1
|
Worakitchanon W, Panvongsa W, Siripoon T, Kitdumrongthum S, Wongpan A, Arsa L, Trachu N, Jinawath N, Chairoungdua A, Ngamphaiboon N. Six-MicroRNA Prognostic Signature in Patients With Locally Advanced Head and Neck Squamous Cell Carcinoma. JCO Precis Oncol 2023; 7:e2300003. [PMID: 37163716 DOI: 10.1200/po.23.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE MicroRNAs (miRNAs) have been evaluated as biomarkers in cancers. Therefore, we aimed to identify a prognostic miRNA signature from The Cancer Genome Atlas (TCGA) database and validate it in the Ramathibodi (RA) locally advanced head and neck squamous cell carcinoma (LA-HNSCC) cohort. METHODS The correlation between candidate miRNAs and the survival of patients with LA-HNSCC in TCGA database was analyzed. A prognostic miRNA signature model was generated that classified patients into high-risk and low-risk groups. This candidate miRNA signature was further validated in the independent RA cohort using droplet-digital polymerase chain reaction. RESULTS In TCGA database, we compared the expression of 277 miRNAs between 519 head and neck squamous cell carcinoma tissues and 44 normal tissues. The expression of hsa-miR-10b, hsa-miR-148b, hsa-miR-99a, hsa-miR-127, hsa-miR-370, and hsa-miR-500a was independently associated with overall survival (OS). Thus, we established the miRNA signature risk score from these six miRNAs and categorized patients into low-risk and high-risk groups. The median OS of TCGA patients was significantly shorter in the low-risk group than in the high-risk group (P < .001). The six-miRNA signature was further validated in the RA cohort (N = 87). The median OS of the low-risk group was significantly shorter compared with the high-risk group (P = .03). In multivariate analysis, the six-miRNA signature was an independent prognostic factor for OS in the RA cohort (HR, 1.958; 95% CI, 1.006 to 3.812; P = .048). CONCLUSION We identified a prognostic six-miRNA signature for patients with LA-HNSCC from TCGA cohort and validated it in our independent cohort. However, larger studies are warranted to confirm these results.
Collapse
Affiliation(s)
| | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Teerada Siripoon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Anongnat Wongpan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lalida Arsa
- Molecular Histopathology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narumol Trachu
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Nuttapong Ngamphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
De Palma FDE, Carbonnier V, Salvatore F, Kroemer G, Pol JG, Maiuri MC. Systematic Investigation of the Diagnostic and Prognostic Impact of LINC01087 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235980. [PMID: 36497462 PMCID: PMC9738797 DOI: 10.3390/cancers14235980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Vincent Carbonnier
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e Loro Modelli Animali (Federico II, 80131, Napoli, Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), 80131 Napoli, Italy
| | - Guido Kroemer
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, 75004 Paris, France
| | - Jonathan G. Pol
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| |
Collapse
|
3
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
4
|
Sayyed AA, Gondaliya P, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Role of miRNAs In Cancer Diagnostics And Therapy: A Recent Update. Curr Pharm Des 2021; 28:471-487. [PMID: 34751112 DOI: 10.2174/1381612827666211109113305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
The discovery of miRNAs has been one of the revolutionary developments and has led to the advent of new diagnostic and therapeutic opportunities for the management of cancer. In this regard, miRNA dysregulation has been shown to play a critical role in various stages of tumorigenesis, including tumor invasion, metastasis as well as angiogenesis. Therefore, miRNA profiling can provide accurate fingerprints for the development of diagnostic and therapeutic platforms. This review discusses the recent discoveries of miRNA-based tools for early detection of cancer as well as disease monitoring in cancers that are common, like breast, lung, hepatic, colorectal, oral and brain cancer. Based on the involvement of miRNA in different cancers as oncogenic miRNA or tumor suppressor miRNA, the treatment with miRNA inhibitors or mimics is recommended. However, the stability and targeted delivery of miRNA remain the major limitations of miRNA delivery. In relation to this, several nanoparticle-based delivery systems have been reported which have effectively delivered the miRNA mimics or inhibitors and showed the potential for transforming these advanced delivery systems from bench to bedside in the treatment of cancer metastasis and chemoresistance. Based on this, we attempted to uncover recently reported advanced nanotherapeutic approaches to deliver the miRNAs in the management of different cancers.
Collapse
Affiliation(s)
- Adil A Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Palak Bhat
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Mukund Mali
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| |
Collapse
|
5
|
Synthetic Evaluation of MicroRNA-1-3p Expression in Head and Neck Squamous Cell Carcinoma Based on Microarray Chips and MicroRNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6529255. [PMID: 34485523 PMCID: PMC8410410 DOI: 10.1155/2021/6529255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
Background MicroRNA-1-3p (miR-1-3p) exerts significant regulation in various tumor cells, but its molecular mechanisms in head and neck squamous cell carcinoma (HNSCC) are still ill defined. This study is aimed at detecting the expression of miR-1-3p in HNSCC and at determining its significant regulatory pathways. Methods Data were obtained from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Oncomine, ArrayExpress, Sequence Read Archive (SRA) databases, and additional literature. Expression values of miR-1-3p in HNSCC were analyzed comprehensively. The R language software was employed to screen differentially expressed genes, and bioinformatics assessment was performed. One sequence dataset (HNSCC: n = 484; noncancer: n = 44) and 18 chip datasets (HNSCC: n = 656; noncancer: n = 199) were obtained. Results The expression of miR-1-3p in HNSCC was visibly decreased in compare with noncancerous tissues. There were distinct differences in tumor state (P = 0.0417), pathological stage (P = 0.0058), and T stage (P = 0.0044). Comprehensive analysis of sequence and chip data also indicated that miR-1-3p was lowly expressed in HNSCC. The diagnostic performance of miR-1-3p in HNSCC is reflected in the sensitivity and specificity of the collection, etc. Bioinformatics analysis showed the possible biological process, cellular component, molecular function, and KEGG pathways of miR-1-3p in HNSCC. And ITGB4 was a possible target of miR-1-3p. Conclusions miR-1-3p's low expression may facilitate tumorigenesis and evolution in HNSCC through signaling pathways. ITGB4 may be a key gene in targeting pathways but still needs verification through in vitro experiments.
Collapse
|
6
|
Li CC, Shen Z, Bavarian R, Yang F, Bhattacharya A. Oral Cancer: Genetics and the Role of Precision Medicine. Surg Oncol Clin N Am 2021; 29:127-144. [PMID: 31757309 DOI: 10.1016/j.soc.2019.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
Affiliation(s)
- Chia-Cheng Li
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Zhen Shen
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Roxanne Bavarian
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, Francis Street, Boston, MA 02115, USA
| | - Fan Yang
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Aditi Bhattacharya
- Department of Oral and Maxillofacial Surgery, NYU College of Dentistry, East 24th Street, New York, NY 10010, USA
| |
Collapse
|
7
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|
8
|
Singh A, Gupta A, Chowdhary M, Brahmbhatt HD. Integrated analysis of miRNA-mRNA networks reveals a strong anti-skin cancer signature in vitiligo epidermis. Exp Dermatol 2021; 30:1309-1319. [PMID: 33682215 DOI: 10.1111/exd.14317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Expression of microRNAs (miRNAs) is often dysregulated in several cancers, including non-melanoma skin cancer (NMSC). Individuals with vitiligo possess a deregulated miRnome along with a lower risk of developing NMSCs. We used data sets from our previously published studies on vitiligo epidermis to construct functional miRNA-mRNA networks to understand the molecular basis underlying the lower incidence of NMSC observed in individuals with vitiligo. miRTarBase database was used to fetch the experimentally validated targets of differentially expressed miRNAs and two protein-protein interaction (PPI) networks were constructed for the miRNA-mRNA interactions (230 downregulated targets of 5 upregulated miRNAs and 47 upregulated mRNAs targeted by 12 downregulated miRNAs). Pathway enrichment analysis identified RNA biogenesis and transport as well as cell adhesion to be perturbed in vitiligo. Further, oncogenic transcription factors (OTFs) that were upregulated in publicly available squamous cell carcinoma (SCC) or basal cell carcinoma (BCC) microarray data were compared with that of vitiligo to decode skin cancer-specific molecular signatures. We identified three significantly upregulated miRNAs, miR-31-5p, miR-31-3p and miR-194-3p in lesional epidermis that could negatively regulate seven oncogenic transcription factors, FOXC1, AR, SP1, YY1, GLI2, TP53 and RARA, known to be over-expressed in SCC or BCC. Taken together, our study identified a perturbed miRNA-regulated transcriptome, which potentially confers protection to vitiligo skin from an increased incidence of NMSC.
