1
|
Yi X, Liu E, Wang Y. Post-genome-wide association study dissects genetic vulnerability and risk gene expression of Sjögren's disease for cardiovascular disease. J Transl Med 2025; 23:531. [PMID: 40350475 PMCID: PMC12067732 DOI: 10.1186/s12967-025-06568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
OBJECTIVES This study aims to clarify the genetic associations between Sjögren's Disease (SD) and cardiovascular disease (CVD) outcomes, and to conduct an in-depth exploration of specific pleiotropic susceptibility genes. METHODS We performed two-sample and multivariable Mendelian randomization (MR) analysis to investigate the association between SD and the risk of ischemic heart disease (IHD) and stroke. Linkage disequilibrium score regression (LDSC) and Bayesian co-localization analyses were employed to assess the genetic associations between traits. Cross-phenotype analyses were employed to identify shared variants and genes, followed by a Transcriptome-Wide Association Study (TWAS) and Multi-marker Analysis of Genomic Annotation (MAGMA) based on Multi-Trait Analysis of GWAS (MTAG) results. To validate the pleiotropic genes, we further analyzed tissue-specific differentially expressed genes (DEGs) related to SD using RNA sequencing data. RESULTS The two-sample and multivariable MR analyses revealed that SD confers a genetic vulnerability to IHD and stroke. LDSC and co-localization analyses indicated a strong genetic linkage between SD and CVDs. Cross-phenotype analyses identified 38 and 37 pleiotropic single nucleotide polymorphisms (SNPs) for SD-Stroke and SD-IHD, respectively, primarily located within the MHC class region on 6p21.32:33 loci. Additionally, TWAS and MAGMA analyses identified pleiotropic genes located outside the MHC regions-seven associated with stroke (UHRF1BP1, SNRPC, BLK, FAM167A, ARHGAP27, C8orf12, and PLEKHM1) and two associated with IHD (UHRF1BP1 and SNRPC). Proxy variants within these genes in SD suggested an increased causal risk for stroke or IHD. Co-localization analysis further reinforced that SD and stroke share significant SNPs within the loci of FAM167A, BLK, C8orf12, SNRPC, and UHRF1BP1. DEG analysis revealed a significant up-regulation of the identified genes in SD-specific tissues. CONCLUSIONS SD appears genetically predisposed to an increased risk of CVDs. Moreover, this research not only identified pleiotropic genes shared between SD and CVDs, but also, for the first time, detected key gene expressions that elevate CVD risk in SD patients-findings that may offer promising therapeutic targets for patient management.
Collapse
Affiliation(s)
- Xinglin Yi
- Department of Respiratory and Critical Care Medicine, Southwest Hospital, Army Medical University (the Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Erxiong Liu
- Department of Rheumatology and Immunology, Southwest Hospital, Army Medical University (the Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Yong Wang
- Department of Rheumatology and Immunology, Southwest Hospital, Army Medical University (the Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
2
|
Liufu R, Chen Y, Wang JY, Wang YYQ, Wu Y, Jiang W, Wang CY, Peng JM, Weng L, Du B. ABO Blood Group and Risk Associated With Sepsis-Associated Thrombocytopenia: A Single-Center Retrospective Study. Crit Care Med 2025; 53:e353-e361. [PMID: 39774137 DOI: 10.1097/ccm.0000000000006523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES This study aimed to investigate the relationship between ABO blood group and sepsis-associated thrombocytopenia (SAT). DESIGN AND SETTING The primary outcome was SAT within the first 72 hours of ICU admission. PATIENTS The retrospective study included 9113 patients diagnosed with sepsis from January 2014 to December 2022. A total of 6296 patients eventually were included into the study, who were divided into four groups based on ABO blood group. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 2494 patients (39.6%) were diagnosed with SAT, and 712 (11.3%) of them experiencing severe SAT. The occurrence of SAT among the ABO blood groups was significantly lower in AB blood group compared with the other groups ( p = 0.032). Individuals in AB blood group were less likely to experience severe SAT ( p = 0.028). In multivariate analysis, B blood group (odds ratio [OR], 1.32; 95% CI, 1.05-1.67) and O (OR, 1.37; 95% CI, 1.09-1.72) were significantly associated with a higher occurrence of SAT compared with AB blood group. In multivariate analyses, A blood group (OR, 1.68; 95% CI, 1.16-2.42), B blood group (OR, 1.74; 95% CI, 1.74-2.50), and O blood group (OR, 1.72; 95% CI, 1.20-2.48) remained significantly risk factors associated with a higher occurrence of severe SAT compared with AB blood group. CONCLUSIONS B blood group and O were associated with an increased risk of SAT and severe SAT.
Collapse
Affiliation(s)
- Rong Liufu
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiovascular Intensive Care Unit, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Chen
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jing-Yi Wang
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yang-Yan-Qiu Wang
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yao Wu
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Jiang
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Chun-Yao Wang
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Min Peng
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Li Weng
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Du
- Medical ICU, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zhao T, Zhang R, Li Z, Qin D, Wang X. A comprehensive review of Sjögren's syndrome: Classification criteria, risk factors, and signaling pathways. Heliyon 2024; 10:e36220. [PMID: 39286095 PMCID: PMC11403439 DOI: 10.1016/j.heliyon.2024.e36220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease that affects the exocrine glands and may lead to a range of systemic symptoms that impact various organs. Both innate and adaptive immune pathways might trigger the disease. Studying the signaling pathways underlying SS is crucial for enhancing diagnostic and therapeutic effectiveness. SS poses an ongoing challenge for medical professionals owing to the limited therapeutic options available. This review offers a comprehensive understanding of the intricate nature of SS, encompassing disease classification criteria, risk factors, and signaling pathways in immunity and inflammation. The advancements summarized herein have the potential to spark new avenues of research into SS.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Runrun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| |
Collapse
|
4
|
Hall TJ, McHugo GP, Mullen MP, Ward JA, Killick KE, Browne JA, Gordon SV, MacHugh DE. Integrative and comparative genomic analyses of mammalian macrophage responses to intracellular mycobacterial pathogens. Tuberculosis (Edinb) 2024; 147:102453. [PMID: 38071177 DOI: 10.1016/j.tube.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 06/14/2024]
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (hTB), is a close evolutionary relative of Mycobacterium bovis, which causes bovine tuberculosis (bTB), one of the most damaging infectious diseases to livestock agriculture. Previous studies have shown that the pathogenesis of bTB disease is comparable to hTB disease, and that the bovine and human alveolar macrophage (bAM and hAM, respectively) transcriptomes are extensively reprogrammed in response to infection with these intracellular mycobacterial pathogens. In this study, a multi-omics integrative approach was applied with functional genomics and GWAS data sets across the two primary hosts (Bos taurus and Homo sapiens) and both pathogens (M. bovis and M. tuberculosis). Four different experimental infection groups were used: 1) bAM infected with M. bovis, 2) bAM infected with M. tuberculosis, 3) hAM infected with M. tuberculosis, and 4) human monocyte-derived macrophages (hMDM) infected with M. tuberculosis. RNA-seq data from these experiments 24 h post-infection (24 hpi) was analysed using three computational pipelines: 1) differentially expressed genes, 2) differential gene expression interaction networks, and 3) combined pathway analysis. The results were integrated with high-resolution bovine and human GWAS data sets to detect novel quantitative trait loci (QTLs) for resistance to mycobacterial infection and resilience to disease. This revealed common and unique response macrophage pathways for both pathogens and identified 32 genes (12 bovine and 20 human) significantly enriched for SNPs associated with disease resistance, the majority of which encode key components of the NF-κB signalling pathway and that also drive formation of the granuloma.
