1
|
Martín M, Bolognesi B. Massive mutagenesis reveals an incomplete amyloid motif in Bri2 that turns amyloidogenic upon C-terminal extension. Proc Natl Acad Sci U S A 2025; 122:e2415521122. [PMID: 40314981 DOI: 10.1073/pnas.2415521122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/20/2025] [Indexed: 05/03/2025] Open
Abstract
Stop-loss mutations cause over twenty different diseases. The effects of stop-loss mutations can have multiple consequences that are, however, hard to predict. Stop-loss in ITM2B/BRI2 results in C-terminal extension of the encoded protein and, upon furin cleavage, in the production of two 34 amino acid long peptides, ADan and ABri, that accumulate as amyloids in the brains of patients affected by familial Danish and British Dementia. To systematically explore the consequences of Bri2 C-terminal extension, here, we use a yeast-based massively parallel assay to measure amyloid formation for 676 ADan substitutions and identify the region that forms the putative amyloid core of ADan fibrils, located between positions 20 and 26, where stop-loss occurs. Moreover, we measure amyloid formation for ~18,000 random C-terminal extensions of Bri2 and find that ~32% of these sequences can nucleate amyloids. We find that the amino acid composition of these nucleating sequences varies with peptide length and that short extensions of two specific amino acids (Aliphatics, Aromatics, and Cysteines) are sufficient to generate de novo amyloid cores. Overall, our results show that the C-terminus of Bri2 contains an incomplete amyloid motif that can turn amyloidogenic upon extension. C-terminal extension with de novo formation of amyloid motifs may thus be a widespread pathogenic mechanism resulting from stop-loss, highlighting the importance of determining the impact of these mutations for other sequences across the genome.
Collapse
Affiliation(s)
- Mariano Martín
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| |
Collapse
|
2
|
He H, Long L, Tang M, Xu Q, Duan S, Chen G, Zhao Y, Wu Q, Chen J. Identification of a novel homozygous SLC13A5 nonstop mutation in a Chinese family with epileptic encephalopathy and developmental delay. Front Genet 2025; 16:1474390. [PMID: 40313595 PMCID: PMC12043571 DOI: 10.3389/fgene.2025.1474390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Biallelic loss-of-function variants in the SLC13A5 (solute carrier family 13, member 5) gene are responsible for autosomal recessive developmental and epileptic encephalopathy 25 with amelogenesis imperfecta (DEE25). Until now, no pathogenic variants of SLC13A5 has been reported among the Chinese population. Methods A Chinese Han pediatric patient with epilepsy and global developmental delay was described in this study. Trio-whole exome sequencing (WES) including the patient and her parents was performed to determine the genetic basis of the phenotype. Potential pathogenic variants were subsequently confirmed by Sanger sequencing. Additionally, we conducted an extensive review of the literature regarding SLC13A5 variants to analyze their associated phenotypic characteristics. Results Trio-WES revealed a novel homozygous variant c.1705T>G in SLC13A5 associated with clinical manifestations in the proband. The variant was also detected in her parents and unaffected sister, who were both heterozygous carriers. The variant is a nonstop substitution that is predicted to extend the SLC13A5 protein by 174 amino acids (p.569Gluext174). Analysis of previously published cases indicated that SLC13A5 patient in our study exhibited overlapping symptoms. Discussion We identified a novel homozygous nonstop mutation in the SLC13A5 gene of a Chinese patient with DEE25. This study expands the mutation spectrum of SLC13A5 and will have significant implications for the proband's family in terms of medical management and genetic counseling.