Collapse
Affiliation(s)
- Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aayush Gupta
- Dr. D. Y. Patil Medical College, Pune, Maharashtra, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemang D Brahmbhatt
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
10
|
Potential therapeutic approaches of microRNAs for COVID-19: Challenges and opportunities. J Oral Biol Craniofac Res 2020; 11:132-137. [PMID: 33398242 PMCID: PMC7772998 DOI: 10.1016/j.jobcr.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) emerges as current outbreak cause by Novel Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2). This infection affects respiratory system and provides uncontrolled systemic inflammatory response as cytokine storm. The main concern about SARS-CoV-2 pandemic is high viral pathogenicity with no specific drugs. MicroRNAs (miRs) as small non-coding RNAs (21–25 nt) regulate gene expression. The SARS-CoV-2 encoded-miRs affect human genes that involved in transcription, translation, apoptosis, immune response and inflammation. Also, they alter self-gene regulation and hijacked host miRs that provide protective environment to maintain its latency. On the other hand, Host miRs play critical role in viral gene expression to restrict infection. Over expression/inhibition of miRs might result in cell cycle irregularity, impaired immune response or cancer. In this manner, exact role of each miR should be specified. Mimic encoded-miRs like antagomirs showed successful result in phases of clinical trial prevent from negative effects of viral encoded-miRs. Products of mimic miRs are inexpensive corresponds to synthesis of primer; they are short and nanoscale in size. Although SARS-CoV-2 genome is undergoing evaluation, detection of exact molecular pathogenesis open up opportunities to for vaccine development. Salivaomics can evaluate SARS-CoV-2 genome, transcriptome, proteome and biomarkers like miRs in oral related and cancer disease. In this review, we studied the challenge and opportunities of miRs in therapeutic approach for SARS-CoV-2 infection, then overviewed the role of miRs in saliva droplet during SARS-CoV-2 infection and related cancer.
Collapse
|
11
|
Li T, Feng Z, Wang Y, Zhang H, Li Q, Schiferle E, Qin Y, Xiao S. Antioncogenic Effect of MicroRNA-206 on Neck Squamous Cell Carcinoma Through Inhibition of Proliferation and Promotion of Apoptosis and Autophagy. Hum Gene Ther 2020; 31:1260-1273. [PMID: 32900244 DOI: 10.1089/hum.2020.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent studies have reported the crucial role of stanniocalcin-2 (STC2) in hepatocellular carcinoma; however, its role in head and neck squamous cell carcinoma (HNSCC) remains elusive. In this study, microRNA-206 (miR-206) was predicted to target STC2 gene. The study herein aimed to elucidate the effect of miR-206 on HNSCC by targeting STC2. STC2 was highly expressed in HNSCC tissues and cells. By targeting STC2, miR-206 decreased mRNA and protein expression of STC2. Importantly, our study showed that miR-206 blocked the Akt signaling pathway by inhibiting STC2. Intriguingly, our data from in vitro and in vivo experiments suggested that miR-206 overexpression led to decreased cell proliferation and increased cell apoptosis and autophagy, as well as suppressed tumor growth; whereas, STC2 silencing reversed the effects of miR-206 inhibitor on those biological behaviors. In this study, we investigated the antioncogenic effect of miR-206 on HNSCC by targeting STC2, and highlighted miR-206/STC2 aixs as potential therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Tiancheng Li
- Departments of Otorhinolaryngology-Head and Neck Surgery ,Peking University First Hospital, Beijing, P.R. China
| | - Zhien Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, P.R. China
| | - Yingyi Wang
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Hong Zhang
- Departments of Pathology, Peking University First Hospital, Beijing, P.R. China
| | - Qian Li
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erik Schiferle
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yao Qin
- Departments of Otorhinolaryngology-Head and Neck Surgery ,Peking University First Hospital, Beijing, P.R. China
| | - Shuifang Xiao
- Departments of Otorhinolaryngology-Head and Neck Surgery ,Peking University First Hospital, Beijing, P.R. China
| |
Collapse
|
12
|
Li GS, Hou W, Chen G, Yao YX, Chen XY, Zhang XG, Liang Y, Li MX, Huang ZG, Dang YW, Liang QH, Wu HY, Li RQ, Wei HY. Clinical Significance of Integrin Subunit Beta 4 in Head and Neck Squamous Cell Carcinoma. Cancer Biother Radiopharm 2020; 37:256-275. [PMID: 33179959 DOI: 10.1089/cbr.2020.3943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: The expression level and clinical significance of integrin subunit beta 4 (ITGB4) in head and neck squamous cell carcinoma (HNSCC) remain unclear. Materials and Methods: Expression of ITGB4 in HNSCC tissues were evaluated by calculating standard mean differences (SMDs) based on gene chips, RNA-seq, and immunohistochemistry data (n = 2330) from multiple sources. Receiver operating characteristic (ROC) curves were used to detect the ability of ITGB4 to distinguish HNSCC from non-HNSCC samples. The relationship between the expression level of ITGB4 and clinical parameters was evaluated by calculating SMDs. Results: Identical results of mRNA and protein levels indicated remarkable up-expression of ITGB4 in HNSCC tissues. Further ROC curves showed that ITGB4 could distinguish HNSCC from non-HNSCC samples. Genetic alteration analysis of ITGB4 in HNSCC indicated that overexpression of ITGB4 in HNSCC was likely not owing to genetic alteration of ITGB4. Moreover, ITGB4 overexpression level may be correlated with clinical T stage. Conclusion: ITGB4 likely plays an essential role in HNSCC occurrence based on our study and its potential diagnostic value is worthy of further exploration in the future.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Wei Hou
- Guangxi Key Laboratory of Thalassemia Research, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yu-Xuan Yao
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Xiao-Yi Chen
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Xiao-Guohui Zhang
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Yao Liang
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Ming-Xuan Li
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qing-Hua Liang
- Department of Clinical Laboratory, Guangxi Jiangbin Hospital, Nanning, People's Republic of China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Qiao Li
- Department of Clinical Laboratory, Guangxi Jiangbin Hospital, Nanning, People's Republic of China
| | - Hong-Yu Wei
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
13
|
Holt J, Walter V, Yin X, Marron D, Wilkerson MD, Choi HY, Zhao X, Jo H, Hayes DN, Ko YH. Integrative Analysis of miRNAs Identifies Clinically Relevant Epithelial and Stromal Subtypes of Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2020; 27:831-842. [PMID: 33148669 DOI: 10.1158/1078-0432.ccr-20-0557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/24/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The objective of this study is to characterize the role of miRNAs in the classification of head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN Here, we analyzed 562 HNSCC samples, 88 from a novel cohort and 474 from The Cancer Genome Atlas, using miRNA microarray and miRNA sequencing, respectively. Using an integrative correlations method followed by miRNA expression-based hierarchical clustering, we validated miRNA clusters across cohorts. Evaluation of clusters by logistic regression and gene ontology approaches revealed subtype-based clinical and biological characteristics. RESULTS We identified two independently validated and statistically significant (P < 0.01) tumor subtypes and named them "epithelial" and "stromal" based on associations with functional target gene ontology relating to differing stages of epithelial cell differentiation. miRNA-based subtypes were correlated with individual gene expression targets based on miRNA seed sequences, as well as with miRNA families and clusters including the miR-17 and miR-200 families. These correlated genes defined pathways relevant to normal squamous cell function and pathophysiology. miRNA clusters statistically associated with differential mutation patterns including higher proportions of TP53 mutations in the stromal class and higher NSD1 and HRAS mutation frequencies in the epithelial class. miRNA classes correlated with previously reported gene expression subtypes, clinical characteristics, and clinical outcomes in a multivariate Cox proportional hazards model with stromal patients demonstrating worse prognoses (HR, 1.5646; P = 0.006). CONCLUSIONS We report a reproducible classification of HNSCC based on miRNA that associates with known pathologically altered pathways and mutations of squamous tumors and is clinically relevant.