Collapse
Affiliation(s)
- Thomas J Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Michael P Mullen
- Bioscience Research Institute, Technological University of the Shannon, Athlone, Westmeath, N37 HD68, Ireland
| | - James A Ward
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
5
|
Cadena-Sandoval D, Montúfar-Robles I, Barbosa-Cobos RE, Hernández-Molina G, Karen Salas-García A, Sánchez-Zauco N, Ramírez-Bello J. Interactions between TNFAIP3, PTPN22, and TRAF1-C5 gene polymorphisms in patients with primary Sjögren's syndrome. Arch Rheumatol 2024; 39:60-70. [PMID: 38774701 PMCID: PMC11104759 DOI: 10.46497/archrheumatol.2024.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2024] Open
Abstract
Objectives The aim of our study was to investigate whether TNFAIP3, PTPN22, and TRAF1-5 single nucleotide polymorphisms (SNPs) are associated with susceptibility, severity, or serological markers in primary Sjögren's syndrome (pSS). Patients and methods The cases and controls study was conducted between December 2021 and June 2022. TNFAIP3 rs10499194C/T, rs6920220G/A, and rs2230926T/G, PTPN22 rs2476601C/T and rs33996649G/A, and TRAF1-C5 rs10818488G/A polymorphisms were genotyped in 154 female pSS patients (mean age: 45.2±6.8 years) and 313 female control subjects (mean age: 50.3±7.5 years) using the TaqMan® SNP genotyping assay. An association analysis between TNFAIP3, PTPN22, and TRAF1-C5 SNPs and susceptibility, clinical characteristics, and serological markers of pSS was performed. Interactions between TNFAIP3, PTPN22, and TRAF1-C5 SNPs were also evaluated in patients and controls. Results The genotype and allele frequencies showed no association with susceptibility, severity, or serological markers of pSS. Nevertheless, several interactions between TNFAIP3 and TRAF1-C5 or TNFAIP3, PTPN22, and TRAF1-C5 genotypes were associated with susceptibility to pSS (p<0.01). Conclusion Individual TNFAIP3, PTPN22, and TRAF1-C5 SNPs are not associated with susceptibility, severity, or serological markers of pSS. However, genetic interactions between TRAF1-C5 and TNFAIP3 or TNFAIP3, PTPN22, and TRAF1-C5 SNPs are risk factors for pSS.
Collapse
Affiliation(s)
- Daniel Cadena-Sandoval
- Universidad Juárez Autónoma De Tabasco, Comalcalco Multidisciplinary Academic Division, Comalcalco, Tabasco, Mexico
| | | | | | - Gabriela Hernández-Molina
- Departamento De Inmunología Y Reumatología, Instituto Nacional De Ciencias Médicas Y Nutrición, Ciudad De México , Mexico
| | | | - Norma Sánchez-Zauco
- División De Diagnostico Y Tratamientos Auxiliares, Centro Médico Nacional Siglo Xxi, Ciudad De México, Mexico
| | - Julian Ramírez-Bello
- Subdirección de Investigación Clínica, Instituto Nacional De Cardiologia Ignacio Chávez, Ciudad De Mexico, Mexico
| |
Collapse
|
6
|
Yura Y, Hamada M. Outline of Salivary Gland Pathogenesis of Sjögren's Syndrome and Current Therapeutic Approaches. Int J Mol Sci 2023; 24:11179. [PMID: 37446355 DOI: 10.3390/ijms241311179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by the involvement of exocrine glands such as the salivary and lacrimal glands. The minor salivary glands, from which tissue samples may be obtained, are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of SS. In the onset of SS, autoantigens derived from the salivary glands are recognized by antigen-presenting dendritic cells, leading to the activation of T and B cells, cytokine production, autoantibody production by plasma cells, the formation of ectopic germinal centers, and the destruction of salivary gland epithelial cells. A recent therapeutic approach with immune checkpoint inhibitors for malignant tumors enhances the anti-tumor activity of cytotoxic effector T cells, but also induces SS-like autoimmune disease as an adverse event. In the treatment of xerostomia, muscarinic agonists and salivary gland duct cleansing procedure, as well as sialendoscopy, are expected to ameliorate symptoms. Clinical trials on biological therapy to attenuate the hyperresponsiveness of B cells in SS patients with systemic organ involvement have progressed. The efficacy of treatment with mesenchymal stem cells and chimeric antigen receptor T cells for SS has also been investigated. In this review, we will provide an overview of the pathogenesis of salivary gland lesions and recent trends in therapeutic approaches for SS.
Collapse
Affiliation(s)
- Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Jin L, Dai M, Li C, Wang J, Wu B. Risk factors for primary Sjögren's Syndrome: a systematic review and meta-analysis. Clin Rheumatol 2023; 42:327-338. [PMID: 36534351 PMCID: PMC9873717 DOI: 10.1007/s10067-022-06474-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the risk factors for primary Sjögren's Syndrome (pSS) by conducting a meta-analysis of observational studies. METHODS Four electronic databases were searched from inception to August 2022. The search strategy included medical subject headings (MeSH) and text words. Outcomes were calculated and reported as the odds ratio (OR) and 95% confidence interval (CI). RESULTS Twelve studies consisting of nine case-control and three cohort studies were analyzed. Significant positive relationships between infection, a family history of autoimmune disease in first-degree relatives, negative stressful life events, CGGGG insertion/deletion polymorphisms in the IRF5 gene and the onset of pSS were found, with pooled ORs and 95% CIs of 2.73 (1.93, 3.86), 5.93 (3.34, 10.52), 1.69 (1.27, 2.24) and 2.69 (1.97, 3.66), respectively. In contrast, the results showed that a history of smoking was not associated with the onset of pSS, with a pooled OR and 95% CI of 1.39 (0.76, 2.53). However, a statistically significant negative association between current smoking and pSS was detected, with a pooled OR and 95% CI of 0.4 (0.29, 0.83). CONCLUSIONS Our research indicated that infection, a family history of autoimmune disease in first-degree relatives, negative stressful life events and CGGGG insertion/deletion polymorphisms in the IRF5 gene might be risk factors for pSS. In contrast, our study demonstrated that a history of smoking was not associated with the onset of pSS, whereas current smoking was negatively associated with pSS onset. SYSTEMATIC REVIEW REGISTRATION We registered this review on INPLASY ( https://inplasy.com/ ) under registration number INPLASY202230005.
Collapse
Affiliation(s)
- Liang Jin
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China ,Shenzhen Hospital of Guangzhou University of Traditional Chinese Medicine, No.6001, Beihuan Avenue, Futian District, Shenzhen, 518000 China
| | - Min Dai
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China
| | - Chengyin Li
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China
| | - Jing Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China
| |
Collapse
|
8
|
Khatri B, Tessneer KL, Rasmussen A, Aghakhanian F, Reksten TR, Adler A, Alevizos I, Anaya JM, Aqrawi LA, Baecklund E, Brun JG, Bucher SM, Eloranta ML, Engelke F, Forsblad-d’Elia H, Glenn SB, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kvarnström M, Kelly JA, Li H, Mandl T, Martín J, Nocturne G, Norheim KB, Palm Ø, Skarstein K, Stolarczyk AM, Taylor KE, Teruel M, Theander E, Venuturupalli S, Wallace DJ, Grundahl KM, Hefner KS, Radfar L, Lewis DM, Stone DU, Kaufman CE, Brennan MT, Guthridge JM, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner B, Rischmueller M, Witte T, Farris AD, Mariette X, Alarcon-Riquelme ME, Shiboski CH, Wahren-Herlenius M, Ng WF, Sivils KL, Adrianto I, Nordmark G, Lessard CJ. Genome-wide association study identifies Sjögren's risk loci with functional implications in immune and glandular cells. Nat Commun 2022; 13:4287. [PMID: 35896530 PMCID: PMC9329286 DOI: 10.1038/s41467-022-30773-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sjögren's disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjögren's cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands.
