting glucose and 2-h glucose (P for interaction = .032 and .007; respectively) after multivariable adjustment. In women with postpartum weight reduction of ≥ 5 kg/y, the genetic risk score was associated with decreased fasting and 2-h glucose, whereas an opposite genetic effect was found in women who lost less weight. The association between postpartum weight reduction and glycemic improvement was more significant among women with a higher genetic risk score. CONCLUSIONS In a large cohort of Chinese women with a history of GDM, our data for the first time indicate that the genetic predisposition to PCOS may interact with postpartum weight reduction on long-term glycemic changes, emphasizing the importance of postpartum weight management in prevention of diabetes in this subgroup of women.
Collapse
Affiliation(s)
- Tiange Wang
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Junhong Leng
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Nan Li
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Aline Martins de Carvalho
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Tao Huang
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Yan Zheng
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Weiqin Li
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Huikun Liu
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Leishen Wang
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Gang Hu
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| | - Lu Qi
- Department of Epidemiology (T.W., T.H., L.Q.), School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112; Department of Nutrition (T.W., A.M.d.C., T.H., Y.Z., L.Q.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Shanghai Clinical Center for Endocrine and Metabolic Diseases (T.W.), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Tianjin Women's and Children's Health Center (J.L., N.L., W.L., H.L., L.W.), Tianjin 300000, China; and Pennington Biomedical Research Center (G.H.), Baton Rouge, Louisiana 70808
| |
Collapse
|
29
|
Paternal history of diabetes mellitus and hypertension affects the prevalence and phenotype of PCOS. J Assist Reprod Genet 2015; 32:1731-9. [PMID: 26439613 DOI: 10.1007/s10815-015-0587-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/24/2015] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The purpose of the present study is to determine if paternal or maternal history of diabetes mellitus (DM) and hypertension (HT) contributes to the prevalence and phenotype of polycystic ovary syndrome (PCOS). METHODS We performed an epidemiologic study about PCOS from four districts in Beijing, China, between 2008 and 2009. Parental histories of DM and HT were collected, and the basic characteristics and serum indices of 123 PCOS patients and 718 non-PCOS controls were tested. RESULTS The prevalence of a parental history of DM and HT was significantly higher in PCOS patients than non-PCOS women (17.1 % vs. 9.2 % and 42.3 % vs. 26.0 %, P < 0.05, respectively). When paternal history was separated from maternal history, only a paternal history of DM and HT reached statistical significance between PCOS and non-PCOS patients (odds ratio (OR) = 3.42, 95 % confidence interval (CI) = 1.69-6.91; OR = 2.50, 95 % CI = 1.58-3.93, respectively). A paternal history of both DM and HT was significantly associated with sex hormone-binding globulin, fasting plasma glucose, and fasting insulin levels, the free androgen index, and the homeostatic model assessment-insulin resistance in PCOS patients (P < 0.05 for all). There was no independent association between maternal history and the clinical or biochemical phenotype of PCOS. CONCLUSIONS PCOS patients with a positive paternal history of both DM and HT have an adverse endocrine and metabolic profile. A paternal history of DM and HT poses a risk to PCOS.
Collapse
|
30
|
Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev 2015; 36:487-525. [PMID: 26426951 PMCID: PMC4591526 DOI: 10.1210/er.2015-1018] [Citation(s) in RCA: 605] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous and complex disorder that has both adverse reproductive and metabolic implications for affected women. However, there is generally poor understanding of its etiology. Varying expert-based diagnostic criteria utilize some combination of oligo-ovulation, hyperandrogenism, and the presence of polycystic ovaries. Criteria that require hyperandrogenism tend to identify a more severe reproductive and metabolic phenotype. The phenotype can vary by race and ethnicity, is difficult to define in the perimenarchal and perimenopausal period, and is exacerbated by obesity. The pathophysiology involves abnormal gonadotropin secretion from a reduced hypothalamic feedback response to circulating sex steroids, altered ovarian morphology and functional changes, and disordered insulin action in a variety of target tissues. PCOS clusters in families and both female and male relatives can show stigmata of the syndrome, including metabolic abnormalities. Genome-wide association studies have identified a number of candidate regions, although their role in contributing to PCOS is still largely unknown.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Sharon E Oberfield
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Elisabet Stener-Victorin
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - John C Marshall
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Joop S Laven
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Richard S Legro
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
31
|