Collapse
Affiliation(s)
- Jeremiah Holt
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Xiaoying Yin
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - David Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew D Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hyo Young Choi
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Xiaobei Zhao
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Heejoon Jo
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - David Neil Hayes
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Chen L, Cao Y, Wu B, Cao Y. MicroRNA-3666 Suppresses Cell Growth in Head and Neck Squamous Cell Carcinoma Through Inhibition of PFKFB3-Mediated Warburg Effect. Onco Targets Ther 2020; 13:9029-9041. [PMID: 32982293 PMCID: PMC7490100 DOI: 10.2147/ott.s251992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose MicroRNA-3666 (miR-3666) is aberrantly expressed and plays critical roles in numerous human tumors. However, the expression pattern, biological role, and mechanisms of action of miR-3666 in head and neck squamous cell carcinoma (HNSCC) remain unknown. Therefore, we attempted to determine the expression status and function of miR-3666 in HNSCC and to explore the underlying mechanisms in detail. Methods In this study, quantitative real-time polymerase chain reaction was carried out to measure the expression of miR-3666 HNSCC tissues. A series of experiments, including a Cell Counting Kit-8 assay, colony formation assay, BrdU incorporation and apoptosis analysis, were applied to test whether miR-3666 affects the growth of HNSCC cells. Glucose uptake and lactate production measurements and extracellular acidification and oxygen consumption rate assays were conducted to determine the effect of miR-3666 on glycolysis. Results We found that miR-3666 showed a decreased expression in HNSCC tissues. Further functional studies demonstrated that miR-3666 inhibited the growth of HNSCC cells by suppressing cell proliferation and promoting apoptosis. Bioinformatics analysis and luciferase reporter assays identified phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme regulating glycolysis, as a direct target of miR-3666. Through inhibition of PFKFB3, miR-3666 decreased glycolysis in HNSCC cells by reducing the production of F2,6BP. Importantly, glycolysis suppression caused by miR-3666 was found to be required for its inhibitory effect on HNSCC cell growth. Conclusion Our data suggest that miR-3666 functions as a tumor suppressor by decreasing the rate of glycolysis through inhibition of PFKFB3 activity, and this miRNA may present a potential candidate for HNSCC therapy.
Collapse
Affiliation(s)
- Lan Chen
- Department of Dermatology, Affiliated Hospital of Guiyang Medical University, Guiyang, People's Republic of China.,University of Health, Guizhou Medical University, Guiyang, People's Republic of China
| | - Yaxuan Cao
- University of Health, Guizhou Medical University, Guiyang, People's Republic of China
| | - Bei Wu
- Department of Obstetrics and Gynecology, 925 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Guiyang, People's Republic of China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guiyang Medical University, Guiyang, People's Republic of China
| |
Collapse
|
15
|
Li B, Jiang YP, Zhu J, Meng L. MiR-501-5p acts as an energetic regulator in head and neck squamous cell carcinoma cells growth and aggressiveness via reducing CLCA4. Mol Biol Rep 2020; 47:2181-2187. [PMID: 32072405 DOI: 10.1007/s11033-020-05317-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/02/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Recent research have proved that miR-501-5p acted as a potent tumor biomarker in several cancers, excluding head and neck squamous cell carcinoma (HNSCC). The study intends to discover the potential function and mechanism of miR-501-5p in HNSCC. Data from TCGA database and qRT-PCR estimated the expression of miR-501-5p and Calcium activated Chloride Channel A4 (CLCA4). Cell proliferation, clone formation and transwell assays were performed to explore HNSCC cells biological behaviors. Luciferase assay was carried out to identify the interaction between miR-501-5p and CLCA4. miR-501-5p was profoundly up-regulated in HNSCC samples and promoted cells proliferation and metastasis. CLCA4, as a target of miR-501-5p, was connected with worse outcomes in HNSCC patients. Co-transfection assay proved that miR-501-5p/CLCA4 functioned as crucial regulators to affect HNSCC cells biological behaviors. Our study illustrated that miR-501-5p exhibited a tumor-promoting role on HNSCC by targeting CLCA4, providing a new insight for revealing the pathogenesis and treatment of HNSCC.
Collapse
Affiliation(s)
- Bo Li
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, Shandong, People's Republic of China
| | - Yuan-Pei Jiang
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, Shandong, People's Republic of China
| | - Jie Zhu
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, Shandong, People's Republic of China
| | - Lei Meng
- Department of Neurosurgery, Shandong Provincial Hospital, No.324, Jingwuweiqi Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Zhuang Z, Yu P, Xie N, Wu Y, Liu H, Zhang M, Tao Y, Wang W, Yin H, Zou B, Hou J, Liu X, Li J, Huang H, Wang C. MicroRNA-204-5p is a tumor suppressor and potential therapeutic target in head and neck squamous cell carcinoma. Am J Cancer Res 2020; 10:1433-1453. [PMID: 31938073 PMCID: PMC6956807 DOI: 10.7150/thno.38507] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
Elucidation of the molecular mechanisms governing aggressiveness of HNSCC may provide clinical therapeutic strategies for patients. In this study, a novel hub miR-204-5p functioning as tumor suppressor has been identified and explored in HNSCC. Methods: A novel hub miR-204-5p was identified based on miRNA microarray, bioinformatics analysis and validated in different HNSCC patient cohorts. The functional role of miR-204-5p and its downstream and upstream regulatory machinery were investigated by gain-of-function and loss-of-function assays in vitro and in vivo. Interactions among miR-204-5p and SNAI2/SUZ12/HDAC1/STAT3 complex were examined by a series of molecular biology experiments. Then, the clinical relevance of miR-204-5p and its targets were evaluated in HNSCC samples. HNSCC patient-derived xenograft (PDX) model was used to assess the therapeutic value of miR-204-5p. Results: We reveal that miR-204-5p as a tumor suppressor is commonly repressed in HNSCC, which can inhibit tumor growth, metastasis and stemness. Mechanically, miR-204-5p suppresses epithelial-mesenchymal transition (EMT) and STAT3 signaling by targeting SNAI2, SUZ12, HDAC1 and JAK2. Among these targets, we further showed that SNAI2, SUZ12, and HDAC1 form a repressive complex on CDH1 promoter to maintain EMT in HNSCC. In turn, the SNAI2/SUZ12/HDAC1 complex interacts with STAT3 on miR-204-5p-regulatory regions to suppress the transcription of miR-204-5p. Moreover, we also show that decrease of miR-204-5p indicates a poor prognosis in HNSCC patients and administration of agomiR-204-5p inhibits tumor growth and metastasis in HNSCC PDX models. Conclusion: miR-204-5p-SNAI2/SUZ12/HDAC1/STAT3 regulatory circuit has a critical role in maintaining aggressiveness of HNSCC, suggesting that miR-204-5p might serve as a promising therapeutic target for clinical intervention.