Collapse
Affiliation(s)
- Bhuwan Khatri
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kandice L. Tessneer
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Astrid Rasmussen
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Farhang Aghakhanian
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Tove Ragna Reksten
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Adam Adler
- grid.274264.10000 0000 8527 6890NGS Core Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ilias Alevizos
- grid.419633.a0000 0001 2205 0568Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD USA
| | - Juan-Manuel Anaya
- grid.412191.e0000 0001 2205 5940Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia
| | - Lara A. Aqrawi
- grid.5510.10000 0004 1936 8921Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway ,grid.457625.70000 0004 0383 3497Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Eva Baecklund
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan G. Brun
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sara Magnusson Bucher
- grid.15895.300000 0001 0738 8966Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maija-Leena Eloranta
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fiona Engelke
- grid.10423.340000 0000 9529 9877Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Helena Forsblad-d’Elia
- grid.8761.80000 0000 9919 9582Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stuart B. Glenn
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Daniel Hammenfors
- grid.412008.f0000 0000 9753 1393Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Juliana Imgenberg-Kreuz
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Janicke Liaaen Jensen
- grid.5510.10000 0004 1936 8921Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Svein Joar Auglænd Johnsen
- grid.412835.90000 0004 0627 2891Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Malin V. Jonsson
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Section for Oral and Maxillofacial Radiology, Department of Clinical Dentistry, Medical Faculty, University of Bergen, Bergen, Norway
| | - Marika Kvarnström
- grid.4714.60000 0004 1937 0626Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden ,grid.425979.40000 0001 2326 2191Academic Specialist Center, Center for Rheumatology and Studieenheten, Stockholm Health Services, Region Stockholm, Sweden
| | - Jennifer A. Kelly
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - He Li
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.505430.7Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA USA
| | - Thomas Mandl
- grid.4514.40000 0001 0930 2361Rheumatology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Javier Martín
- grid.4711.30000 0001 2183 4846Instituto de Biomedicina y Parasitología López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Gaétane Nocturne
- grid.413784.d0000 0001 2181 7253Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France
| | - Katrine Brække Norheim
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412835.90000 0004 0627 2891Department of Rheumatology, Stavanger University Hospital, Stavanger, Norway
| | - Øyvind Palm
- grid.5510.10000 0004 1936 8921Department of Rheumatology, University of Oslo, Oslo, Norway
| | - Kathrine Skarstein
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anna M. Stolarczyk
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kimberly E. Taylor
- grid.266102.10000 0001 2297 6811Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California USA
| | - Maria Teruel
- grid.4489.10000000121678994Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Elke Theander
- grid.411843.b0000 0004 0623 9987Department of Rheumatology, Skåne University Hospital, Malmö, Sweden ,Medical Affairs, Jannsen-Cilag EMEA (Europe/Middle East/Africa), Beerse, Belgium
| | - Swamy Venuturupalli
- grid.50956.3f0000 0001 2152 9905Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Daniel J. Wallace
- grid.50956.3f0000 0001 2152 9905Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Kiely M. Grundahl
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | | | - Lida Radfar
- grid.266900.b0000 0004 0447 0018Oral Diagnosis and Radiology Department, University of Oklahoma College of Dentistry, Oklahoma City, OK USA
| | - David M. Lewis
- grid.266900.b0000 0004 0447 0018Department of Oral and Maxillofacial Pathology, University of Oklahoma College of Dentistry, Oklahoma City, OK USA
| | - Donald U. Stone
- grid.266902.90000 0001 2179 3618Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - C. Erick Kaufman
- grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Michael T. Brennan
- grid.239494.10000 0000 9553 6721Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC USA ,grid.241167.70000 0001 2185 3318Department of Otolaryngology/Head and Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Joel M. Guthridge
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Judith A. James
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - R. Hal Scofield
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ,grid.413864.c0000 0004 0420 2582US Department of Veterans Affairs Medical Center, Oklahoma City, OK USA
| | - Patrick M. Gaffney
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Lindsey A. Criswell
- grid.266102.10000 0001 2297 6811Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California USA ,grid.266102.10000 0001 2297 6811Institute of Human Genetics (IHG), University of California San Francisco, San Francisco, CA USA ,grid.280128.10000 0001 2233 9230Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, NIH, Bethesda, MD USA
| | - Roland Jonsson
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Per Eriksson
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Simon J. Bowman
- grid.412563.70000 0004 0376 6589Rheumatology Department, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK ,grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute of Inflammation & Ageing, University of Birmingham, Birmingham, UK ,grid.415667.7Rheumatology Department, Milton Keynes University Hospital, Milton Keynes, UK
| | - Roald Omdal
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412835.90000 0004 0627 2891Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Lars Rönnblom
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Blake Warner
- grid.419633.a0000 0001 2205 0568Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD USA
| | - Maureen Rischmueller
- grid.278859.90000 0004 0486 659XRheumatology Department, The Queen Elizabeth Hospital, Woodville, South Australia ,grid.1010.00000 0004 1936 7304University of Adelaide, Adelaide, South Australia
| | - Torsten Witte
- grid.10423.340000 0000 9529 9877Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - A. Darise Farris
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Xavier Mariette
- grid.413784.d0000 0001 2181 7253Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France
| | - Marta E. Alarcon-Riquelme
- grid.4489.10000000121678994Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | | | - Caroline H. Shiboski
- grid.266102.10000 0001 2297 6811Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA USA
| | | | - Marie Wahren-Herlenius
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.4714.60000 0004 1937 0626Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Wan-Fai Ng
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK ,grid.420004.20000 0004 0444 2244NIHR Newcastle Biomedical Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Kathy L. Sivils
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.505430.7Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA USA
| | - Indra Adrianto
- grid.239864.20000 0000 8523 7701Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, MI USA
| | - Gunnel Nordmark
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christopher J. Lessard
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
9
|
Ramírez-Bello J, Jiménez-Morales S, Barbosa-Cobos RE, Sánchez-Zauco N, Hernández-Molina G, Luria-Pérez R, Fragoso JM, Cabello-Gutiérrez C, Montúfar-Robles I. TNFSF4 is a risk factor for rheumatoid arthritis but not for primary Sjögren's syndrome in the Mexican population. Immunobiology 2022; 227:152244. [PMID: 35835012 DOI: 10.1016/j.imbio.2022.152244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Rheumatoid arthritis (RA) and primary Sjögren's syndrome (pSS) are autoimmune diseases (ADs) characterized by joint damage and involvement of the salivary glands, respectively. ADs share some susceptibility loci, such as TNFSF4, which is a classical susceptibility gene associated with systemic lupus erythematosus, but its role in RA and pSS is not yet clear. Thus, the aim of this study was to determine whether three TNFSFS4 polymorphisms are associated with RA and pSS. METHODS Our case-control study included 500 controls, 459 patients with RA, and 210 patients with pSS from Mexico. TNFSF4 single nucleotide polymorphisms (SNPs) rs1234315C/T, rs2205960G/T, and rs704840T/G were genotyped using TaqMan probes and discrimination allelic assay. RESULTS The three TNFSF4 SNPs were associated with susceptibility to RA (rs1234315C/T: odds ratio [OR] 1.4, p = 0.01; rs2205960G/T: OR 1.23, p = 0.03; rs704840T/G: OR 1.24, p = 0.02). An association between TNFSF4 rs1234315C/T and pSS was also observed (OR 1.28, p = 0.04), however, after Bonferroni correction, this association was lost. CONCLUSION Our data suggest that TNFSF4 could be a risk factor in RA but not pSS in a Mexican population.
Collapse
Affiliation(s)
- Julian Ramírez-Bello
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Mexico City, Mexico.