Collapse
Affiliation(s)
- Hua He
- Laboratory Medicine Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Lijuan Long
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Manling Tang
- Laboratory Medicine Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Qiang Xu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Shengwu Duan
- Department of Radiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Ge Chen
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yan Zhao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Qiongfang Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Jia Chen
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| |
Collapse
|
3
|
Pal J, Riester M, Ganner A, Ghosh A, Dhamija S, Mookherjee D, Voss C, Frew IJ, Kotsis F, Neumann-Haefelin E, Spang A, Diederichs S. Nonstop mutations cause loss of renal tumor suppressor proteins VHL and BAP1 and affect multiple stages of protein translation. SCIENCE ADVANCES 2025; 11:eadr6375. [PMID: 39937911 PMCID: PMC11817944 DOI: 10.1126/sciadv.adr6375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
Nonstop extension or stop-loss mutations lead to the extension of a protein at its carboxyl terminus. Recently, nonstop mutations in the tumor suppressor SMAD Family Member 4 (SMAD4) have been discovered to lead to proteasomal SMAD4 degradation. However, this mutation type has not been studied in other cancer genes. Here, we explore somatic nonstop mutations in the tumor suppressor genes BRCA1 Associated Protein 1 (BAP1) and Von Hippel-Lindau (VHL) enriched in renal cell carcinoma. For BAP1, nonstop mutations generate an extremely long extension. Instead of proteasomal degradation, the extension decreases translation and depletes BAP1 messenger RNA from heavy polysomes. For VHL, the short extension leads to proteasomal degradation. Unexpectedly, the mutation alters the selection of the translational start site shifting VHL isoforms. We identify germline VHL nonstop mutations in patients leading to the early onset of severe disease manifestations. In summary, nonstop extension mutations inhibit the expression of renal tumor suppressor genes with pleiotropic effects on translation and protein stability.
Collapse
Affiliation(s)
- Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marisa Riester
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Athina Ganner
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Avantika Ghosh
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center, Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center, Freiburg, Germany
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - Christian Voss
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ian J. Frew
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fruzsina Kotsis
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center, Freiburg, Germany
| |
Collapse
|
4
|
Ghosh A, Riester M, Pal J, Lainde KA, Tangermann C, Wanninger A, Dueren UK, Dhamija S, Diederichs S. Suppressive cancer nonstop extension mutations increase C-terminal hydrophobicity and disrupt evolutionarily conserved amino acid patterns. Nat Commun 2024; 15:9209. [PMID: 39448564 PMCID: PMC11502859 DOI: 10.1038/s41467-024-52779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Nonstop extension mutations, a.k.a. stop-lost or stop-loss mutations, convert a stop codon into a sense codon resulting in translation into the 3' untranslated region until the next in-frame stop codon, thereby extending the C-terminus of a protein. In cancer, only nonstop mutations in SMAD4 have been functionally characterized, while the impact of other nonstop mutations remain unknown. Here, we exploit our pan-cancer NonStopDB dataset and test all 2335 C-terminal extensions arising from somatic nonstop mutations in cancer for their impact on protein expression. In a high-throughput screen, 56.1% of the extensions effectively reduce protein abundance. Extensions of multiple tumor suppressor genes like PTEN, APC, B2M, CASP8, CDKN1B and MLH1 are effective and validated for their suppressive impact. Importantly, the effective extensions possess a higher hydrophobicity than the neutral extensions linking C-terminal hydrophobicity with protein destabilization. Analyzing the proteomes of eleven different species reveals conserved patterns of amino acid distribution in the C-terminal regions of all proteins compared to the proteomes like an enrichment of lysine and arginine and a depletion of glycine, leucine, valine and isoleucine across species and kingdoms. These evolutionary selection patterns are disrupted in the cancer-derived effective nonstop extensions.