Collapse
|
17
|
Sun J, Lu Y, Yu C, Xu T, Nie G, Miao B, Zhang X. Involvement of the TGF-β1 pathway in caveolin-1-associated regulation of head and neck tumor cell metastasis. Oncol Lett 2019; 19:1298-1304. [PMID: 31966060 PMCID: PMC6956420 DOI: 10.3892/ol.2019.11187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent malignancy with a 5-year survival rate of 54%. Therefore, disease management improvement is required. The present study aimed to assess the role of caveolin-1 (Cav-1) in the metastasis of head and neck tumor cells. Short hairpin RNA was used to silence Cav-1 expression in Tu686 cells. Proliferation, migration, invasion, morphology and the levels of effector proteins were assessed in cells. Upon Cav-1 silencing, E-cadherin levels were decreased, while vimentin levels were significantly increased. Cell migration, quantified by wound healing and Transwell assays, was significantly increased. Meanwhile, Cav-1 and transforming growth factor β1 (TGF-β1) receptor were identified to be co-localized. In addition, Cav-1-knockdown resulted in increased phosphorylation of SMAD family member 2 (P<0.05), a downstream effector of TGF-β signaling. In addition, there was a mutual regulation, with increasing TGF-β1 levels leading to a dose-dependent decrease of Cav-1 expression levels (P<0.05). These findings indicate that Cav-1 inhibits cell metastasis in HNSCC, suggesting the involvement of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jinjie Sun
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongtian Lu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Changyun Yu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Xu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Beiping Miao
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Xin Zhang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
18
|
Yamada Y, Kato M, Arai T, Sanada H, Uchida A, Misono S, Sakamoto S, Komiya A, Ichikawa T, Seki N. Aberrantly expressed PLOD1 promotes cancer aggressiveness in bladder cancer: a potential prognostic marker and therapeutic target. Mol Oncol 2019; 13:1898-1912. [PMID: 31199049 PMCID: PMC6717764 DOI: 10.1002/1878-0261.12532] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/18/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is the ninth most malignant tumor worldwide. Some BC patients will develop muscle‐invasive BC (MIBC), which has a 5‐year survival rate of approximately 60% due to metastasis. As such, there is an urgent need for novel therapeutic and diagnostic targets for MIBC. Analysis of novel antitumor microRNA (miRNA)‐mediated cancer networks is an effective strategy for exploring therapeutic targets and prognostic markers in cancers. Our previous miRNA analysis revealed that miR‐140‐5p acts as an antitumor miRNA in BC cells. Here, we investigated miR‐140‐5p regulation of BC molecular pathogenesis. Procollagen‐lysine, 2‐oxoglutarate 5‐dioxygenase 1 (PLOD1) was found to be directly regulated by miR‐140‐5p, and aberrant expression of PLOD1 was observed in BC clinical specimens. High PLOD1 expression was significantly associated with a poor prognosis (disease‐free survival: P = 0.0204; overall survival: P = 0.000174). Multivariate analysis showed PLOD1 expression to be an independent prognostic factor in BC patients (hazard ratio = 1.51, P = 0.0099). Furthermore, downregulation of PLOD1 by siRNAs and a specific inhibitor significantly decreased BC cell aggressiveness. Aberrant expression of PLOD1 was closely associated with BC pathogenesis. In summary, the present study showed that PLOD1 may be a potential prognostic marker and therapeutic target for BC.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Akira Komiya
- Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
19
|
Molecular Pathogenesis of Gene Regulation by the miR-150 Duplex: miR-150-3p Regulates TNS4 in Lung Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11050601. [PMID: 31052206 PMCID: PMC6562801 DOI: 10.3390/cancers11050601] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022] Open
Abstract
Based on our miRNA expression signatures, we focused on miR-150-5p (the guide strand) and miR-150-3p (the passenger strand) to investigate their functional significance in lung adenocarcinoma (LUAD). Downregulation of miR-150 duplex was confirmed in LUAD clinical specimens. In vitro assays revealed that ectopic expression of miR-150-5p and miR-150-3p inhibited cancer cell malignancy. We performed genome-wide gene expression analyses and in silico database searches to identify their oncogenic targets in LUAD cells. A total of 41 and 26 genes were identified as miR-150-5p and miR-150-3p targets, respectively, and they were closely involved in LUAD pathogenesis. Among the targets, we investigated the oncogenic roles of tensin 4 (TNS4) because high expression of TNS4 was strongly related to poorer prognosis of LUAD patients (disease-free survival: p = 0.0213 and overall survival: p = 0.0003). Expression of TNS4 was directly regulated by miR-150-3p in LUAD cells. Aberrant expression of TNS4 was detected in LUAD clinical specimens and its aberrant expression increased the aggressiveness of LUAD cells. Furthermore, we identified genes downstream from TNS4 that were associated with critical regulators of genomic stability. Our approach (discovery of anti-tumor miRNAs and their target RNAs for LUAD) will contribute to the elucidation of molecular networks involved in the malignant transformation of LUAD.
Collapse
|
20
|
Polverini PJ, Lingen MW. A History of Innovations in the Diagnosis and Treatment of Oral and Head and Neck Cancer. J Dent Res 2019; 98:489-497. [PMID: 31008698 DOI: 10.1177/0022034519833645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Historical records as far back as 3000 BCE show that oral and head and neck cancer was a disease process well known to Egyptian physicians. Luminaries such as Hippocrates, Galen, Pott, and Virchow were instrumental in shaping our understanding of the etiology and pathogenesis of cancer. During the 20th century, evidence-based medicine catalyzed the development of rigorous science-based diagnostic and treatment protocols. The use of surgery, therapeutic radiation, and chemotherapy as single-treatment agents or in combination with one another gradually emerged as the preferred approach to cancer therapy. The recognition of tobacco, alcohol, and human papillomavirus as etiological agents in oral and head and neck cancer prompted the development of new diagnostic aids and treatment strategies to mitigate cancer progression. More in-depth mechanistic insights into the multistep process of oral and head and neck cancer were made possible by the use of the hamster buccal pouch and mouse models. New technologies, such as the sequencing of the human genome, metabolomics, and proteomics, have provided the foundation for what we today call precision medicine. The future success of tailored medical treatment for cancer patients will depend on the discovery of new druggable targets with improved therapeutic efficacy. As the precision and sensitivity of existing tools for prevention and risk assessment improve, greater accuracy will be achieved in predicting health outcomes.
Collapse
Affiliation(s)
- P J Polverini
- 1 Department of Periodontics and Oral Medicine, Division of Oral Medicine, Pathology, and Radiology, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,2 Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,3 University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - M W Lingen
- 4 Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Božinović K, Sabol I, Dediol E, Milutin Gašperov N, Manojlović S, Vojtechova Z, Tachezy R, Grce M. Genome-wide miRNA profiling reinforces the importance of miR-9 in human papillomavirus associated oral and oropharyngeal head and neck cancer. Sci Rep 2019; 9:2306. [PMID: 30783190 PMCID: PMC6381209 DOI: 10.1038/s41598-019-38797-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Head and neck cancer is the sixth most common malignancy worldwide, predominantly developing from squamous cell epithelia (HNSCC). The main HNSCC risk factors are tobacco, excessive alcohol use, and the presence of human papillomavirus (HPV). HPV positive (+) cancers are etiologically different from other HNSCC and often show better prognosis. The current knowledge regarding HNSCC miRNA profiles is still incomplete especially in the context of HPV+ cancer. Thus, we analyzed 61 freshly collected primary oral (OSCC) and oropharyngeal (OPSCC) SCC samples. HPV DNA and RNA was found in 21% cases. The Illumina whole-genome small-RNA profiling by next-generation sequencing was done on 22 samples and revealed 7 specific miRNAs to HPV+ OSCC, 77 to HPV+ OPSCC, and additional 3 shared with both; 51 miRNAs were specific to HPV− OPSCC, 62 to HPV− OSCC, and 31 shared with both. The results for 9 miRNAs (miR-9, -21, -29a, -100, -106b, -143 and -145) were assessed by reverse transcription-quantitative polymerase chain reaction on the whole study population. The data was additionally confirmed by reanalyzing publicly available miRNA sequencing Cancer Genome Atlas consortium (TCGA) HNSCC data. Cell signaling pathway analysis revealed differences between HPV+ and HPV− HNSCC. Our findings compared with literature data revealed extensive heterogeneity of miRNA deregulation with only several miRNAs consistently affected, and miR-9 being the most likely HPV related miRNA.