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, 14610 Mexico City, Mexico.
| | | | - Norma Sánchez-Zauco
- División de Auxiliares de Diagnóstico y Tratamiento, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, 06720 IMSS, Mexico.
| | - Gabriela Hernández-Molina
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico City, Mexico.
| | - Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Hemato-Oncológicas, Hospital Infantil de México Federico Gómez, 06720, Mexico.
| | - José M Fragoso
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Mexico City, Mexico.
| | - Carlos Cabello-Gutiérrez
- Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratorias, 14080 Mexico City, Mexico.
| | | |
Collapse
|
10
|
Yin BW, Li B, Mehmood A, Yuan C, Song S, Guo RY, Zhang L, Ma T, Guo L. BLK polymorphisms and expression level in neuromyelitis optica spectrum disorder. CNS Neurosci Ther 2021; 27:1549-1560. [PMID: 34637583 PMCID: PMC8611770 DOI: 10.1111/cns.13738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Aim This study aimed to determine the correlation between B‐lymphoid tyrosine kinase (BLK) polymorphism, mRNA gene expression of BLK, and NMOSD in a Chinese Han population. Background B‐lymphoid tyrosine kinase gene expressed mainly in B cells plays a key role in various autoimmune disorders. However, no studies have investigated the association of BLK polymorphisms with neuromyelitis optica spectrum disorder (NMOSD). Methods Han Chinese population of 310 subjects were recruited to analyze three single nucleotide polymorphisms (rs13277113, rs4840568, and rs2248932) under allele, genotype, and haplotype frequencies, followed by clinical characteristics stratified analysis. Real‐time PCR was used to analyze mRNA expression levels of BLK in the peripheral blood mononuclear cells of 64 subjects. Results Patients with NMOSD showed lower frequencies of the minor allele G of rs2248932 than healthy controls (odds ratio (OR) =0.57, 95% confidence intervals (CI) 0.39–0.83, p = 0.003). The association between minor allele G of rs2248932 and reduced NMOSD susceptibility was found by applying genetic models of inheritance (codominant, dominant, and recessive) and haplotypes analysis. Subsequently, by stratification analysis for AQP4‐positivity, the minor allele G frequencies of rs2248932 in AQP4‐positive subgroup were significantly lower than in the healthy controls (OR =0.46, 95% CI 0.30–0.72, p = 0.001). Notably, the genotype GG of rs2248932 was more frequent in AQP4‐negative subgroup (n = 14) than in AQP4‐positive subgroup (n = 93) (p = 0.003, OR =0.05, 95% CI =0.01–0.57). BLK mRNA expression levels in the NMOSD patients (n = 36) were lower than in healthy controls (n = 28) (p < 0.05). However, the acute non‐treatment (n = 7), who were untreated patients in the acute phase from the NMOSD group, showed BLK mRNA expression levels 1.8‐fold higher than healthy controls (n = 8) (p < 0.05). Conclusion This study evaluated that the minor allele G of rs2248932 in BLK is associated with reduced susceptibility to NMOSD and protected the risk of AQP4‐positive. BLK mRNA expression in NMOSD was lower as compared to healthy controls while significantly increased in acute‐untreated patients.
Collapse
Affiliation(s)
- Bo-Wen Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China.,Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Tianzhao Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| |
Collapse
|
11
|
Imgenberg-Kreuz J, Rasmussen A, Sivils K, Nordmark G. Genetics and epigenetics in primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:2085-2098. [PMID: 30770922 PMCID: PMC8121440 DOI: 10.1093/rheumatology/key330] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren’s syndrome (pSS) is considered to be a multifactorial disease, where underlying genetic predisposition, epigenetic mechanisms and environmental factors contribute to disease development. In the last 5 years, the first genome-wide association studies in pSS have been completed. The strongest signal of association lies within the HLA genes, whereas the non-HLA genes IRF5 and STAT4 show consistent associations in multiple ethnicities but with a smaller effect size. The majority of the genetic risk variants are found at intergenic regions and their functional impact has in most cases not been elucidated. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs play a role in the pathogenesis of pSS by their modulating effects on gene expression and may constitute a dynamic link between the genome and phenotypic manifestations. This article reviews the hitherto published genetic studies and our current understanding of epigenetic mechanisms in pSS.
Collapse
Affiliation(s)
- Juliana Imgenberg-Kreuz
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Astrid Rasmussen
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kathy Sivils
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Pakzad B, Yousefisadr F, Karimzadeh H, Mousavi M, Noormohamadi E, Salehi R. Single nucleotide polymorphism rs5029937 in TNFAIP3 gene is correlated with risk of rheumatoid arthritis. Med J Islam Repub Iran 2021; 35:42. [PMID: 34268230 PMCID: PMC8271223 DOI: 10.47176/mjiri.35.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Rheumatoid arthritis (RA) is a progressive and common autoimmune disease with multifactorial etiology. Several pieces of research show that genetic factors play a major role in the incidence of RA. Several genome-wide association studies (GWAS) have identified the tumor necrosis factor alpha inducible protein 3 (TNFAIP3) genes as one of the candidate loci. The TNFAIP3 gene encoding ubiquitin-editing protein A20 witch restricts B cell survival and prevents autoimmunity. Previous studies have indicated that single nucleotide polymorphisms (SNPs) in the TNFAIP3 gene are correlated with several autoimmune disorders. In the present study, we assessed the possible association between SNP rs5029937 (intronic variant) in the TNFAIP3 gene with RA risk in the Iranian population.
Methods: A case-control study using 50 RA patients and 50 control subjects was undertaken to evaluate rs5029937 (G>T) genotypes using real-time PCR high resolution melting method (HRM). The SPSS22 was used for statistical analyses and the significance level was set at P<0.05.
Results: Logistic regression analysis demonstrates that homozygous TT + heterozygous TG genotypes compared with GG genotype increase the risk of RA (TT+TG vs GG; P= 0.004, OR= 3.46; 95%CI [1.492-8.075]). Also, individuals with allele T were more frequently affected with RA than subjects with G allele (T vs G; P= 0.004, OR= 2.61; 95%CI [1.382-4.919]).
Conclusion: Our findings propose a substantial correlation between rs5029937 (G>T) polymorphism and RA risk in Iranian population.
Collapse
Affiliation(s)
- Bahram Pakzad
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Farzaneh Yousefisadr
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hadi Karimzadeh
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Maryam Mousavi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Elham Noormohamadi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Montúfar-Robles I, Lara-García S, Barbosa-Cobos RE, Vargas-Alarcón G, Hernández-Molina G, Fragoso JM, Cabello-Gutiérrez C, Reyes-Cetina IL, Arenas-Silva I, Cruz-Mayor KJ, Concha-Del Río LE, De Anda-Turati M, Sánchez-Tlapalcoyoatl A, Cheja-Kalb R, Hubbe-Tena C, Lima G, Mendoza-Rincón JF, Ramírez-Bello J. BLK and BANK1 variants and interactions are associated with susceptibility for primary Sjögren's syndrome and with some clinical features. Cell Immunol 2021; 363:104320. [PMID: 33756160 DOI: 10.1016/j.cellimm.2021.104320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
BLK and BANK1 in primary Sjögren's syndrome (pSS) have scarcely been evaluated and the results are inconclusive. The aim of our study was to determine whether single nucleotide variants (SNVs) located within BLK or BANK1 are associated with susceptibility, clinical and serological features, and smoking in pSS. BLK rs13277113A/G, BANK1 rs10516487G/A and rs3733197G/A were genotyped in 203 cases and 424 controls using a TaqMan® SNP genotyping assay. The BLK rs13277113A allele showed association with pSS under the allelic (OR 1.35, p = 0.02), and recessive (OR 1.83, p = 0.003) model, while, BANK1 rs3733197G/A showed association under the dominant model (OR 2.90, p = 0.043). Interactions between BANK1 and BLK genotypes also showed association (OR 2.36, p < 0.0001). In addition, BLK rs13277113A/G was associated with protection against arthritis and BANK1 rs10516487G/A with both arthritis and keratoconjunctivitis sicca, meanwhile, BANK1 rs3733197G/A was associated with smoking in patients with pSS. This is the first study to describe an association between BLK and susceptibility to pSS in a Latin-American population. Our data also shows a first evidence of association between interactions of BLK and BANK1 in pSS, and association of BLK and BANK1with arthritis, keratoconjunctivitis sicca and smoking in patients with pSS.