Collapse
Affiliation(s)
- Avantika Ghosh
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Marisa Riester
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kadri-Ann Lainde
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Carla Tangermann
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Angela Wanninger
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Ursula K Dueren
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
García-Llorca A, Eysteinsson T. The Microphthalmia-Associated Transcription Factor (MITF) and Its Role in the Structure and Function of the Eye. Genes (Basel) 2024; 15:1258. [PMID: 39457382 PMCID: PMC11508060 DOI: 10.3390/genes15101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The microphthalmia-associated transcription factor (Mitf) has been found to play an important role in eye development, structure, and function. The Mitf gene is responsible for controlling cellular processes in a range of cell types, contributing to multiple eye development processes. In this review, we survey what is now known about the impact of Mitf on eye structure and function in retinal disorders. Several mutations in the human and mouse Mitf gene are now known, and the effects of these on eye phenotype are addressed. We discuss the importance of Mitf in regulating ion transport across the retinal pigment epithelium (RPE) and the vasculature of the eye. METHODS The literature was searched using the PubMed, Scopus, and Google Scholar databases. Fundus and Optical Coherence Tomography (OCT) images from mice were obtained with a Micron IV rodent imaging system. RESULTS Defects in neural-crest-derived melanocytes resulting from any Mitf mutations lead to hypopigmentation in the eye, coat, and inner functioning of the animals. While many Mitf mutations target RPE cells in the eye, fewer impact osteoclasts at the same time. Some of the mutations in mice lead to microphthalmia, and ultimately vision loss, while other mice show a normal eye size; however, the latter, in some cases, show hypopigmentation in the fundus and the choroid is depigmented and thickened, and in rare cases Mitf mutations lead to progressive retinal degeneration. CONCLUSIONS The Mitf gene has an impact on the structure and function of the retina and its vasculature, the RPE, and the choroid in the adult eye.
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland;
| | - Thor Eysteinsson
- Department of Physiology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland;
- Department of Ophthalmology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| |
Collapse
|
6
|
Vaché C, Cubedo N, Mansard L, Sarniguet J, Baux D, Faugère V, Baudoin C, Moclyn M, Touraine R, Lina-Granade G, Cossée M, Bergougnoux A, Kalatzis V, Rossel M, Roux AF. Identification and in vivo functional investigation of a HOMER2 nonstop variant causing hearing loss. Eur J Hum Genet 2023; 31:834-840. [PMID: 37173411 PMCID: PMC10326047 DOI: 10.1038/s41431-023-01374-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
DFNA68 is a rare subtype of autosomal dominant nonsyndromic hearing impairment caused by heterozygous alterations in the HOMER2 gene. To date, only 5 pathogenic or likely pathogenic coding variants, including two missense substitutions (c.188 C > T and c.587 G > C), a single base pair duplication (c.840dupC) and two short deletions (c.592_597delACCACA and c.832_836delCCTCA) have been described in 5 families. In this study, we report a novel HOMER2 variation, identified by massively parallel sequencing, in a Sicilian family suffering from progressive dominant hearing loss over 3 generations. This novel alteration is a nonstop substitution (c.1064 A > G) that converts the translational termination codon (TAG) of the gene into a tryptophan codon (TGG) and is predicted to extend the HOMER2 protein by 10 amino acids. RNA analyses from the proband suggested that HOMER2 transcripts carrying the nonstop variant escaped the non-stop decay pathway. Finally, in vivo studies using a zebrafish animal model and behavioral tests clearly established the deleterious impact of this novel HOMER2 alteration on hearing function. This study identifies the fourth causal variation responsible for DFNA68 and describes a simple in vivo approach to assess the pathogenicity of candidate HOMER2 variants.
Collapse
Affiliation(s)
- Christel Vaché
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France.
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France.