Collapse
Affiliation(s)
- Ksenija Božinović
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Emil Dediol
- Clinical hospital Dubrava, Department of Maxillofacial Surgery, Zagreb, Croatia
| | | | - Spomenka Manojlović
- Clinical hospital Dubrava, Department of Maxillofacial Surgery, Zagreb, Croatia
| | - Zuzana Vojtechova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
22
|
Uchida A, Seki N, Mizuno K, Misono S, Yamada Y, Kikkawa N, Sanada H, Kumamoto T, Suetsugu T, Inoue H. Involvement of dual-strand of the miR-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Cancer Sci 2019; 110:420-432. [PMID: 30375717 PMCID: PMC6317942 DOI: 10.1111/cas.13853] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
The prognosis of patients with advanced-stage lung squamous cell carcinoma (LUSQ) is poor, and effective treatment protocols are limited. Our continuous analyses of antitumor microRNAs (miRNAs) and their oncogenic targets have revealed novel oncogenic pathways in LUSQ. Analyses of our original miRNA expression signatures indicated that both strands of miR-144 (miR-144-5p, the passenger strand; miR-144-3p, the guide strand) showed decreased expression in cancer tissues. Additionally, low expression of miR-144-5p significantly predicted a poor prognosis in patients with LUSQ by The Cancer Genome Atlas database analyses (overall survival, P = 0.026; disease-free survival, P = 0.023). Functional assays revealed that ectopic expression of miR-144-5p and miR-144-3p significantly blocked the malignant abilities of LUSQ cells, eg, cancer cell proliferation, migration, and invasion. In LUSQ cells, 13 and 15 genes were identified as possible oncogenic targets that might be regulated by miR-144-5p and miR-144-3p, respectively. Among these targets, we identified 3 genes (SLC44A5, MARCKS, and NCS1) that might be regulated by both strands of miR-144. Interestingly, high expression of NCS1 predicted a significantly poorer prognosis in patients with LUSQ (overall survival, P = 0.013; disease-free survival, P = 0.048). By multivariate analysis, NCS1 expression was found to be an independent prognostic factor for patients with LUSQ patients. Overexpression of NCS1 was detected in LUSQ clinical specimens, and its aberrant expression enhanced malignant transformation of LUSQ cells. Our approach, involving identification of antitumor miRNAs and their targets, will contribute to improving our understanding of the molecular pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Akifumi Uchida
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Naohiko Seki
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Keiko Mizuno
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Shunsuke Misono
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Yasutaka Yamada
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Naoko Kikkawa
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Hiroki Sanada
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Tomohiro Kumamoto
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Takayuki Suetsugu
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Hiromasa Inoue
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
23
|
Salazar-Ruales C, Arguello JV, López-Cortés A, Cabrera-Andrade A, García-Cárdenas JM, Guevara-Ramírez P, Peralta P, Leone PE, Paz-y-Miño C. Salivary MicroRNAs for Early Detection of Head and Neck Squamous Cell Carcinoma: A Case-Control Study in the High Altitude Mestizo Ecuadorian Population. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9792730. [PMID: 30584540 PMCID: PMC6280231 DOI: 10.1155/2018/9792730] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer with the highest incidence worldwide. HNSCC is often diagnosed at advanced stages, incurring significant high mortality and morbidity. The use of saliva, as a noninvasive tool for the diagnosis of cancer, has recently increased. Salivary microRNAs (miRNAs) have emerged as a promising molecular tool for early diagnosis of HNSCC. The aim was to identify the differential expression of salivary miRNAs associated with HNSCC in the high altitude mestizo Ecuadorian population. Using PCR Arrays, miR-122-5p, miR-92a-3p, miR-124-3p, miR-205-5p, and miR-146a-5p were found as the most representative ones. Subsequently, miRNAs expression was confirmed in saliva samples from 108 cases and 108 controls. miR-122-5p, miR-92a-3p, miR-124-3p, and miR-146a-5p showed significant statistical difference between cases and controls with areas under the curve (AUC) of 0.73 (p < 0.001), 0.70 (p < 0.001), 0.71 (p = 0.002), and 0.66 (p = 0.008), respectively. miRNAs were also deregulated in between HNSCC localizations. A differentiated expression of miR-122-5p between oral cancer and oropharynx cancer (AUC of 0.96 p = 0.01) was found: miR-124-3p between larynx and pharynx (AUC = 0.97, p < 0.01) and miR-146a-5p between larynx, oropharynx, and oral cavity (AUC = 0.96, p = 0.01). Moreover, miR-122-5p, miR-124-3p, miR-205-5p, and miR-146a-5p could differentiate between HPV+ and HPV- (p=0.004). Finally, the expression profiles of the five miRNAs were evaluated to discriminate HNSCC patient's tumor stages (TNM 2-4). miR-122-5p differentiates TNM 2 and 3 (p = 0.002, AUC = 0.92), miR-124-3p TNM 2, 3, and 4 (p < 0.001, AUC = 98), miR-146a-5p TNM 2 and 3 (p < 0.001, AUC = 0.97), and miR-92a-3p TNM 3 (p < 0.001, AUC = 0.99). Taken together, these findings show that altered expression of miRNAs could be used as biomarkers for HNSCC diagnosis in the high altitude mestizo Ecuadorian population.
Collapse
Affiliation(s)
- Carolina Salazar-Ruales
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Jessica-Viviana Arguello
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de las Américas, Avenue de los Granados, 170125 Quito, Ecuador
| | - Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Alejandro Cabrera-Andrade
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Jennyfer M. García-Cárdenas
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Patricio Peralta
- Hospital Oncológico Solón Espinosa Ayala, Avenue Eloy Alfaro, 170138 Quito, Ecuador
| | - Paola E. Leone
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - César Paz-y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| |
Collapse
|
24
|
Yamada Y, Arai T, Kojima S, Sugawara S, Kato M, Okato A, Yamazaki K, Naya Y, Ichikawa T, Seki N. Regulation of antitumor miR-144-5p targets oncogenes: Direct regulation of syndecan-3 and its clinical significance. Cancer Sci 2018; 109:2919-2936. [PMID: 29968393 PMCID: PMC6125479 DOI: 10.1111/cas.13722] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
In the human genome, miR-451a, miR-144-5p (passenger strand), and miR-144-3p (guide strand) reside in clustered microRNA (miRNA) sequences located within the 17q11.2 region. Low expression of these miRNAs is significantly associated with poor prognosis of patients with renal cell carcinoma (RCC) (miR-451a: P = .00305; miR-144-5p: P = .00128; miR-144-3p: P = 9.45 × 10-5 ). We previously reported that miR-451a acted as an antitumor miRNA in RCC cells. Involvement of the passenger strand of the miR-144 duplex in the pathogenesis of RCC is not well understood. Functional assays showed that miR-144-5p and miR-144-3p significantly reduced cancer cell migration and invasive abilities, suggesting these miRNAs acted as antitumor miRNAs in RCC cells. Analyses of miR-144-5p targets identified a total of 65 putative oncogenic targets in RCC cells. Among them, high expression levels of 9 genes (FAM64A, F2, TRIP13, ANKRD36, CENPF, NCAPG, CLEC2D, SDC3, and SEMA4B) were significantly associated with poor prognosis (P < .001). Among these targets, expression of SDC3 was directly controlled by miR-144-5p, and its expression enhanced cancer cell aggressiveness. We identified genes downstream by SDC3 regulation. Data showed that expression of 10 of the downstream genes (IL18RAP, SDC3, SH2D1A, GZMH, KIF21B, TMC8, GAB3, HLA-DPB2, PLEK, and C1QB) significantly predicted poor prognosis of the patients (P = .0064). These data indicated that the antitumor miR-144-5p/oncogenic SDC3 axis was deeply involved in RCC pathogenesis. Clustered miRNAs (miR-451a, miR-144-5p, and miR-144-3p) acted as antitumor miRNAs, and their targets were intimately involved in RCC pathogenesis.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Takayuki Arai
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Satoko Kojima
- Department of UrologyTeikyo University Chiba Medical CenterIchiharaJapan
| | - Sho Sugawara
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Mayuko Kato
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Atsushi Okato
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Kazuto Yamazaki
- Department of PathologyTeikyo University Chiba Medical CenterIchiharaJapan
| | - Yukio Naya
- Department of UrologyTeikyo University Chiba Medical CenterIchiharaJapan
| | - Tomohiko Ichikawa
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Naohiko Seki
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
| |
Collapse
|
25
|
Hess J, Unger K, Maihoefer C, Schüttrumpf L, Wintergerst L, Heider T, Weber P, Marschner S, Braselmann H, Samaga D, Kuger S, Pflugradt U, Baumeister P, Walch A, Woischke C, Kirchner T, Werner M, Werner K, Baumann M, Budach V, Combs SE, Debus J, Grosu AL, Krause M, Linge A, Rödel C, Stuschke M, Zips D, Zitzelsberger H, Ganswindt U, Henke M, Belka C. A Five-MicroRNA Signature Predicts Survival and Disease Control of Patients with Head and Neck Cancer Negative for HPV Infection. Clin Cancer Res 2018; 25:1505-1516. [PMID: 30171046 DOI: 10.1158/1078-0432.ccr-18-0776] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is associated with unfavorable prognosis, while independent prognostic markers remain to be defined. EXPERIMENTAL DESIGN We retrospectively performed miRNA expression profiling. Patients were operated for locally advanced HPV-negative HNSCC and had received radiochemotherapy in eight different hospitals (DKTK-ROG; n = 85). Selection fulfilled comparable demographic, treatment, and follow-up characteristics. Findings were validated in an independent single-center patient sample (LMU-KKG; n = 77). A prognostic miRNA signature was developed for freedom from recurrence and tested for other endpoints. Recursive-partitioning analysis was performed on the miRNA signature, tumor and nodal stage, and extracapsular nodal spread. Technical validation used qRT-PCR. An miRNA-mRNA target network was generated and analyzed. RESULTS For DKTK-ROG and LMU-KKG patients, the median follow-up was 5.1 and 5.3 years, and the 5-year freedom from recurrence rate was 63.5% and 75.3%, respectively. A five-miRNA signature (hsa-let-7g-3p, hsa-miR-6508-5p, hsa-miR-210-5p, hsa-miR-4306, and hsa-miR-7161-3p) predicted freedom from recurrence in DKTK-ROG [hazard ratio (HR) 4.42; 95% confidence interval (CI), 1.98-9.88, P < 0.001], which was confirmed in LMU-KKG (HR 4.24; 95% CI, 1.40-12.81, P = 0.005). The signature also predicted overall survival (HR 3.03; 95% CI, 1.50-6.12, P = 0.001), recurrence-free survival (HR 3.16; 95% CI, 1.65-6.04, P < 0.001), and disease-specific survival (HR 5.12; 95% CI, 1.88-13.92, P < 0.001), all confirmed in LMU-KKG data. Adjustment for relevant covariates maintained the miRNA signature predicting all endpoints. Recursive-partitioning analysis of both samples combined classified patients into low (n = 17), low-intermediate (n = 80), high-intermediate (n = 48), or high risk (n = 17) for recurrence (P < 0.001). CONCLUSIONS The five-miRNA signature is a strong and independent prognostic factor for disease recurrence and survival of patients with HPV-negative HNSCC.See related commentary by Clump et al., p. 1441.