Collapse
Affiliation(s)
| | | | - Rosa Elda Barbosa-Cobos
- Servicio de Reumatología, Hospital Juárez de México, Mexico City, Mexico; Centro Médico ABC (The American British Cowdray Medical Center), Mexico
| | - Gilberto Vargas-Alarcón
- Dirección de Investigación, Instituto Nacional de Cardiología Ignacio Chávez, México City, Mexico
| | - Gabriela Hernández-Molina
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José M Fragoso
- Laboratorio de Biología Molecular, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Carlos Cabello-Gutiérrez
- Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | | | - Luz Elena Concha-Del Río
- Clínica de Enfermedades Inflamatorias Oculares, Hospital Dr. Luis Sánchez Bulnes, Asociación Para Evitar la Ceguera en México (APEC), Hospital de la Ceguera, Mexico
| | | | - Ana Sánchez-Tlapalcoyoatl
- Clínica de Enfermedades Inflamatorias Oculares, Hospital Dr. Luis Sánchez Bulnes, Asociación Para Evitar la Ceguera en México (APEC), Hospital de la Ceguera, Mexico
| | - Rashel Cheja-Kalb
- Clínica de Enfermedades Inflamatorias Oculares, Hospital Dr. Luis Sánchez Bulnes, Asociación Para Evitar la Ceguera en México (APEC), Hospital de la Ceguera, Mexico
| | - Claudia Hubbe-Tena
- Clínica de Enfermedades Inflamatorias Oculares, Hospital Dr. Luis Sánchez Bulnes, Asociación Para Evitar la Ceguera en México (APEC), Hospital de la Ceguera, Mexico
| | - Guadalupe Lima
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jorge Flavio Mendoza-Rincón
- Laboratorio de Oncología Molecular, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Mexico City, Mexico
| | | |
Collapse
|
14
|
Yue LY, Xu Y, Tao B, He CS. Association of TNFSF4 Gene Polymorphisms and Plasma TNFSF4 Level with Risk of Systemic Lupus Erythematosus in a Chinese Population. Immunol Invest 2020; 51:316-330. [PMID: 33161796 DOI: 10.1080/08820139.2020.1828912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease. Tumor necrosis factor ligand superfamily member 4 (TNFSF4) is an inflammatory factor that has been discussed in different inflammatory diseases and cancers. However, relationship between TNFSF4 and SLE is limited. Material and methods: The present case-control study recruited 400 SLE patients and 600 healthy controls from Southern Chinese Han origin. Plasma levels of TNFSF4 were tested by enzyme linked-immunosorbent assay, and association of rs2205960, rs704840, rs844648, rs3850641 and rs17568 polymorphisms in TNFSF4 gene with SLE risk was evaluated by TaqMan assay according to genotyping.Results: Plasma levels of TNFSF4 were significantly higher in SLE patients than that in healthy controls (390.87 (189.10-906.01) versus 132. 70 (81.27-195.58) pg/ml, P < 0.001). Increased levels of TNFSF4 were positively related to SLE disease activity score, optic nerve injury, leukopenia, and hypocompleminemia. Genotype TT+TG, allele T of rs2205960, genotype GG+GT of rs704840, genotype AA of rs844648 and rs17568 were significantly related to SLE risk (all P < 0.05). Moreover, polymorphism rs844648 was related to SLE patients with clinical feature rash either for genotype AA or allele A.Conclusion: TNFSF4 was elevated in SLE patients and may associate with SLE susceptibility in Southern Chinese Han population.
Collapse
Affiliation(s)
- Lu-Yao Yue
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuan Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bei Tao
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chen-Song He
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Yang Y, Li X, Li B, Mu L, Wang J, Cheng Y, Gu Y, Wu H. Associations between TNFSF4 gene polymorphisms (rs2205960 G > A, rs704840 T > G and rs844648 G > A) and susceptibility to autoimmune diseases in Asians: a meta-analysis. Immunol Invest 2020; 50:184-200. [PMID: 32208776 DOI: 10.1080/08820139.2020.1718693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tumor necrosis factor superfamily member 4 (TNFSF4) has significant role in modulating autoimmune diseases (ADs) and single nucleotide polymorphism (SNP) is also related with the susceptibility to some diseases. So a meta-analysis aimed at systematically assessing the associations between TNFSF4 polymorphisms (rs2205960 G > A, rs704840 T > G and rs844648 G > A) and ADs risk was performed in Asians. METHODS Total 14 eligible articles published before March 2019 involving 35 studies, of which 21 studies (16,109 cases and 26,378 controls) for rs2205960 G > A, 8 studies (2,424 cases and 3,692 controls) for rs704840 T > G, and 6 studies (3,839 cases and 5,867 controls) for rs844648 G > A were included. Effects of the three respective polymorphisms on the susceptibility to ADs were estimated by pooling the odds ratios (ORs) with their corresponding 95% confidence interval (95% CI) in allelic, dominant, recessive, heterozygous and homozygous models. RESULTS The overall analysis revealed that all the rs2205960 G > A, rs704840 T > G and rs844648 G > A polymorphisms could increase the risk of ADs in allelic, dominant, recessive, heterozygous and homozygous models. Furthermore, subgroup analysis showed that both rs2205960 G > A and rs704840 T > G were significantly associated with the susceptibility to systemic lupus erythematosus (SLE). What's more, statistically significant association between rs2205960 G > A polymorphism and primary Sjögren's syndrome (pSS) susceptibility was also observed in allelic, dominant and heterozygous models. CONCLUSIONS This current meta-analysis suggested that all of the three TNFSF4 polymorphisms may be associated with ADs susceptibility in Asians.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology , Dalian, China
| | - Xiahui Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology , Dalian, China
| | - Bowen Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology , Dalian, China
| | - Liying Mu
- School of Life Science and Medicine, Dalian University of Technology , Panjin, China
| | - Jin Wang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology , Dalian, China
| | - Yunmeng Cheng
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology , Dalian, China
| | - Yao Gu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology , Dalian, China
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology , Dalian, China
| |
Collapse
|
16
|
TNFAIP3 genetic polymorphisms reduce ankylosing spondylitis risk in Eastern Chinese Han population. Sci Rep 2019; 9:10209. [PMID: 31308453 PMCID: PMC6629655 DOI: 10.1038/s41598-019-46647-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to clarify the associations of tumor necrosis factor-α induced protein 3 (TNFAIP3) and TNFAIP3-interacting protein 1 (TNIP1) genetic polymorphisms with ankylosing spondylitis (AS) susceptibility. Five single nucleotide polymorphisms (SNPs) in TNFAIP3 gene and four in TNIP1 gene were genotyped in 667 AS patients and 667 matched healthy controls. Genotypes and haplotype analysis were conducted by using SPSS 23.0 and Haploview 4.2 software. The T allele and CT genotype in TNFAIP3 rs10499194 were significantly associated with a reduced AS risk (T allele vs. C allele, OR = 0.619, 95% CI = 0.430–0.889, P = 0.009; CT vs. CC, OR = 0.603, 95% CI = 0.416–0.875, P = 0.007). However, no association remained significant after Bonferroni correction. The rs13207033A- rs10499194T haplotype of TNFAIP3 conferred a protective effect on AS susceptibility. Stratification analyses suggested that rs10499194 polymorphism decreased the risk of AS in the male subgroup, subgroup aged ≥ 29, HLA-B27 positive subgroup as well as the subgroups of BASFI < 4 and BASDAI < 4 (all P < 0.05). Furthermore, the functional annotation suggested a potential function of rs10499194 mutation. Our results demonstrated that TNFAIP3 rs10499194 polymorphism may be associated with a reduced risk of AS.
