1
|
Thakur N, Sharma AK, Singh H, Singh S. Role of Mitochondrial DNA (mtDNA) Variations in Cancer Development: A Systematic Review. Cancer Invest 2020; 38:375-393. [PMID: 32673136 DOI: 10.1080/07357907.2020.1797768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
mtDNA is the closed circular, ds-DNA present in mitochondria of eukaryotic cells and are inherited maternally. Besides being the power house of the cell, mitochondria are also responsible for the regulation of redox homeostasis, signaling, metabolism, immunity, survival and apoptosis. Lack of a 'Systematic Review' on mtDNA variations and cancers encouraged us to perform the present study. Pubmed', 'Embase' and 'Cochrane Library' databases were searched using keywords 'Mitochondrial DNA' OR 'mtDNA' OR 'mDNA' AND 'polymorphism' AND 'cancer' AND 'risk' to retrieve literature. Polymorphisms occupy first rank among mtDNA variations followed by CNV, MSI, mutations and hold a great potential to emerge as key predictors for human cancers.
Collapse
Affiliation(s)
- Nisha Thakur
- Division of Molecular Diagnostics, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Ministry of Health & Family Welfare (Govt. of India), Noida, India
| | - Amitesh Kumar Sharma
- Division of Informatics, Systems Research and Management, Indian Council of Medical Research (ICMR), Ministry of Health & Family Welfare (Govt. of India), New Delhi, India
| | - Harpreet Singh
- Division of Informatics, Systems Research and Management, Indian Council of Medical Research (ICMR), Ministry of Health & Family Welfare (Govt. of India), New Delhi, India
| | - Shalini Singh
- Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Ministry of Health & Family Welfare (Govt. of India), Noida, India
| |
Collapse
|
2
|
Ji Q, Cheng X, Ding Y, Geng H, Zhao Y, Liu G, Liu X. Association of mitochondrial DNA mutations with Chinese esophageal squamous cell carcinomas (ESCC) by analyzing the whole mitochondrial DNA genomes. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1619493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Qiang Ji
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, P. R. China
| | - Xiaomin Cheng
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, P. R. China
| | - Yinan Ding
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, P. R. China
| | - Huiwu Geng
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, P. R. China
| | - Yuan Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui Province, China
| | - Gang Liu
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, P. R. China
| | - Xiaoying Liu
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
3
|
Riley V, Erzurumluoglu AM, Rodriguez S, Bonilla C. Mitochondrial DNA Haplogroups and Breast Cancer Risk Factors in the Avon Longitudinal Study of Parents and Children (ALSPAC). Genes (Basel) 2018; 9:E395. [PMID: 30071701 PMCID: PMC6115984 DOI: 10.3390/genes9080395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/11/2023] Open
Abstract
The relationship between mitochondrial DNA (mtDNA) and breast cancer has been frequently examined, particularly in European populations. However, studies reporting associations between mtDNA haplogroups and breast cancer risk have had a few shortcomings including small sample sizes, failure to account for population stratification and performing inadequate statistical tests. In this study we investigated the association of mtDNA haplogroups of European origin with several breast cancer risk factors in mothers and children of the Avon Longitudinal Study of Parents and Children (ALSPAC), a birth cohort that enrolled over 14,000 pregnant women in the Southwest region of the UK. Risk factor data were obtained from questionnaires, clinic visits and blood measurements. Information on over 40 independent breast cancer risk factor-related variables was available for up to 7781 mothers and children with mtDNA haplogroup data in ALSPAC. Linear and logistic regression models adjusted for age, sex and population stratification principal components were evaluated. After correction for multiple testing we found no evidence of association of European mtDNA haplogroups with any of the breast cancer risk factors analysed. Mitochondrial DNA haplogroups are unlikely to underlie susceptibility to breast cancer that occurs via the risk factors examined in this study of a population of European ancestry.