Collapse
Affiliation(s)
- Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany. .,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Cornelius Maihoefer
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lars Schüttrumpf
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Ludmila Wintergerst
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Theresa Heider
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Marschner
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Herbert Braselmann
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Daniel Samaga
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Sebastian Kuger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Ulrike Pflugradt
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Baumeister
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Christine Woischke
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Werner
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Baumann
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Budach
- Department of Radiooncology and Radiotherapy, Charité University Hospital Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg Ion Therapy Center (HIT), University of Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-Ligia Grosu
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Annett Linge
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay Dresden, Dresden, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Stuschke
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Ute Ganswindt
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Henke
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Belka
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
|
27
|
Di Domenico M, Giovane G, Kouidhi S, Iorio R, Romano M, De Francesco F, Feola A, Siciliano C, Califano L, Giordano A. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers. Cancer Biol Ther 2018; 19:850-857. [PMID: 28362190 DOI: 10.1080/15384047.2017.1310349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human Papilloma Virus infection is very frequent in humans and is mainly transmitted sexually. The majority of infections are transient and asymptomatic, however, if the infection persists, it can occur with a variety of injuries to skin and mucous membranes, depending on the type of HPV involved. Some types of HPV are classified as high oncogenic risk as associated with the onset of cancer. The tumors most commonly associated with HPV are cervical and oropharyngeal cancer, epigenetic mechanisms related to HPV infection include methylation changes to host and viral DNA and chromatin modification in host species. This review is focused about epigenethic mechanism, such as MiRNAs expression, related to cervix and oral cancer. Specifically it discuss about molecular markers associated to a more aggressive phenotype. In this way we will analyze genes involved in meiotic sinaptonemal complex, transcriptional factors, of orthokeratins, sinaptogirin, they are all expressed in cancer in a way not more dependent on cell differentiation but HPV-dependent.
Collapse
Affiliation(s)
- Marina Di Domenico
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy.,b IRCCS Institute of Women's Health Malzoni Clinic , Avellino , Italy.,c Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA
| | - Giancarlo Giovane
- d Department of Experimental Medicine , Section of Hygiene, Occupational Medicine and Forensic Medicine, University of Campania "Luigi Vanvitelli" , Italy
| | - Soumaya Kouidhi
- e Laboratory BVBGR, LR11ES31, ISBST, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba , Tunis , Tunisia.,f Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar , Tunis
| | - Rosamaria Iorio
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Maurizio Romano
- g Hepatobiliary and Liver Transplantation Unit, Azienda Ospedaliera , Padova , Italy.,h Department of Surgical , Gastrointestinal and Oncological Sciences (DiSCOG), University of Padova , Padova ( PD ), Italy
| | - Francesco De Francesco
- h Department of Surgical , Gastrointestinal and Oncological Sciences (DiSCOG), University of Padova , Padova ( PD ), Italy
| | - Antonia Feola
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Camilla Siciliano
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Luigi Califano
- i Department of Maxillofacial Surgery , University of Naples "Federico II" , Naples , Italy
| | - Antonio Giordano
- c Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA.,j Department of Medicine , Surgery and Neuroscience, University of Siena , Siena , Italy
| |
Collapse
|
28
|
MicroRNA-155, -185 and -193b as biomarkers in human papillomavirus positive and negative tonsillar and base of tongue squamous cell carcinoma. Oral Oncol 2018; 82:8-16. [PMID: 29909906 DOI: 10.1016/j.oraloncology.2018.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/23/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Three-year disease-free survival (DFS) is 80% for human papillomavirus (HPV) positive tonsillar and base of tongue cancer (TSCC/BOTSCC) treated with radiotherapy alone, and today's intensified therapy does not improve prognosis. More markers are therefore needed to more accurately identify patients with good prognosis or in need of alternative therapy. Here, microRNAs (miRs) 155, 185 and 193b were examined as potential prognostic markers in TSCC/BOTSCC. MATERIAL AND METHODS 168 TSCC/BOTSCC patients diagnosed 2000-2013, with known data on HPV-status, CD8+ tumour infiltrating lymphocytes, tumour staging and survival were examined for expression of miR-155, -185 and -193b using Real-Time PCR. Associations between miR expression and patient and tumour characteristics were analysed using univariate testing and multivariate regression. RESULTS Tumours compared to normal tonsils showed decreased miR-155 and increased miR-193b expression. miR-155 expression was associated with HPV-positivity, low T-stage, high CD8+ TIL counts and improved survival. miR-185 expression was associated with HPV-negativity and a tendency towards decreased survival, while miR-193b expression was associated with higher T-stage, male gender and lower CD8+ TIL counts, but not with outcome. Upon Cox regression, miR-185 was the only miR significantly associated with survival. Combining miR-155 and miR-185 to predict outcome in HPV+ patients yielded an area under curve (AUC) of 71%. CONCLUSION Increased miR-155 expression was found as a positive predictor of survival, with the effect mainly due to its association with high CD8+ TIL numbers, while miR-185 independently associated with decreased survival. Addition of these miRs to previously validated prognostic biomarkers could improve patient stratification accuracy.
Collapse
|
29
|
Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis. J Hum Genet 2018. [PMID: 29540855 DOI: 10.1038/s10038-018-0437-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Analyses of microRNA (miRNA) expression signatures obtained by RNA sequencing revealed that some passenger miRNAs (miR-144-5p, miR-145-3p, miR-149-3p, miR-150-3p, and miR-199a-3p) acted as anti-tumor miRNAs in several types of cancer cells. The involvement of passenger strands in the pathogenesis of human cancer is a novel concept. Based on the miRNA signature of bladder cancer (BC) obtained by RNA sequencing, we focused on both strands of the miR-223-duplex (miR-223-5p and miR-223-3p) and investigated their functional significance in BC cells. Ectopic expression of these miRNAs showed that both miR-223-3p (the guide strand) and miR-223-5p (the passenger strand) inhibited cancer cell migration and invasion of BC cells. The role of miR-223-5p (the passenger strand) has not been well studied. Combining gene expression studies and in silico database analyses, we demonstrated the presence of 20 putative target genes that could be regulated by miR-223-5p in BC cells. Among these targets, high expression of five genes (ANLN, INHBA, OIP5, CCNB1, and CDCA2) was significantly associated with poor prognosis of BC patients based on The Cancer Genome Atlas (TCGA) database. Moreover, we showed that a gene (ANLN) encoding a multifunctional actin-binding protein was directly regulated by miR-223-5p in BC cells. Overexpression of ANLN was observed in BC clinical specimens and high expression of ANLN was significantly associated with poor prognosis of BC patients. We suggest that studies of regulatory cancer networks, including the passenger strands of miRNAs, may provide new insights into the pathogenic mechanisms of BC.