Collapse
|
17
|
Xu J, He Y, Wang J, Li X, Huang L, Li S, Qin X. Influence of the TNFSF4 rs1234315 polymorphism in the susceptibility to systemic lupus erythematosus and rheumatoid arthritis. Hum Immunol 2019; 80:270-275. [DOI: 10.1016/j.humimm.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
|
18
|
Ben-Eli H, Gomel N, Aframian DJ, Abu-Seir R, Perlman R, Ben-Chetrit E, Mevorach D, Kleinstern G, Paltiel O, Solomon A. SNP variations in IL10, TNFα and TNFAIP3 genes in patients with dry eye syndrome and Sjogren's syndrome. JOURNAL OF INFLAMMATION-LONDON 2019; 16:6. [PMID: 30923465 PMCID: PMC6421669 DOI: 10.1186/s12950-019-0209-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022]
Abstract
Background Cytokines are known to be key players in dry eye syndrome (DES) and Sjogren’s syndrome (SS) pathogenesis. In this study we compared single nucleotide polymorphism (SNP) variations in genes encoding cytokine levels among SS and DES patients in Israel. Methods We recruited 180 subjects, 82 with SS and 98 with DES. Using a candidate gene approach and allele-specific PCR technique for genotyping, proportions of risk alleles in Tumor Necrosis Factor α (TNFα) (rs1800629), IinterLeukin-10 (IL-10) (rs1800896) and TNFAIP3 (rs2230926) SNPs were compared between study groups. Results Allelic distribution was found very similar to Caucasian (CEU – Utah residents with Northern and Western European roots) population distributions in these SNPs. While none of the SNPs’ variants were significantly associated with SS or DES in a recessive model, in an additive model the TNFα G risk allele was found higher among SS patients compared to DES (Homozygote-G: 84.2% vs. 70.8%; Heterozygote: 26.9% vs. 11.2%, respectively, p = 0.02). After adjustment for age, gender and ethnicity, these variants weren’t associated with SS. Genetic scoring reveals that SS patients are more likely to present variants of all three SNPs than DES subjects. Conclusions This is the first study evaluating these SNP variations among both patients with DES and patients with SS. We found the allelic distribution in each SNP to be very similar to that found in healthy Caucasian populations presented in the HapMap project. We found the TNFα allele significantly associated with DES for homozygotes, and associated with SS for heterozygotes in the additive model.
Collapse
Affiliation(s)
- Hadas Ben-Eli
- 1Braun School of Public Health and Community Medicine, Hadassah-Hebrew University of Jerusalem, POB 12000, 91120 Jerusalem, Israel.,2Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel.,3Department of Optometry and Vision Science, Hadassah Academic College, Jerusalem, Israel
| | - Nir Gomel
- 4School of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Doron Jacob Aframian
- 5Department of Oral Medicine, Sedation and Maxillofacial Imaging and Sjogren's Syndrome Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rania Abu-Seir
- 6Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riki Perlman
- 6Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eldad Ben-Chetrit
- 7Unit of Rheumatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- 8Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Geffen Kleinstern
- 1Braun School of Public Health and Community Medicine, Hadassah-Hebrew University of Jerusalem, POB 12000, 91120 Jerusalem, Israel.,9Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Ora Paltiel
- 1Braun School of Public Health and Community Medicine, Hadassah-Hebrew University of Jerusalem, POB 12000, 91120 Jerusalem, Israel.,6Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Abraham Solomon
- 2Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| |
Collapse
|
19
|
Mielle J, Tison A, Cornec D, Le Pottier L, Daien C, Pers JO. B cells in Sjögren's syndrome: from pathophysiology to therapeutic target. Rheumatology (Oxford) 2019; 60:2545-2560. [PMID: 30770916 DOI: 10.1093/rheumatology/key332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Biological abnormalities associated with B lymphocytes are a hallmark of patients with primary Sjögren's syndrome. Those patients present abnormal distribution of B lymphocytes in peripheral blood and B cells in exocrine glands. B cells produce auto-antibodies, cytokines and present antigens but can also suppressive functions. In this review, we will summarize current knowledge on B cells in primary Sjögren's syndrome patients, demonstrate their critical role in the immunopathology of the disease and describe the past and current trials targeting B cells.
Collapse
Affiliation(s)
- Julie Mielle
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | - Alice Tison
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Claire Daien
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | | |
Collapse
|
20
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
21
|
Sjögren’s Syndrome and Autoimmune Thyroid Disease: Two Sides of the Same Coin. Clin Rev Allergy Immunol 2018; 56:362-374. [DOI: 10.1007/s12016-018-8709-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Association of TNFSF4 Polymorphisms with Neuromyelitis Optica Spectrum Disorders in a Chinese Population. J Mol Neurosci 2017; 63:396-402. [PMID: 29032462 DOI: 10.1007/s12031-017-0990-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/10/2017] [Indexed: 02/05/2023]
Abstract
The tumor necrosis factor ligand superfamily member 4 (TNFSF4) gene encodes a vital co-stimulatory molecule of the immune system and has been identified as a susceptibility locus for systemic lupus erythematosus, systemic sclerosis, and primary Sjögren's syndrome. However, the association of TNFSF4 polymorphisms with neuromyelitis optica spectrum disorders (NMOSD), an inflammatory, demyelinating autoimmune disease of the central nervous system, has not yet been investigated. To evaluate whether TNFSF4 polymorphisms contribute to risk of NMOSD, four single-nucleotide polymorphisms (SNPs) (rs1234315, rs2205960, rs704840, and rs844648) were selected and genotyped in a cohort of 312 patients with NMOSD and 487 healthy controls. Our study showed that rs844648 was associated with an increased risk of NMOSD, according to the allelic model (OR = 1.30, 95% CI 1.06-1.59, P = 0.011, Pcorr = 0.044). Significant associations of rs844648 (OR = 1.67, 95% CI 1.17-2.38, P = 0.005, Pcorr = 0.02) and rs704840 (OR = 1.75, 95% CI 1.17-2.63, P = 0.007, Pcorr = 0.027) with NMOSD occurrence were also observed under the recessive model. Moreover, linkage disequilibrium analysis revealed two blocks within TNFSF4; in one block, the haplotype Ars844648Grs704840 significantly increased the risk of NMOSD, whereas Grs844648Trs704840 reduced the risk. This study demonstrates an association between TNFSF4 polymorphisms and susceptibility for the development of NMOSD in the Chinese population.
Collapse
|
23
|
Shen Y, Liu Y, Wang XQ, Ke X, Kang HY, Hong SL. Association between TNFSF4 and BLK gene polymorphisms and susceptibility to allergic rhinitis. Mol Med Rep 2017; 16:3224-3232. [PMID: 28713926 PMCID: PMC5547929 DOI: 10.3892/mmr.2017.6954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
Allergic rhinitis (AR) is a common inflammatory disease of the upper airway. Recent evidence suggests that gene‑gene interactions between tumor necrosis factor receptor superfamily 4 (TNFSF4) and B cell lymphocyte kinase (BLK) may have a synergistic effect on T and B cells in determining immunologic aberration, via the nuclear factor‑κB pathway. The present study was performed to evaluate the potential association between specific single nucleotide polymorphisms (SNPs) in the TNFSF4 and BKL genes with susceptibility to AR in Chinese subjects. A population‑based case‑control study was performed in 600 Chinese AR patients and 700 controls. Blood was drawn for DNA extraction, and 9 SNPs (6 in TNFSF4 and 3 in BKL genes) were selected and genotyped. The TNFSF4 SNPs rs1234314 and rs1234315, and the BLK SNPs rs13277113 and rs1600249 were observed to occur in different frequencies between the AR patients and the controls. The CC (rs1234314, rs1234315) and AA (rs1600249, rs13277113) genotypes provided protective effects against AR, whereas the AG (rs13277113) genotype presented a risk factor for AR. The haplotypes ACC in the rs1234313‑rs1234314‑rs1234315 block and GA in the rs2254546‑rs13277113 block significantly decreased the risk of AR, whereas the GGT and AG haplotypes served protective roles. SNP interaction analysis further indicated that there may be synergistic effects among the selected sets of polymorphisms. The present study suggests a novel association between specific TNFSF4 and BLK gene polymorphisms and AR risk, highlighting their potential utility as genetic biomarkers for AR susceptibility in a Chinese Han population.