Collapse
Affiliation(s)
- Vivienne Riley
- MSc Genomic Medicine Programme, G7, College House, St Luke's Campus University of Exeter, Exeter, Devon EX2 4TE, UK.
| | - A Mesut Erzurumluoglu
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| | - Carolina Bonilla
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
- Integrative Cancer Epidemiology Program, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil.
| |
Collapse
|
4
|
Kalsbeek AMF, Chan EFK, Grogan J, Petersen DC, Jaratlerdsiri W, Gupta R, Lyons RJ, Haynes AM, Horvath LG, Kench JG, Stricker PD, Hayes VM. Mutational load of the mitochondrial genome predicts pathological features and biochemical recurrence in prostate cancer. Aging (Albany NY) 2017; 8:2702-2712. [PMID: 27705925 PMCID: PMC5191864 DOI: 10.18632/aging.101044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Prostate cancer management is complicated by extreme disease heterogeneity, which is further limited by availability of prognostic biomarkers. Recognition of prostate cancer as a genetic disease has prompted a focus on the nuclear genome for biomarker discovery, with little attention given to the mitochondrial genome. While it is evident that mitochondrial DNA (mtDNA) mutations are acquired during prostate tumorigenesis, no study has evaluated the prognostic value of mtDNA variation. Here we used next-generation sequencing to interrogate the mitochondrial genomes from prostate tissue biopsies and matched blood of 115 men having undergone a radical prostatectomy for which there was a mean of 107 months clinical follow-up. We identified 74 unique prostate cancer specific somatic mtDNA variants in 50 patients, providing significant expansion to the growing catalog of prostate cancer mtDNA mutations. While no single variant or variant cluster showed recurrence across multiple patients, we observe a significant positive correlation between the total burden of acquired mtDNA variation and elevated Gleason Score at diagnosis and biochemical relapse. We add to accumulating evidence that total acquired genomic burden, rather than specific mtDNA mutations, has diagnostic value. This is the first study to demonstrate the prognostic potential of mtDNA mutational burden in prostate cancer.
Collapse
Affiliation(s)
- Anton M F Kalsbeek
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Randwick, NSW 2031, Australia
| | - Eva F K Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Randwick, NSW 2031, Australia
| | - Judith Grogan
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia.,Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Desiree C Petersen
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Randwick, NSW 2031, Australia
| | - Weerachai Jaratlerdsiri
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia.,Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ruth J Lyons
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Maree Haynes
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Lisa G Horvath
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW 2050, Australia
| | - James G Kench
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia.,Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Phillip D Stricker
- Department of Urology, St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Vanessa M Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Randwick, NSW 2031, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Kalsbeek AM, Chan EK, Corcoran NM, Hovens CM, Hayes VM. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget 2017; 8:71342-71357. [PMID: 29050365 PMCID: PMC5642640 DOI: 10.18632/oncotarget.19926] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a genetic disease. While next generation sequencing has allowed for the emergence of molecular taxonomy, classification is restricted to the nuclear genome. Mutations within the maternally inherited mitochondrial genome are known to impact cancer pathogenesis, as a result of disturbances in energy metabolism and apoptosis. With a higher mutation rate, limited repair and increased copy number compared to the nuclear genome, the clinical relevance of mitochondrial DNA (mtDNA) variation requires deeper exploration. Here we provide a systematic review of the landscape of prostate cancer associated mtDNA variation. While the jury is still out on the association between inherited mtDNA variation and prostate cancer risk, we collate a total of 749 uniquely reported prostate cancer associated somatic mutations. Support exists for number of somatic events, extent of heteroplasmy, and rate of recurrence of mtDNA mutations, increasing with disease aggression. While, the predicted pathogenic impact for recurrent prostate cancer associated mutations appears negligible, evidence exists for carcinogenic mutations impacting the cytochrome c oxidase complex and regulating metastasis through elevated reactive oxygen species production. Due to a lack of lethal cohort analyses, we provide additional unpublished data for metastatic disease. Discussing the advantages of mtDNA as a prostate cancer biomarker, we provide a review of current progress of including elevated mtDNA levels, of a large somatic deletion, acquired tRNAs mutations, heteroplasmy and total number of somatic events (mutational load). We confirm via meta-analysis a significant association between mtDNA mutational load and pathological staging at diagnosis or surgery (p < 0.0001).
Collapse
Affiliation(s)
- Anton M.F. Kalsbeek
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Eva K.F. Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Niall M. Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa M. Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|