Collapse
|
30
|
Yamada Y, Arai T, Sugawara S, Okato A, Kato M, Kojima S, Yamazaki K, Naya Y, Ichikawa T, Seki N. Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma. Cancer Sci 2018; 109:1239-1253. [PMID: 29417701 PMCID: PMC5891191 DOI: 10.1111/cas.13526] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Recent analyses of our microRNA (miRNA) expression signatures obtained from several types of cancer have provided novel information on their molecular pathology. In renal cell carcinoma (RCC), expression of microRNA‐451a (miR‐451a) was significantly downregulated in patient specimens and low expression of miR‐451a was significantly associated with poor prognosis of RCC patients (P = .00305) based on data in The Cancer Genome Atlas. The aims of the present study were to investigate the antitumor roles of miR‐451a and to identify novel oncogenic networks it regulated in RCC cells. Ectopic expression of miR‐451a significantly inhibited cancer cell migration and invasion by RCC cell lines, suggesting that miR‐451a had antitumor roles. To identify oncogenes regulated by miR‐451a in RCC cells, we analyzed genome‐wide gene expression data and examined information in in silico databases. A total of 16 oncogenes and were found to be possible targets of miR‐451a regulation. Interestingly, high expression of 9 genes (PMM2,CRELD2,CLEC2D,SPC25,BST2,EVL,TBX15,DPYSL3, and NAMPT) was significantly associated with poor prognosis. In this study, we focused on phosphomannomutase 2 (PMM2), which was the most strongly associated with prognosis. Overexpression of PMM2 was detected in clinical specimens and Spearman's rank test indicated a negative correlation between the expression levels of miR‐451a and PMM2 (P = .0409). Knockdown of PMM2 in RCC cells inhibited cancer cell migration and invasion, indicating overexpression of PMM2 could promote malignancy. Analytic strategies based on antitumor miRNAs is an effective tool for identification of novel pathways of cancer.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Sugawara
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayuko Kato
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Kazuto Yamazaki
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
31
|
Xiang Z, Song J, Zhuo X, Li Q, Zhang X. MiR-146a rs2910164 polymorphism and head and neck carcinoma risk: a meta-analysis based on 10 case-control studies. Oncotarget 2018; 8:1226-1233. [PMID: 27901485 PMCID: PMC5352050 DOI: 10.18632/oncotarget.13599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/08/2016] [Indexed: 01/12/2023] Open
Abstract
Two recent meta-analyses have been conducted on the relationship between miR-146a polymorphism (rs2910164) and head and neck cancer (HNC) risk. However, they have yielded conflicting results. Hence, the aim of the present study was to conduct a quantitative updated meta-analysis addressing this subject. Eligible studies up to Sep 2016 were retrieved and screened from the bio-databases and then essential data were extracted for data analysis. Next, subgroup analyses on ethnicity, source of controls, sample size, and genotyping method were also carried out. As a result, a total of 9 publications involving 10 independent case-control studies were included. The overall data indicated a significant association between miR-146a rs2910164 polymorphism and HNC risk [C vs. G: odds ratio (OR) = 1.14; 95% confidence interval (CI) = 1.00-1.31; CC+CG vs. GG: OR=1.21; 95%CI=1.02-1.43]. Variant alleles of miR-146a rs2910164 may have a correlation with increased HNC risk. Future well-designed studies containing large sample sizes are needed to verify this result.
Collapse
Affiliation(s)
- Zhaolan Xiang
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jue Song
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qi Li
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueyuan Zhang
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
32
|
Koshizuka K, Nohata N, Hanazawa T, Kikkawa N, Arai T, Okato A, Fukumoto I, Katada K, Okamoto Y, Seki N. Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of pre-miR-150 as antitumor miRNAs. Oncotarget 2018; 8:30288-30304. [PMID: 28415821 PMCID: PMC5444743 DOI: 10.18632/oncotarget.16327] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
We adopted into RNA-sequencing technologies to construct the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Our signature revealed that a total of 160 miRNAs (44 upregulated and 116 downregulated) were aberrantly expressed in cancer tissues. Expression of miR-150-5p (guide strand miRNA) and miR-150-3p (passenger strand miRNA) were significantly silenced in cancer tissues, suggesting both miRNAs act as antitumor miRNAs in HNSCC cells. Ectopic expression of mature miRNAs, miR-150-5p and miR-150-3p inhibited cancer cell aggressiveness. Low expression of miR-150-5p and miR-150-3p predicted significantly shorter overall survival in patients with HNSCC (P = 0.0091 and P = 0.0386) by Kaplan–Meier survival curves analyses. We identified that integrin α3 (ITGA3), integrin α6 (ITGA6), and tenascin C (TNC) were coordinately regulated by these miRNAs in HNSCC cells. Knockdown assays using siRNAs showed that ITGA3, ITGA6 and TNC acted as cancer promoting genes in HNSCC cells. Moreover, ITGA3, ITGA6, and TNC alterations were associated with significantly poorer overall survival (P = 0.0177, P = 0.0237, and P = 0.026, respectively). Dual strands of pre-150 (miR-150-5p and miR-150-3p) functioned as antitumor miRNAs based on the miRNA expression signature of HNSCC. Identification of antitumor miR-150-mediated RNA networks may provide novel insights into pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan.,Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nijiro Nohata
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoko Kikkawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Ichiro Fukumoto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan.,Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koji Katada
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| |
Collapse
|
33
|
Farah CS, Fox SA, Dalley AJ. Integrated miRNA-mRNA spatial signature for oral squamous cell carcinoma: a prospective profiling study of Narrow Band Imaging guided resection. Sci Rep 2018; 8:823. [PMID: 29339786 PMCID: PMC5770416 DOI: 10.1038/s41598-018-19341-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy for which there is poor prognosis and limited therapeutic options. The objective was to identify mRNA targets of dysregulated miRNAs in OSCC using integrated analysis and understand molecular abnormality in surgical margins. We used biopsies along the spatial axis from normal tissue defined by narrow band imaging (NBI) through conventional white light (WL) margins to tumour from 18 patients undergoing surgical resection for OSCC. Overall 119 miRNA and 4794 mRNA were differentially expressed along the adjacent normal tissue to tumour axis. Analysis of miRNA profiles demonstrated the NBI margins were molecularly distinct from both the tumour and WL margin. Integrated analysis identified 193 miRNA-mRNA interactions correlated to the spatial axis of NBI-WL-T. We used cross-validation analysis to derive a spatial interactome signature of OSCC comprising 100 putative miRNA-mRNA interactions between 40 miRNA and 96 mRNA. Bioinformatic analysis suggests that miRNA dysregulation in OSCC may contribute to activation of the oncostatin M, BDNF and TGF-β pathways. Our data demonstrates that surgical margins defined by NBI leave less potentially malignant residual tissue. The miRNA-mRNA interactome provides insight into dysregulated miRNA signalling in OSCC and supports molecular definition of tumour margins.
Collapse
Affiliation(s)
- Camile S Farah
- UQ Centre for Clinical Research, The University of Queensland, Herston Qld, 4029, Australia. .,Australian Centre for Oral Oncology Research & Education, UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Simon A Fox
- Australian Centre for Oral Oncology Research & Education, UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Andrew J Dalley
- UQ Centre for Clinical Research, The University of Queensland, Herston Qld, 4029, Australia.
| |
Collapse
|
34
|
Nunez Lopez YO, Victoria B, Golusinski P, Golusinski W, Masternak MM. Characteristic miRNA expression signature and random forest survival analysis identify potential cancer-driving miRNAs in a broad range of head and neck squamous cell carcinoma subtypes. Rep Pract Oncol Radiother 2018; 23:6-20. [PMID: 29187807 PMCID: PMC5698002 DOI: 10.1016/j.rpor.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/27/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
AIM To characterize the miRNA expression profile in head and neck squamous cell carcinoma (HNSSC) accounting for a broad range of cancer subtypes and consequently identify an optimal miRNA signature with prognostic value. BACKGROUND HNSCC is consistently among the most common cancers worldwide. Its mortality rate is about 50% because of the characteristic aggressive behavior of these cancers and the prevalent late diagnosis. The heterogeneity of the disease has hampered the development of robust prognostic tools with broad clinical utility. MATERIALS AND METHODS The Cancer Genome Atlas HNSC dataset was used to analyze level 3 miRNA-Seq data from 497 HNSCC patients. Differential expression (DE) analysis was implemented using the limma package and multivariate linear model that adjusted for the confounding effects of age at diagnosis, gender, race, alcohol history, anatomic neoplasm subdivision, pathologic stage, T and N stages, and vital status. Random forest (RF) for survival analysis was implemented using the randomForestSRC package. RESULTS A characteristic DE miRNA signature of HNSCC, comprised of 11 upregulated (i.e., miR-196b-5p, miR-1269a, miR-196a-5p, miR-4652-3p, miR-210-3p, miR-1293, miR-615-3p, miR-503-5p, miR-455-3p, miR-205-5p, and miR-21-5p) and 9 downregulated (miR-376c-3p, miR-378c, miR-29c-3p, miR-101-3p, miR-195-5p, miR-299-5p, miR-139-5p, miR-6510-3p, miR-375) miRNAs was identified. An optimal RF survival model was built from seven variables including age at diagnosis, miR-378c, miR-6510-3p, stage N, pathologic stage, gender, and race (listed in order of variable importance). CONCLUSIONS The joint differential miRNA expression and survival analysis controlling for multiple confounding covariates implemented in this study allowed for the identification of a previously undetected prognostic miRNA signature characteristic of a broad range of HNSCC.