Collapse
Affiliation(s)
- Yang Shen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao-Qiang Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xia Ke
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hou-Yong Kang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Su-Ling Hong
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
24
|
Xu E, Cao H, Lin L, Liu H. rs10499194 polymorphism in the tumor necrosis factor-α inducible protein 3 (TNFAIP3) gene is associated with type-1 autoimmune hepatitis risk in Chinese Han population. PLoS One 2017; 12:e0176471. [PMID: 28448618 PMCID: PMC5407796 DOI: 10.1371/journal.pone.0176471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/11/2017] [Indexed: 01/19/2023] Open
Abstract
Previous studies have found that the polymorphisms of tumor necrosis factor-α induced protein 3 (TNFAIP3) were associated with several autoimmune diseases. However, the role of TNFAIP3 polymorphisms in type-1 autoimmune hepatitis (AIH-1) remained unclear. The present study aimed to clarify the association of TNFAIP3 polymorphisms with AIH-1 risk in a Chinese Han population. The TaqMan SNP genotyping assay was used to determine the distribution of TNFAIP3 polymorphisms in 432 AIH-1 patients and 500 healthy controls. The association of TNFAIP3 polymorphisms and clinical characteristic was further evaluated. Five TNFAIP3 polymorphisms (rs2230926, rs5029939, rs10499194, rs6920220, rs582757) were analyzed in the present study. No significant association could be observed between rs2230926, rs5029939, rs6920220, rs582757 and the susceptibility to AIH-1 in Chinese Han population. Compared with wild-type genotype CC at rs10499194, individuals carrying CT genotype had a significantly increased risk for developing AIH-1 (OR = 2.32, 95%CI 1.44-3.74). Under a dominant model, CT/TT carriers have a 140% increased risk of AIH-1 than CC carriers (OR = 2.40, 95%CI 1.50-3.87). The rs10499194 T allele was also found to be significantly associated with AIH-1 risk (OR = 2.41, 95%CI 1.51-3.82). In addition, higher serum ALT, AST levels and more common cirrhosis were observed in AIH-1 patients with T allele (CT/TT) than those with CC genotype. In conclusion, TNFAIP3 rs10499194 T allele and CT genotype were associated with an increased risk for AIH-1, suggesting rs10499194 polymorphism as a candidate of susceptibility locus to AIH-1.
Collapse
Affiliation(s)
- Enbin Xu
- Department of Gastroenterology, No.404 Hospital of People’s Liberation Army, Weihai, Shandong, China
- * E-mail:
| | - Hailian Cao
- Department of Gastroenterology, No.404 Hospital of People’s Liberation Army, Weihai, Shandong, China
| | - Liming Lin
- Department of Gastroenterology, No.404 Hospital of People’s Liberation Army, Weihai, Shandong, China
| | - Honglong Liu
- Department of Gastroenterology, No.404 Hospital of People’s Liberation Army, Weihai, Shandong, China
| |
Collapse
|
25
|
TNFSF4 Gene Variations Are Related to Early-Onset Autoimmune Thyroid Diseases and Hypothyroidism of Hashimoto's Thyroiditis. Int J Mol Sci 2016; 17:ijms17081369. [PMID: 27556446 PMCID: PMC5000764 DOI: 10.3390/ijms17081369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 01/04/2023] Open
Abstract
The aim of the current study was to examine whether the polymorphism loci of the tumor necrosis factor superfamily member 4 (TNFSF4) gene increase the risk of susceptibility to autoimmune thyroid diseases (AITDs) in the Han Chinese population, and a case-control study was performed in a set of 1,048 AITDs patients and 909 normal healthy controls in the study. A total of four tagging single nucleotide polymorphisms (SNPs) in the TNFSF4 region, including rs7514229, rs1234313, rs16845607 and rs3850641, were genotyped using the method of ligase detection reaction. An association between GG genotype of rs3850641 in TNFSF4 gene and AITDs was found (p = 0.046). Additionally, the clinical sub-phenotype analysis revealed a significant association between GG genotype in rs7514229 and AITDs patients who were ≤18 years of age. Furthermore, rs3850641 variant allele G was in strong association with hypothyroidism in Hashimoto’s thyroiditis (HT) (p = 0.018). The polymorphisms of the TNFSF4 gene may contribute to the susceptibility to AITDs pathogenesis.
Collapse
|
26
|
Contribution of Genetic Factors to Sjögren's Syndrome and Sjögren's Syndrome Related Lymphomagenesis. J Immunol Res 2015; 2015:754825. [PMID: 26550578 PMCID: PMC4624885 DOI: 10.1155/2015/754825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/17/2015] [Indexed: 12/30/2022] Open
Abstract
We aimed to summarize the current evidence related to the contributory role of genetic factors in the pathogenesis of Sjögren's syndrome (SS) and SS-related lymphoma. Genes within the major histocompatibility complex (MHC) locus previously considered conferring increased susceptibility to SS development have been also revealed as important contributors in recent genome wide association studies. Moreover, genetic variations outside the MHC locus involving genes in type I interferon pathway, NF-κB signaling, B- and T-cell function and methylation processes have been shown to be associated with both SS and SS-related lymphoma development. Appreciating the functional implications of SS-related genetic variants could provide further insights into our understanding of SS heterogeneity, allowing the design of tailored therapeutic interventions.
Collapse
|
27
|
Konsta OD, Le Dantec C, Charras A, Brooks WH, Arleevskaya MI, Bordron A, Renaudineau Y. An in silico Approach Reveals Associations between Genetic and Epigenetic Factors within Regulatory Elements in B Cells from Primary Sjögren's Syndrome Patients. Front Immunol 2015; 6:437. [PMID: 26379672 PMCID: PMC4549647 DOI: 10.3389/fimmu.2015.00437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
Recent advances in genetics have highlighted several regions and candidate genes associated with primary Sjögren's syndrome (SS), a systemic autoimmune epithelitis that combines exocrine gland dysfunctions, and focal lymphocytic infiltrations. In addition to genetic factors, it is now clear that epigenetic deregulations are present during SS and restricted to specific cell type subsets, such as lymphocytes and salivary gland epithelial cells. In this study, 72 single nucleotide polymorphisms (SNPs) associated with 43 SS gene risk factors were selected from publicly available and peer reviewed literature for further in silico analysis. SS risk variant location was tested revealing a broad distribution in coding sequences (5.6%), intronic sequences (55.6%), upstream/downstream genic regions (30.5%), and intergenic regions (8.3%). Moreover, a significant enrichment of regulatory motifs (promoter, enhancer, insulator, DNAse peak, and expression quantitative trait loci) characterizes SS risk variants (94.4%). Next, screening SNPs in high linkage disequilibrium (r (2) ≥ 0.8 in Caucasians) revealed 645 new variants including 5 SNPs with missense mutations, and indicated an enrichment of transcriptionally active motifs according to the cell type (B cells > monocytes > T cells ≫ A549). Finally, we looked at SS risk variants for histone markers in B cells (GM12878), monocytes (CD14(+)) and epithelial cells (A548). Active histone markers were associated with SS risk variants at both promoters and enhancers in B cells, and within enhancers in monocytes. In conclusion and based on the obtained in silico results that need further confirmation, associations were observed between SS genetic risk factors and epigenetic factors and these associations predominate in B cells, such as those observed at the FAM167A-BLK locus.
Collapse
Affiliation(s)
- Orsia D. Konsta
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO “Immunotherapy Graft Oncology”, Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - Christelle Le Dantec
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO “Immunotherapy Graft Oncology”, Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - Amandine Charras
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO “Immunotherapy Graft Oncology”, Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - Wesley H. Brooks
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | | | - Anne Bordron
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO “Immunotherapy Graft Oncology”, Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - Yves Renaudineau
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO “Immunotherapy Graft Oncology”, Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
- Laboratory of Immunology and Immunotherapy, CHU Morvan, Brest, France
| |
Collapse
|
28
|
Zhou H, Yang J, Liu L, Zhang D, Zhou K, Li H, Zhao H, Han L, Zhou J, Liu X, Song Y, Yang R. The polymorphisms of tumor necrosis factor-induced protein 3 gene may contribute to the susceptibility of chronic primary immune thrombocytopenia in Chinese population. Platelets 2015; 27:26-31. [DOI: 10.3109/09537104.2015.1022142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Kuksin CA, Minter LM. The Link between Autoimmunity and Lymphoma: Does NOTCH Signaling Play a Contributing Role? Front Oncol 2015; 5:51. [PMID: 25759795 PMCID: PMC4338678 DOI: 10.3389/fonc.2015.00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022] Open
Abstract
An association between certain autoimmune conditions and increased risk of developing lymphoma is well documented. Recent evidence points to NOTCH signaling as a strong driver of autoimmunity. Furthermore, a role for NOTCH in various lymphomas, including classical Hodgkin lymphoma, non-Hodgkin lymphoma, and T cell lymphoma has also been described. In this mini-review, we will outline what is known about involvement of NOTCH signaling in those autoimmune conditions, such as rheumatoid arthritis and primary Sjörgren’s syndrome, which show an increased risk for subsequent diagnosis of lymphoma. Furthermore, we will detail what is known about the lymphomas associated with these autoimmune conditions and how aberrant or sustained NOTCH signaling in the immune cells that mediate these diseases may contribute to lymphoma.