de Melo AS, Dias SV, Cavalli RDC, Cardoso VC, Bettiol H, Barbieri MA, Ferriani RA, Vieira CS. Pathogenesis of polycystic ovary syndrome: multifactorial assessment from the foetal stage to menopause. Reproduction 2015; 150:R11-24. [PMID: 25835506 DOI: 10.1530/rep-14-0499] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/02/2015] [Indexed: 01/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial disorder that arises from interactions between genetic, environmental and intra-uterine factors. Small-for-gestational-age (SGA) babies and the daughters of mothers with PCOS represent possible postnatal clinical targets for developmental programming by steroid excess. The presence of excess glucocorticoids and/or androgens during foetal organogenesis and growth might promote changes in gene expression, and these changes might be related to an increase in the risk of PCOS-like reproductive and metabolic disorders in postnatal life, such as rapid growth and weight gain during the first 2 years of life (only in SGA babies), hyperinsulinaemia, adipocyte dysfunction and childhood visceral obesity, premature pubarche and adrenarche (only in SGA babies) and PCOS. In the fourth decade of life, women who have PCOS may be at higher risk for type 2 diabetes mellitus, dyslipidaemia and systemic arterial hypertension, which suggests that these women are also at higher risk for cardiovascular disease during menopause. However, PCOS can also occur in women who were born at appropriate weight for GA or in newborns of women without PCOS, which suggests that genetic variation and environmental factors play important roles in the development and maintenance of PCOS in a population. Genome-wide association studies based on adequate population samples have shown a higher frequency of genetic polymorphisms of the LHCGR, THADA and DENND1A genes in women with PCOS. Genetic studies of PCOS have also included analyses of structural changes in the chromosome based on an assessment of telomere length in single, cross-sectional evaluations, and these studies have produced controversial results. The present narrative review assesses the multifactorial origins of PCOS (including environmental, genetic and intra-uterine factors) and the development of conditions associated with this disorder. It is concluded that although PCOS might originate in the intra-uterine environment through developmental programming by steroid excess, the interaction between genetic and environmental factors is crucial for its appearance. Follow-up studies should be conducted to assess the same populations over their entire lifespans while taking into account different aspects of the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Anderson Sanches de Melo
- Unit of Human Reproduction and Gynecological EndocrinologyDepartment of Gynecology and ObstetricsDepartment of PaediatricsMedical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900 - Campus Universitário - Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Sabrine Vilan Dias
- Unit of Human Reproduction and Gynecological EndocrinologyDepartment of Gynecology and ObstetricsDepartment of PaediatricsMedical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900 - Campus Universitário - Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo de Carvalho Cavalli
- Unit of Human Reproduction and Gynecological EndocrinologyDepartment of Gynecology and ObstetricsDepartment of PaediatricsMedical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900 - Campus Universitário - Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Viviane Cunha Cardoso
- Unit of Human Reproduction and Gynecological EndocrinologyDepartment of Gynecology and ObstetricsDepartment of PaediatricsMedical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900 - Campus Universitário - Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Heloisa Bettiol
- Unit of Human Reproduction and Gynecological EndocrinologyDepartment of Gynecology and ObstetricsDepartment of PaediatricsMedical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900 - Campus Universitário - Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Marco Antonio Barbieri
- Unit of Human Reproduction and Gynecological EndocrinologyDepartment of Gynecology and ObstetricsDepartment of PaediatricsMedical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900 - Campus Universitário - Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Unit of Human Reproduction and Gynecological EndocrinologyDepartment of Gynecology and ObstetricsDepartment of PaediatricsMedical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900 - Campus Universitário - Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Sales Vieira
- Unit of Human Reproduction and Gynecological EndocrinologyDepartment of Gynecology and ObstetricsDepartment of PaediatricsMedical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900 - Campus Universitário - Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
32
|
Lee H, Oh JY, Sung YA, Chung H, Kim HL, Kim GS, Cho YS, Kim JT. Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome. Hum Reprod 2015; 30:723-31. [PMID: 25574032 DOI: 10.1093/humrep/deu352] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
STUDY QUESTION Are there any novel genetic markers of susceptibility to polycystic ovary syndrome (PCOS)? SUMMARY ANSWER We identified a novel susceptibility locus on chromosome 8q24.2 and several moderately associated loci for PCOS in Korean women. WHAT IS KNOWN ALREADY PCOS is a highly complex disorder with significant contributions from both genetic and environmental factors. Previous genome-wide association studies (GWAS) in the Han Chinese population identified several risk loci for PCOS. However, GWAS studies on PCOS remain very few. The aim of this study was to identify novel markers of susceptibility to PCOS through GWAS. STUDY DESIGN, SIZE, DURATION A two-stage GWAS was conducted. The initial discovery set for GWAS consisted of 976 PCOS cases and 946 controls. The second stage (replication study) included 249 PCOS cases and 778 controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients were diagnosed according to the Rotterdam criteria. Genomic DNAs were genotyped using the HumanOmni1-Quad v1 array. In the replication stage, the 21 most promising signals selected from the discovery stage were tested for their association with PCOS. MAIN RESULTS AND THE ROLE OF CHANCE One novel locus with genome-wide significance and seven moderately associated loci for PCOS were identified. The strongest association was on chromosome 8q24.2 (rs10505648, OR = 0.52, P = 5.46 × 10(-8)), and other association signals were located at 4q35.2, 16p13.3, 4p12, 3q26.33, 9q21.32, 11p13 and 1p22 (P = 5.72 × 10(-6)-6.43 × 10(-5)). The strongest signal was located upstream of KHDRBS3, which is associated with telomerase activity, and could drive PCOS and related phenotypes. LIMITATIONS, REASONS FOR CAUTION The limitation of our study is the modest sample size used in the replication cohort. The limited sample size may contribute to a lack of statistical power to detect an association or show a trend in severity. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide new insight into the genetics and biological pathways of PCOS and could contribute to the early diagnosis and prevention of metabolic and reproductive morbidities. STUDY FUNDING/COMPETING INTERESTS This work was supported in part by the grant from the Korea Centers for Disease Control and Prevention (2009-E00591-00). The work was also supported by the Ewha Global Top5 Grant 2013 of Ewha Womans University. None of the authors has any conflict of interest to declare.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jee-Young Oh
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Yeon-Ah Sung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyewon Chung
- Department of Obstetrics and Gynecology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Gwang Sub Kim
- Department of Biomedical Science, Hallym University, Gangwon-do, Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Gangwon-do, Korea
| | - Jin Taek Kim
- Department of Internal Medicine, Eulji University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Liu HY, Liu JQ, Mai ZX, Zeng YT. A subpathway-based method of drug reposition for polycystic ovary syndrome. Reprod Sci 2014; 22:423-30. [PMID: 25015903 DOI: 10.1177/1933719114542025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The need for development of new therapeutic agents for polycystic ovary syndrome (PCOS) is urgent due to general lack of efficient and specialized drugs currently available. We aimed to explore the metabolic mechanism of PCOS and inferred drug reposition for PCOS by a subpathway-based method. Using the GSE34526 microarray data from the Gene Expression Omnibus database, we first identified the differentially expressed genes (DEGs) between PCOS and normal samples. Then, we identified 13 significantly enriched metabolic subpathways that may be involved in the development of PCOS. Finally, by an integrated analysis of PCOS-involved subpathways and drug-affected subpathways, we identified 54 novel small molecular drugs capable to target the PCOS-involved subpathways. We also mapped the DEGs of PCOS and a potential novel drug (alprostadil) into purine metabolism pathway to illustrate the potentially active mechanism of alprostadil on PCOS. Candidate agents identified by our approach may provide insights into a novel therapy approach for PCOS.
Collapse
Affiliation(s)
- Hai-Ying Liu
- Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jian-Qiao Liu
- Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Zi-Xin Mai
- Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Yan-Ting Zeng
- Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
34
|
Louwers YV, Stolk L, Uitterlinden AG, Laven JSE. Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. J Clin Endocrinol Metab 2013; 98:E2006-12. [PMID: 24106282 DOI: 10.1210/jc.2013-2495] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Genome-wide association studies (GWAS) have revealed new susceptibility loci for Chinese patients with polycystic ovary syndrome (PCOS). Because ethnic background adds to phenotypic diversities in PCOS, it seems plausible that genetic variants associated with PCOS act differently in various ethnic populations. OBJECTIVE We studied cross-ethnic effects of Chinese PCOS loci (ie, LHCGR, THADA, DENND1A, FSHR, c9orf3, YAP1, RAB5B/SUOX, HMGA2, TOX3, INSR, SUMO1P1) in patients of Northern European descent. DESIGN This study was a genetic association study conducted at an University Medical Center. PATIENTS Association was studied in 703 Dutch PCOS patients and 2164 Dutch controls. To assess the cross-ethnic effect, we performed a meta-analysis of the Dutch data combined with results of previously published studies in PCOS patients from China (n = 2254) and the United States (n = 2618). Adjusted for multiple testing, a P value <3.1 × 10⁻³ was considered statistically significant. RESULTS Meta-analysis of the Chinese, US, and Dutch data resulted in 12 significant variants mapping to the YAP1 (P value = 1.0 × 10⁻⁹), RAB5B/SUOX (P value = 3.8 × 10⁻¹¹), LHCGR (P value = 4.1 × 10⁻⁴), THADA (P value = 2.2 × 10⁻⁴ and P value = 1.3 × 10⁻³), DENND1A (P value = 2.3 × 10⁻³ and P value = 2.5 × 10⁻³), FSHR (P value = 3.8 × 10⁻⁵ and P value = 3.6 × 10⁻⁴), c9orf3 (P value = 2.0 × 10⁻⁶ and P value = 9.2 × 10⁻⁶), SUMO1P1 (P value = 2.3 × 10⁻³) loci with odds ratios ranging from 1.19 to 1.45 and 0.79 to 0.87. CONCLUSIONS Overall, we observed for 12 of 17 genetic variants mapping to the Chinese PCOS loci similar effect size and identical direction in PCOS patients from Northern European ancestry, indicating a common genetic risk profile for PCOS across populations. Therefore, it is expected that large GWAS in PCOS patients from Northern European ancestry will partly identify similar loci as the GWAS in Chinese PCOS patients.