| | - Nicolas Cubedo
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Luke Mansard
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | | | - David Baux
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Valérie Faugère
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Corinne Baudoin
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Melody Moclyn
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Renaud Touraine
- Department of Genetics, CHU Hopital Nord, Saint-Etienne, France
| | - Geneviève Lina-Granade
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon University Hospital, Lyon, France
| | - Mireille Cossée
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Anne Bergougnoux
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | | | - Anne-Françoise Roux
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| |
Collapse
|
7
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
8
|
Zhang L, Wan Y, Wang N. Waardenburg syndrome type 4 coexisting with open-angle glaucoma: a case report. J Med Case Rep 2022; 16:264. [PMID: 35790984 PMCID: PMC9258067 DOI: 10.1186/s13256-022-03460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Waardenburg syndrome is an autosomal dominant disorder with varying degrees of sensorineural hearing loss as well as abnormal pigmentation in hair, skin, and iris. There are four types of Waardenburg syndrome (1–4) with different characteristics. Mutations in six genes have been identified to be associated with the various types. Herein, we describe a case of Waardenburg syndrome type 4 combined with open-angle glaucoma. Case presentation A 43-year-old Han Chinese man had undergone trabeculectomy due to progression of visual field impairment and unstable intraocular pressure in both eyes. Slit-lamp examination revealed diffuse iris hypopigmentation in the left eye and hypopigmentation of part of the iris in the right eye. Fundus examination showed red, sunset-like fundus due to a lack of pigmentation in the retinal pigment epithelium layer, diffuse loss of the nerve fiber layer, and an excavated optic nerve head with advanced-stage glaucoma. Imaging was performed using anterior segment optical coherence tomography to detect the iris configuration. In the heterochromic iris portion, the normal part of the iris showed a clear hyperreflective signal of the anterior border layer, while atrophy of the pigmented anterior border layer showed a hyporeflective area of the anterior surface resulting in reduced light absorption. Two mutations of the endothelin receptor type B gene were recognized in this study. The first (c.1111G>A on exon 7) leads to an amino acid change from glycine to serine at codon 371. Sanger verification revealed that this mutation is inherited from the mother. The other mutation (c.553G>A) leads to an amino acid change from valine to methionine at codon 185. Sanger verification showed that this mutation was inherited from the father. Conclusion Waardenburg syndrome shows a remarkable diversity in clinical presentation and morphology. This disease can also present with open-angle glaucoma. Sequencing analysis revealed two heterozygous mutations in the EDNRB gene in this patient, inherited from his mother and father, respectively. These two sites constitute a compound heterozygous variation.
Collapse
Affiliation(s)
- Li Zhang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 17 Hougou Line, Chongnei Street, Dongcheng District, Beijing, 100005, China.
| | - Yue Wan
- Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 17 Hougou Line, Chongnei Street, Dongcheng District, Beijing, 100005, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 17 Hougou Line, Chongnei Street, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
9
|
Albarry MA, Latif M, Alreheli AQ, Awadh MA, Almatrafi AM, Albalawi AM, Basit S. Frameshift variant in MITF gene in a large family with Waardenburg syndrome type II and a co-segregation of a C2orf74 variant. PLoS One 2021; 16:e0246607. [PMID: 33571247 PMCID: PMC7877624 DOI: 10.1371/journal.pone.0246607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
Waardenburg syndrome (WS) is a hereditary disorder affecting the auditory system and pigmentation of hair, eyes, and skin. Different variants of the disease exist with the involvement of mutation in six genes. The aim of the study is to identify the genetic defects underlying Waardenburg syndrome in a large family with multiple affected individuals. Here, in this study, we recruited a large family with eleven affected individuals segregating WS type 2. We performed whole genome SNP genotyping, whole exome sequencing and segregation analysis using Sanger approach. Whole genome SNP genotyping, whole exome sequencing followed by Sanger validation of variants of interest identified a novel single nucleotide deletion mutation (c.965delA) in the MITF gene. Moreover, a rare heterozygous, missense damaging variant (c.101T>G; p.Val34Gly) in the C2orf74 has also been identified. The C2orf74 is an uncharacterized gene present in the linked region detected by DominantMapper. Variants in MITF and C2orf74 follows autosomal dominant segregation with the phenotype, however, the variant in C2orf74 is incompletely penetrant. We proposed a digenic inheritance of variants as an underlying cause of WS2 in this family.