Collapse
Affiliation(s)
- Christina Arieta Kuksin
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA ; Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, MA , USA
| |
Collapse
|
30
|
Donate A, Voigt A, Nguyen CQ. The value of animal models to study immunopathology of primary human Sjögren's syndrome symptoms. Expert Rev Clin Immunol 2014; 10:469-81. [PMID: 24506531 PMCID: PMC5769146 DOI: 10.1586/1744666x.2014.883920] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sjögren's syndrome (SjS) is a complex chronic autoimmune disease of multifactorial etiology that results in eventual loss of secretory function in the exocrine glands. The challenges towards finding a therapeutic prevention or treatment for SjS are due primarily to a lack of understanding in the pathophysiological and clinical progression of the disease. In order to circumnavigate this problem, there is a need for appropriate animal models that resemble the major phenotypes of human SjS and deliver a clear underlying biological or molecular mechanism capable of defining various aspects for the disease. Here, we present an overview of SjS mouse models that are providing insight into the autoimmune process of SjS and advance our focus on potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Amy Donate
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
- Center for Orphan Autoimmune Disorders, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, Florida 32610, USA
- Department of Oral Biology, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, Florida 32610, USA
| |
Collapse
|
31
|
8p22-23-rs2254546 as a susceptibility locus for Kawasaki disease: a case-control study and a meta-analysis. Sci Rep 2014; 4:4247. [PMID: 24577620 PMCID: PMC3937782 DOI: 10.1038/srep04247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/12/2014] [Indexed: 12/13/2022] Open
Abstract
8p22-23-rs2254546 was firstly discovered to be associated with Kawasaki disease (KD) susceptibility by a genome-wide association study. However, only one Chinese replication study has been performed so far. To verify this association in another Chinese population, a hospital-based case-control study in Zhejiang province was conducted followed by an integrated meta-analysis, comprising five case-control studies of 1958 cases, 5615 controls and four transmission disequilibrium tests of 503 trios. In our case-control study, significant associations were observed between GG genotype or GG/GA genotypes of rs2254546 and increased KD risk (OR = 1.86, 95% CI = 1.01-3.41, P = 0.045; OR = 1.83, 95% CI = 1.01-3.33, P = 0.048), compared with AA genotype; however, no significant association was found in allelic model (OR = 1.20, 95% CI = 0.96-1.50, P = 0.117). The meta-analysis further revealed that the G allele was significantly associated with the increased KD risk without evidence of heterogeneity (OR = 1.55, 95% CI = 1.42-1.70, P < 0.001). In conclusion, rs2254546 polymorphism might significantly contribute to the risk of KD.
Collapse
|
32
|
Kroese FGM, Abdulahad WH, Haacke E, Bos NA, Vissink A, Bootsma H. B-cell hyperactivity in primary Sjögren's syndrome. Expert Rev Clin Immunol 2014; 10:483-99. [PMID: 24564507 DOI: 10.1586/1744666x.2014.891439] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary Sjögren's syndrome (pSS) is characterized by mononuclear inflammatory infiltrates and IgG plasma cells in salivary and lacrimal glands which lead to irreversible destruction of the glandular tissue and is accompanied by sensation of dryness of mouth and eyes. B cells play a central role in the immunopathogenesis and exhibit signs of hyperactivity. Hyperactivity of B cells is the consequence of the coordinated and integrated action of stimulation of the B-cell receptor, CD40 and toll-like receptors in the presence of appropriate cytokines. As discussed, overexpression of type I IFN and BAFF on one hand and IL-6 and IL-21 on the other hand are critically involved in the enhanced plasma cell formation in pSS patients. Hyperactivity of B cells results in secretion of autoantibodies and production of various cytokines. These insights in the role of B cells in the pathogenetic process of pSS offer ample targets for successful therapeutical intervention in pSS.
Collapse
Affiliation(s)
- Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Nordmark G, Wang C, Vasaitis L, Eriksson P, Theander E, Kvarnström M, Forsblad-d'Elia H, Jazebi H, Sjöwall C, Reksten TR, Brun JG, Jonsson MV, Johnsen SJ, Wahren-Herlenius M, Omdal R, Jonsson R, Bowman S, Ng WF, Eloranta ML, Syvänen AC. Association of genes in the NF-κB pathway with antibody-positive primary Sjögren's syndrome. Scand J Immunol 2013; 78:447-54. [PMID: 23944604 DOI: 10.1111/sji.12101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/01/2013] [Indexed: 01/30/2023]
Abstract
Primary Sjögren's syndrome (SS) is a systemic autoimmune inflammatory disease characterized by focal lymphocytic infiltrates in the lachrymal and salivary glands and autoantibodies against the SSA/Ro and SSB/La antigens. Experimental studies have shown an activation of NF-κB in primary SS. NF-κB activation results in inflammation and autoimmunity and is regulated by inhibitory and activating proteins. Genetic studies have shown an association between multiple autoimmune diseases and TNFAIP3 (A20) and TNIP1 (ABIN1), both repressors of NF-κB and of IKBKE (IKKε), which is an NF-κB activator. The aim of this study was to analyse single nucleotide polymorphisms (SNPs) in the IKBKE, NFKB1, TNIP1 and TNFAIP3 genes for association with primary SS. A total of 12 SNPs were genotyped in 1105 patients from Scandinavia (Sweden and Norway, n = 684) and the UK (n = 421) and 4460 controls (Scandinavia, n = 1662, UK, n = 2798). When patients were stratified for the presence of anti-SSA and/or anti-SSB antibodies (n = 868), case-control meta-analysis found an association between antibody-positive primary SS and two SNPs in TNIP1 (P = 3.4 × 10(-5) , OR = 1.33, 95%CI: 1.16-1.52 for rs3792783 and P = 1.3 × 10(-3) , OR = 1.21, 95%CI: 1.08-1.36 for rs7708392). A TNIP1 risk haplotype was associated with antibody-positive primary SS (P = 5.7 × 10(-3) , OR = 1.47, 95%CI: 1.12-1.92). There were no significant associations with IKBKE, NFKB1 or TNFAIP3 in the meta-analysis of the Scandinavian and UK cohorts. We conclude that polymorphisms in TNIP1 are associated with antibody-positive primary SS.
Collapse
Affiliation(s)
- Gunnel Nordmark
- Section of Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Scheinman R. NF-κB and Rheumatoid Arthritis: Will Understanding Genetic Risk Lead to a Therapeutic Reward? ACTA ACUST UNITED AC 2013; 4:93-110. [PMID: 24678426 DOI: 10.1615/forumimmundisther.2013008408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NF-κB has long been known to play an important role in autoimmune diseases such as rheumatoid arthritis (RA). Indeed, as our understanding of how NF-κB is utilized has increased, we have been hard put to find a process not associated with this transcription factor family in some way. However, new data originating, in part, from genome-wide association studies have demonstrated that very specific alterations in components of the NF-κB pathway are sufficient to confer increased risk of developing disease. Here we review the data which have identified specific components of the NF-κB pathway, and consider what is known of their mechanisms of action and how these mechanisms might play into the disease process. In addition, the use of genetic information to predict RA is considered.
Collapse
Affiliation(s)
- Robert Scheinman
- University of Colorado Denver, School of Pharmacy, Department of Pharmaceutical Sciences, Aurora, CO 80045;
| |
Collapse
|