1
|
Sakka R, Abdelhedi F, Sellami H, Pichon B, Lajmi Y, Mnif M, Kebaili S, Derbel R, Kamoun H, Gdoura R, Delbaere A, Desir J, Abramowicz M, Vialard F, Dupont JM, Ammar-Keskes L. An unusual familial Xp22.12 microduplication including EIF1AX: A novel candidate dosage-sensitive gene for premature ovarian insufficiency. Eur J Med Genet 2022; 65:104613. [PMID: 36113757 DOI: 10.1016/j.ejmg.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/22/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
We report on the results of array-CGH and Whole exome sequencing (WES) studies carried out in a Tunisian family with 46,XX premature ovarian insufficiency (POI). This study has led to the identification of a familial Xp22.12 tandem duplication with a size of 559.4 kb, encompassing only three OMIM genes (RPS6KA3, SH3KBP1and EIF1AX), and a new heterozygous variant in SPIDR gene: NM_001080394.3:c.1845_1853delTATAATTGA (p.Ile616_Asp618del) segregating with POI. Increased mRNA expression levels were detected for SH3KBP1 and EIF1AX, while a normal transcript level for RPS6KA3 was detected in the three affected family members, explaining the absence of intellectual disability (ID). To the best of our knowledge, this is the first duplication involving the Xp22.12 region, reported in a family without ID, but rather with secondary amenorrhea (SA) and female infertility. As EIF1AX is a regulatory gene escaping X-inactivation, which has an extreme dosage sensitivity and highly expressed in the ovary, we suggest that this gene might be a candidate gene for ovarian function. Homozygous nonsense pathogenic variants of SPIDR gene have been reported in familial cases in POI. It has been suggested that chromosomal instability associated with SPIDR molecular defects supports the role of SPIDR protein in double-stranded DNA damage repair in vivo in humans and its causal role in POI. In this family, the variant (p.Ile616_Asp618del), present in a heterozygous state, is located in the domain that interacts with BLM and might disrupt the BLM binding ability of SPIDR protein. These findings strengthen the hypothesis that the additional effect of this variant could lead to POI in this family. Although the work represents the first evidence that EIF1AX duplication might be responsible for POI through its over-expression, further functional studies are needed to clarify and prove EIF1AX involvement in POI phenotype.
Collapse
Affiliation(s)
- Rim Sakka
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia; Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fatma Abdelhedi
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia; Medical Genetics Department, Hedi Chaker Hospital, Sfax, Tunisia.
| | - Hanen Sellami
- Water Researches and Technologies Center (CERTE), University of Carthage, Tourist Road Soliman, Nabeul, Tunisia; Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Bruno Pichon
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Yosra Lajmi
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | - Mouna Mnif
- Department of Endocrinology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Sahbi Kebaili
- Department of Gynecology, HediChaker Hospital, Sfax, Tunisia
| | - Rihab Derbel
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Hassen Kamoun
- Medical Genetics Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Radhouane Gdoura
- Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Anne Delbaere
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, UniversitéLibre de Bruxelles, Brussels, Belgium
| | - Julie Desir
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - François Vialard
- Genetics Department, CHI Poissy St Germain-en-Laye, F-78300, Poissy, France; RHuMA Team, UMR-BREED, INRAE-UVSQ-ENVA, UFR-SVS, F-78180, Montigny le Bretonneux, France
| | - Jean-Michel Dupont
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | - Leila Ammar-Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
2
|
Yanagishita T, Imaizumi T, Yamamoto-Shimojima K, Yano T, Okamoto N, Nagata S, Yamamoto T. Breakpoint junction analysis for complex genomic rearrangements with the caldera volcano-like pattern. Hum Mutat 2020; 41:2119-2127. [PMID: 32906213 DOI: 10.1002/humu.24108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
Chromosomal triplications can be classified into recurrent and nonrecurrent triplications. Most of the nonrecurrent triplications are embedded in duplicated segments, and duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) has been established as one of the mechanisms of triplication. This study aimed to reveal the underlying mechanism of the TRP-DUP-TRP pattern of chromosomal aberrations, in which the appearance of moving averages obtained through array-based comparative genomic hybridization analysis is similar to the shadows of the caldera volcano-like pattern, which were first identified in two patients with neurodevelopmental disabilities. For this purpose, whole-genome sequencing using long-read Nanopore sequencing was carried out to confirm breakpoint junctions. Custom array analysis and Sanger sequencing were also used to detect all breakpoint junctions. As a result, the TRP-DUP-TRP pattern consisted of only two patterns of breakpoint junctions in both patients. In patient 1, microhomologies were identified in breakpoint junctions. In patient 2, more complex architectures with insertional segments were identified. Thus, replication-based mechanisms were considered as a mechanism of the TRP-DUP-TRP pattern.
Collapse
Affiliation(s)
- Tomoe Yanagishita
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Imaizumi
- Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | - Tamami Yano
- Department of Pediatrics, Akita University, Akita, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Castelluccio VJ, Vetrini F, Lynnes T, Jones J, Holloway L, Belonis A, Breman AM, Graham BH, Sapp K, Wilson T, Schwartz CE, Pratt VM, Weaver DD. An unusual cause for Coffin-Lowry syndrome: Three brothers with a novel microduplication in RPS6KA3. Am J Med Genet A 2019; 179:2357-2364. [PMID: 31512387 DOI: 10.1002/ajmg.a.61353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 11/07/2022]
Abstract
Coffin-Lowry syndrome (CLS) is a rare X-linked disorder characterized by moderate to severe intellectual disability, hypotonia, craniofacial features, tapering digits, short stature, and skeletal deformities. Using whole exome sequencing and high-resolution targeted comparative genomic hybridization array analysis, we identified a novel microduplication encompassing exons five through nine of RPS6KA3 in three full brothers. Each brother presented with intellectual disability and clinical and radiographic features consistent with CLS. qRT-PCR analyses performed on mRNA from the peripheral blood of the three siblings revealed a marked reduction of RPS6KA3 levels suggesting a loss-of-function mechanism. PCR analysis of the patients' cDNA detected a band greater than expected for an exon 4-10 amplicon, suggesting this was likely a direct duplication that lies between exons 4 through 10, which was later confirmed by Sanger sequencing. This microduplication is only the third intragenic duplication of RPS6KA3, and the second and smallest reported to date thought to cause CLS. Our study further supports the clinical utility of methods such as next-generation sequencing and high-resolution genomic arrays to detect small intragenic duplications. These methods, coupled with expression studies and cDNA structural analysis have the capacity to confirm the diagnosis of CLS in these rare cases.
Collapse
Affiliation(s)
- Valerie J Castelluccio
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ty Lynnes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julie Jones
- Greenwood Genetic Center, Greenwood, South Carolina
| | | | - Alyce Belonis
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amy M Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katherine Sapp
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Theodore Wilson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Victoria M Pratt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|