Collapse
Affiliation(s)
- Maan Abdullah Albarry
- Department of Ophthalmology, College of Medicine, Taibah University, Almadinah, Saudi Arabia
| | - Muhammad Latif
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah, Saudi Arabia
| | - Ahdab Qasem Alreheli
- Department of Ophthalmology, College of Medicine, Taibah University, Almadinah, Saudi Arabia
| | - Mohammed A. Awadh
- College of Applied Medical Sciences, Taibah University, Almadinah, Saudi Arabia
| | - Ahmad M. Almatrafi
- Department of Biology, College of Science, Taibah University, Almadinah, Saudi Arabia
| | - Alia M. Albalawi
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah, Saudi Arabia
- Department of Biology, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah, Saudi Arabia
- * E-mail:
| |
Collapse
|
10
|
Zardadi S, Rayat S, Doabsari MH, Alishiri A, Keramatipour M, Shahri ZJ, Morovvati S. Four mutations in MITF, SOX10 and PAX3 genes were identified as genetic causes of waardenburg syndrome in four unrelated Iranian patients: case report. BMC Pediatr 2021; 21:70. [PMID: 33557787 PMCID: PMC7869501 DOI: 10.1186/s12887-021-02521-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Waardenburg syndrome (WS) is a rare genetic disorder. The purpose of this study was to investigate clinical and molecular characteristics of WS in four probands from four different Iranian families. Case presentation The first patient was a 1-year-old symptomatic boy with congenital hearing loss and heterochromia iridis with a blue segment in his left iris. The second case was a 1.5-year-old symptomatic girl who manifested congenital profound hearing loss, brilliant blue eyes, and skin hypopigmentation on the abdominal region at birth time. The third patient was an 8-month-old symptomatic boy with developmental delay, mild atrophy, hypotonia, brilliant blue eyes, skin hypopigmentation on her hand and foot, Hirschsprung disease, and congenital profound hearing loss; the fourth patient was a 4-year-old symptomatic boy who showed dystopia canthorum, broad nasal root, synophrys, skin hypopigmentation on her hand and abdomen, brilliant blue eyes, and congenital profound hearing loss. Whole exome sequencing (WES) was used for each proband to identify the underlying genetic factor. Sanger sequencing was performed for validation of the identified mutations in probands and the available family members. A novel heterozygous frameshift mutation, c.996delT (p.K334Sfs*15), on exon 8 of the MITF gene was identified in the patient of the first family diagnosed with WS2A. Two novel de novo heterozygous mutations including a missense mutation, c.950G > A (p.R317K), on exon 8 of the MITF gene, and a frameshift mutation, c.684delC (p.E229Sfs*57), on the exon 3 of the SOX10 gene were detected in patients of the second and third families with WS2A and PCWH (Peripheral demyelinating neuropathy, Central dysmyelinating leukodystrophy, Waardenburg syndrome, Hirschsprung disease), respectively. A previously reported heterozygous frameshift mutation, c.1024_1040del AGCACGATTCCTTCCAA, (p.S342Pfs*62), on exon 7 of the PAX3 gene was identified in the patient of the fourth family with WS1. Conclusions An exact description of the mutations responsible for WS provides useful information to explain the molecular cause of clinical features of WS and contributes to better genetic counseling of WS patients and their families.
Collapse
Affiliation(s)
- Safoura Zardadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sima Rayat
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Aliagha Alishiri
- Faculty of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Javanfekr Shahri
- School of Advanced Sciences and Technology, Islamic Azad University-Tehran Medical Sciences, Tehran, Iran
| | - Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Yang S, Wang C, Zhou C, Kang D, Zhang X, Yuan H. A follow-up study of a Chinese family with Waardenburg syndrome type II caused by a truncating mutation of MITF gene. Mol Genet Genomic Med 2020; 8:e1520. [PMID: 33045145 PMCID: PMC7767564 DOI: 10.1002/mgg3.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Background Waardenburg syndrome (WS) is a highly clinically and genetically heterogeneous disease. The core disease phenotypes of WS are sensorineuronal hearing loss and pigmentary disturbance, which are usually caused by the absence of neural crest cell‐derived melanocytes. At present, four subtypes of WS have been defined, which are caused by seven genes. Waardenburg syndrome type 2 (WS2) is one of the most common forms. Two genes, MITF and SOX10, have been found to be responsible for majority of WS2. Methods In this study, we performed a clinical longitudinal follow‐up and mutation screening for a Chinese family with Waardenburg syndrome type II. Results A diversity of clinical manifestations was observed in this WS2 family. In addition to the congenital hearing loss of most affected family members, progressive hearing loss was also found in some WS2 patients. A nonsense mutation of c.328C>T (p.R110X) in MITF was identified in all affected family members. This mutation results in a truncated MITF protein, which is considered to be a disease‐causing mutation. Conclusion These findings offer a better understanding of the spectrum of MITF mutations and highlight the necessity of continuous hearing assessment in WS patients.