Collapse
Affiliation(s)
- Yvonne V Louwers
- MD, Department of Gynecology and Obstetrics, Room Na-1524, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Panidis D, Tziomalos K, Papadakis E. Metabolic syndrome in patients with the polycystic ovary syndrome. Expert Rev Endocrinol Metab 2013; 8:559-568. [PMID: 30736140 DOI: 10.1586/17446651.2013.853451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is frequently characterized by abdominal obesity and insulin resistance, which also represent the hallmarks of the metabolic syndrome (MetS). It is well established that MetS is associated with increased risk for both Type 2 diabetes mellitus and cardiovascular disease (CVD) and accumulating data suggest that PCOS is also a risk factor for Type 2 diabetes mellitus and CVD. Accordingly, the association of PCOS with MetS has major health care implications given also the high prevalence of both disorders. We aimed to critically analyze the major studies that compared the prevalence of MetS between women with PCOS and controls, to discuss the anthropometric, endocrine and metabolic characteristics of PCOS, which are implicated in the pathogenesis of Mets in women with PCOS and to comment on the implications and management of MetS in this population. We thus summarize the evidence regarding the prevalence of MetS in PCOS and discuss the primary determinants driving this association. Current evidence shows that MetS is frequently observed in women with PCOS, but this appears to be mainly due to the more pronounced abdominal obesity in these women and not due to PCOS per se. Lifestyle changes are the treatment of choice for MetS in women with PCOS, whereas pharmacotherapy should be individualized.
Collapse
Affiliation(s)
- Dimitrios Panidis
- a Second Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Hippokration Hospital, Division of Endocrinology and Human Reproduction, Thessaloniki, Greece
| | - Konstantinos Tziomalos
- b First Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Efstathios Papadakis
- a Second Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Hippokration Hospital, Division of Endocrinology and Human Reproduction, Thessaloniki, Greece
| |
Collapse
|
36
|
Zhao H, Chen ZJ. Genetic association studies in female reproduction: from candidate-gene approaches to genome-wide mapping. Mol Hum Reprod 2013; 19:644-54. [PMID: 23723134 DOI: 10.1093/molehr/gat040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many genetic association studies have been performed to investigate disorders of female reproduction, such as polycystic ovary syndrome, premature ovarian failure and endometriosis. These disorders typically manifest heterogeneously, and their pathogeneses are influenced by polygenic and environmental factors. Researchers evaluating these genetic associations have chosen candidate genes related to hormone action, steroid biosynthesis, inflammatory cytokines and autoimmune factors. Several of these genes have yielded statistically significant associations with female reproductive disorders; however, few associations have been robust and reproducible. Whole-genome association studies generate more reliable and unbiased results and represent a breakthrough in genetic studies of female reproduction. Nevertheless, to date only a very small fraction of the overall heritability has been identified and so further studies are needed.
Collapse
Affiliation(s)
- Han Zhao
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Shandong, China
| | | |
Collapse
|
37
|
Dasgupta S, Reddy BM. The Role of Epistasis in the Etiology of Polycystic Ovary Syndrome among Indian Women: SNP-SNP and SNP-Environment Interactions. Ann Hum Genet 2013; 77:288-98. [DOI: 10.1111/ahg.12020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Shilpi Dasgupta
- Molecular Anthropology Group; Biological Anthropology Unit, Indian Statistical Institute; Hyderabad, Andhra Pradesh India
| | - B. Mohan Reddy
- Molecular Anthropology Group; Biological Anthropology Unit, Indian Statistical Institute; Hyderabad, Andhra Pradesh India
| |
Collapse
|