Collapse
Affiliation(s)
- Yury O. Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Pawel Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
35
|
Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis. J Hum Genet 2017; 63:195-205. [PMID: 29196733 DOI: 10.1038/s10038-017-0371-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022]
Abstract
Our recent determination of a microRNA (miRNA) expression signature in prostate cancer (PCa) revealed that miR-205-5p was significantly reduced in PCa tissues and that it acted as an antitumor miRNA. The aim of this study was to identify oncogenic genes and pathways in PCa cells that were regulated by antitumor miR-205-5p. Genome-wide gene expression analyses and in silico miRNA database searches showed that 37 genes were putative targets of miR-205-5p regulation. Among those genes, elevated expression levels of seven in particular (HMGB3, SPARC, MKI67, CENPF, CDK1, RHOU, and POLR2D) were associated with a shorter disease-free survival in a large number of patients in the The Cancer Genome Atlas (TCGA) database. We focused on high-mobility group box 3 (HMGB3) because it was the most downregulated by ectopic expression of miR-205-5p in PC3 cells and its expression was involved in PCa pathogenesis. Luciferase reporter assays showed that HMGB3 was directly regulated by miR-205-5p in PCa cells. Knockdown studies using si-HMGB3 showed that expression of HMGB3 enhanced PCa cell aggressiveness. Overexpression of HMGB3/HMGB3 was confirmed in naive PCa and castration-resistant PCa (CRPC) clinical specimens. Novel approaches to analysis of antitumor miRNA-regulated RNA networks in PCa cells may provide new insights into the pathogenic mechanisms of the disease.
Collapse
|
36
|
Sannigrahi MK, Sharma R, Panda NK, Khullar M. Role of non-coding RNAs in head and neck squamous cell carcinoma: A narrative review. Oral Dis 2017; 24:1417-1427. [PMID: 28941018 DOI: 10.1111/odi.12782] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with high recurrence, metastasis, and poor treatment outcome. Recent studies have reported that non-coding RNA (ncRNA) might play critical role in regulating different types of cancer. MicroRNAs (miRs) are short ncRNAs (20-25 nucleotides) responsible for post-transcriptional regulation of gene expression and may have a role in oncogenesis by acting as oncomiRs or tumor suppressor miRs. Long non-coding RNAs (lncRNAs) are heterogenous group of ncRNAs more than 200 nucleotides long, can act in cis and/or in trans, and have been also implicated in carcinogenesis. These molecules have been suggested to be promising candidates as diagnostic and prognostic biomarkers and for development of novel therapeutic approaches. In this review, we have summarized recent findings on role of these ncRNAs in HPV-negative (HPV-ve) and HPV-positive (HPV+ve) HNSCC. The available literature supports differential expression of both microRNAs and long non-coding RNAs, which include oncogenic ncRNAs (miR-21, miR-31, miR-155, miR-211, HOTAIR, and MALAT1) and tumor suppressor ncRNAs (let7d, miR-17, miR-375, miR-139, and MEG3) in HPV+ve HNSCC tumors as compared to HPV-ve tumors and they have distinct role in the pathophysiology of these two types of HNSCCs.
Collapse
Affiliation(s)
- M K Sannigrahi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - R Sharma
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - N K Panda
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - M Khullar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
37
|
Yonemori K, Seki N, Idichi T, Kurahara H, Osako Y, Koshizuka K, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, Kijima Y, Maemura K, Natsugoe S. The microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster. Oncotarget 2017; 8:70097-70115. [PMID: 29050264 PMCID: PMC5642539 DOI: 10.18632/oncotarget.19591] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
We analysed the RNA sequence-based microRNA (miRNA) signature of pancreatic ductal adenocarcinoma (PDAC). Aberrantly expressed miRNAs were successfully identified in this signature. Using the PDAC signature, we focused on 4 clustered miRNAs, miR-216a-5p, miR-216a-3p, miR-216b-5p and miR-216b-3p on human chromosome 2p16.1. All members of the miR-216 cluster were significantly reduced in PDAC specimens. Ectopic expression of these miRNAs suppressed cancer cell aggressiveness, suggesting miR-216 cluster as anti-tumour miRNAs in PDAC cells. The impact of miR-216b-3p (passenger strand of pre-miR-216b) on cancer cells is still ambiguous. Forkhead box Q1 (FOXQ1) was directly regulated by miR-216b-3p and overexpression of FOXQ1 was confirmed in clinical specimens. High expression of FOXQ1 predicted a shorter survival of patients with PDAC by Kaplan-Meier analysis. Loss-of-function assays showed that cancer cell migration and invasion activities were significantly reduced by siFOXQ1 transfectants. We investigated pathways downstream from FOXQ1 by using genome-wide gene expression analysis. Identification of the miR-216-3p/FOXQ1-mediated network in PDAC should enhance understanding of PDAC aggressiveness at the molecular level.
Collapse
Affiliation(s)
- Keiichi Yonemori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yusaku Osako
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
38
|
Álvarez-Teijeiro S, Menéndez ST, Villaronga MÁ, Pena-Alonso E, Rodrigo JP, Morgan RO, Granda-Díaz R, Salom C, Fernandez MP, García-Pedrero JM. Annexin A1 down-regulation in head and neck squamous cell carcinoma is mediated via transcriptional control with direct involvement of miR-196a/b. Sci Rep 2017; 7:6790. [PMID: 28754915 PMCID: PMC5533727 DOI: 10.1038/s41598-017-07169-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023] Open
Abstract
Annexin A1 (ANXA1) down-regulation is an early and frequent event in the development of head and neck squamous cell carcinomas (HNSCC). In an attempt to identify the underlying mechanisms of reduced ANXA1 protein expression, this study investigated ANXA1 mRNA expression in HNSCC specimens by both in situ hybridization and RT-qPCR. Results showed a perfect concordance between the pattern of ANXA1 mRNA and protein detected by immunofluorescence in tumors, precancerous lesions and normal epithelia, reflecting that ANXA1 down-regulation occurs at transcriptional level. We also found that both miR-196a and miR-196b levels inversely correlated with ANXA1 mRNA levels in paired HNSCC tissue samples and patient-matched normal mucosa. In addition, endogenous levels of ANXA1 mRNA and protein were consistently and significantly down-regulated upon miR-196a and miR-196b over-expression in various HNSCC-derived cell lines. The direct interaction of both mature miR-196a and miR-196b was further confirmed by transfection with Anxa1 3′UTR constructs. Combined bioinformatics and functional analysis of ANXA1 promoter activity contributed to identify key regions and potential mediators of ANXA1 transcriptional control. This study unveils that, in addition to miR-196a, miR-196b also directly targets ANXA1 in HNSCC.
Collapse
Affiliation(s)
- Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, CIBERONC, Spain
| | - Sofía T Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, CIBERONC, Spain
| | - M Ángeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, CIBERONC, Spain
| | - Emma Pena-Alonso
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, CIBERONC, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, CIBERONC, Spain
| | - Reginald O Morgan
- Department of Biochemistry and Molecular Biology, University of Oviedo, Oviedo, Spain
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, CIBERONC, Spain
| | - Cecilia Salom
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, CIBERONC, Spain
| | - M Pilar Fernandez
- Department of Biochemistry and Molecular Biology, University of Oviedo, Oviedo, Spain.
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, CIBERONC, Spain.
| |
Collapse
|
39
|
McLoughlin KC, Ripley RT. Looks aren't everything, but neither is microRNA profiling. J Thorac Cardiovasc Surg 2017; 154:728-729. [PMID: 28461055 DOI: 10.1016/j.jtcvs.2017.03.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Kaitlin C McLoughlin
- Thoracic and Gastrointestinal Oncology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Md
| | - R Taylor Ripley
- Thoracic and Gastrointestinal Oncology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Md.
| |
Collapse
|