Collapse
Affiliation(s)
- Shuzhi Yang
- Department of Otolaryngology, The 4th Medical CenterChinese PLA General HospitalBeijingChina
- Department of Otorhinolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- National Clinical Research Center for Otorhinolaryngologic DiseaseChinese PLA General HospitalBeijingChina
| | - Cuicui Wang
- Center for Medical GeneticsSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chengyong Zhou
- Department of Otolaryngology, The 4th Medical CenterChinese PLA General HospitalBeijingChina
- Department of Otorhinolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- National Clinical Research Center for Otorhinolaryngologic DiseaseChinese PLA General HospitalBeijingChina
| | - DongYang Kang
- Institute Of OtolaryngologyChinese PLA General HospitalBeijingChina
| | - Xin Zhang
- Institute Of OtolaryngologyChinese PLA General HospitalBeijingChina
| | - Huijun Yuan
- Center for Medical GeneticsSouthwest HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
12
|
MITF Is Mutated in Type 1 Waardenburg Syndrome With Unusual Phenotype. Otol Neurotol 2020; 41:e1250-e1255. [PMID: 32740552 DOI: 10.1097/mao.0000000000002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Waardenburg syndrome (WS) is a rare disorder characterized by varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair and skin. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. Dystopia canthorum is a hallmark of WS type 1. There are two genes linked to WS type 1, including PAX3 and EDNRB. OBJECTIVE This study aimed to investigate the genetic etiology of WS type 1 in a pair of twins from China with profound hearing loss, blond hair and eyebrows, dystopia canthorum, and brown irides. METHODS The target capture sequencing and Whole-exome sequencing were performed to detect mutations in WS-related genes. RESULTS A novel de novo frameshift mutation, p.L341Rfs*18 in MITF was identified in the twins. Hearing thresholds showed substantial improvements following cochlear implantation with a pure-tone average of 30 dB in free-field conditions. CONCLUSIONS The study showed the new genotype-phenotype correlations of MITF to WS type 1. Further molecular analysis is necessary to reappraise the current classification on WS.
Collapse
|
13
|
Dhamija S, Yang CM, Seiler J, Myacheva K, Caudron-Herger M, Wieland A, Abdelkarim M, Sharma Y, Riester M, Groß M, Maurer J, Diederichs S. A pan-cancer analysis reveals nonstop extension mutations causing SMAD4 tumour suppressor degradation. Nat Cell Biol 2020; 22:999-1010. [DOI: 10.1038/s41556-020-0551-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/25/2020] [Indexed: 12/26/2022]
|
14
|
Tang XJ, Ping XY, Luo CQ, Yu XN, Tang YL, Shentu XC. Dystrophia canthorum in Waardenburg syndrome with a novel MITF mutation. Int J Ophthalmol 2020; 13:1054-1059. [PMID: 32685391 DOI: 10.18240/ijo.2020.07.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/29/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To reveal a novel MITF gene mutation in Waardenburg syndrome (WS), which is an autosomal dominant inherited neurogenic disorder that consists of various degrees of sensorineural deafness and pigmentary abnormalities in the eyes, hair and skin. METHODS The genetic analysis of the Chinese family was conducted by whole-exome sequencing, then the results were confirmed by Sanger sequencing. RESULTS WS is classified into type I to IV, which are identified by the W index, clinical characteristics and additional features. The MITF gene mostly accounts for WS type II. In this study, a de novo heterozygous mutation in the MITF gene, c.638A>G in exon 7, was identified in the patient diagnosed with WS type I features, as the W index was 2.17 (over 2.10), with dystrophia canthorum, congenital bilateral profound hearing loss, bilateral heterochromia irides, premature greying of the hair, and excessive freckling on the face at birth. She also underwent refractive errors and esotropia, reduced pigmentation of the choroid and visible choroid vessels. The mutation was not found in previous studies or mutation databases. CONCLUSION The novel mutation in the MITF gene, which altered the protein in amino acids 213 from the glutamic acid to glycine, is the genetic pathological cause for WS features in the patient. Those characteristics of this family revealed a novel genetic heterogeneity of MITF in WS, which expanded the database of MITF mutations and offered a possible in correcting the W index value of WS in distinct ethnicities. Moreover, ocular symptoms should be emphasized in all types of WS patients.
Collapse
Affiliation(s)
- Xia-Jing Tang
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xi-Yuan Ping
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Chen-Qi Luo
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xiao-Ning Yu
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ye-Lei Tang
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xing-Chao Shentu
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
15
|
Ma X, Li H, Chen Y, Yang J, Chen H, Arnheiter H, Hou L. The transcription factor MITF in RPE function and dysfunction. Prog Retin Eye Res 2019; 73:100766. [DOI: 10.1016/j.preteyeres.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
|
16
|
Identification and functional analysis of a novel mutation in the PAX3 gene associated with Waardenburg syndrome type I. Gene 2018; 642:362-366. [DOI: 10.1016/j.gene.2017.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/07/2017] [Accepted: 11/13/2017] [Indexed: 11/22/2022]
|
17
|
Bock AS, Günther S, Mohr J, Goldberg LV, Jahic A, Klisch C, Hübner CA, Biskup S, Beetz C. A nonstop variant in REEP1 causes peripheral neuropathy by unmasking a 3'UTR-encoded, aggregation-inducing motif. Hum Mutat 2017; 39:193-196. [PMID: 29124833 DOI: 10.1002/humu.23369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Single-nucleotide variants that abolish the stop codon ("nonstop" alterations) are a unique type of substitution in genomic DNA. Whether they confer instability of the mutant mRNA or result in expression of a C-terminally extended protein depends on the absence or presence of a downstream in-frame stop codon, respectively. Of the predicted protein extensions, only few have been functionally characterized. In a family with autosomal dominant Charcot-Marie-Tooth disease type 2, that is, an axonopathy affecting sensory neurons as well as lower motor neurons, we identified a heterozygous nonstop variant in REEP1. Mutations in this gene have classically been associated with the upper motor neuron disorder hereditary spastic paraplegia (HSP). We show that the C-terminal extension resulting from the nonstop variant triggers self-aggregation of REEP1 and of several reporters. Our findings support the recently proposed concept of 3'UTR-encoded "cryptic amyloidogenic elements." Together with a previous report on an aggregation-prone REEP1 deletion variant in distal hereditary motor neuropathy, they also suggest that toxic gain of REEP1 function, rather than loss-of-function as relevant for HSP, specifically affects lower motor neurons. A search for similar correlations between genotype, phenotype, and effect of mutant protein may help to explain the wide clinical spectra also in other genetically determined disorders.
Collapse
Affiliation(s)
- Andrea S Bock
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Julia Mohr
- CeGaT GmbH und Praxis für Humangenetik, Tübingen, Germany
| | - Lisa V Goldberg
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Amir Jahic
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | | | - Saskia Biskup
- CeGaT GmbH und Praxis für Humangenetik, Tübingen, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|