1
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
LNU P, Sehgal V, Kapila S, Gulati N, Bhalla Sehgal L. Ataxia Telangiectasia Presenting as Cervical Dystonia. Cureus 2022; 14:e30723. [DOI: 10.7759/cureus.30723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
|
3
|
Pastorczak A, Attarbaschi A, Bomken S, Borkhardt A, van der Werff ten Bosch J, Elitzur S, Gennery AR, Hlavackova E, Kerekes A, Křenová Z, Mlynarski W, Szczepanski T, Wassenberg T, Loeffen J. Consensus Recommendations for the Clinical Management of Hematological Malignancies in Patients with DNA Double Stranded Break Disorders. Cancers (Basel) 2022; 14:2000. [PMID: 35454905 PMCID: PMC9029535 DOI: 10.3390/cancers14082000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Patients with double stranded DNA repair disorders (DNARDs) (Ataxia Telangiectasia (AT) and Nijmegen Breakage syndrome (NBS)) are at a very high risk for developing hematological malignancies in the first two decades of life. The most common neoplasms are T-cell lymphoblastic malignancies (T-cell ALL and T-cell LBL) and diffuse large B cell lymphoma (DLBCL). Treatment of these patients is challenging due to severe complications of the repair disorder itself (e.g., congenital defects, progressive movement disorders, immunological disturbances and progressive lung disease) and excessive toxicity resulting from chemotherapeutic treatment. Frequent complications during treatment for malignancies are deterioration of pre-existing lung disease, neurological complications, severe mucositis, life threating infections and feeding difficulties leading to significant malnutrition. These complications make modifications to commonly used treatment protocols necessary in almost all patients. Considering the rarity of DNARDs it is difficult for individual physicians to obtain sufficient experience in treating these vulnerable patients. Therefore, a team of experts assembled all available knowledge and translated this information into best available evidence-based treatment recommendations.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Andishe Attarbaschi
- Department of Pediatrics, Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Bomken
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Jutte van der Werff ten Bosch
- Department of Pediatric Hematology, Oncology and Immunology, University Hospital Brussels, 1090 Jette Brussels, Belgium;
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petach Tikvah 4920235, Israel;
| | - Andrew R. Gennery
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Eva Hlavackova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Arpád Kerekes
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Zdenka Křenová
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), 41-800 Zabrze, Poland;
| | - Tessa Wassenberg
- Department of Neurology and Child Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jan Loeffen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| |
Collapse
|
4
|
Petley E, Yule A, Alexander S, Ojha S, Whitehouse WP. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One 2022; 17:e0264177. [PMID: 35290391 PMCID: PMC9049793 DOI: 10.1371/journal.pone.0264177] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ataxia-telangiectasia is an autosomal recessive, multi-system, and life-shortening disease caused by mutations in the ataxia-telangiectasia mutated gene. Although widely reported, there are no studies that give a comprehensive picture of this intriguing condition. OBJECTIVES Understand the natural history of ataxia-telangiectasia (A-T), as reported in scientific literature. SEARCH METHODS 107 search terms were identified and divided into 17 searches. Each search was performed in PubMed, Ovid SP (MEDLINE) 1946-present, OVID EMBASE 1980 -present, Web of Science core collection, Elsevier Scopus, and Cochrane Library. SELECTION CRITERIA All human studies that report any aspect of A-T. DATA COLLECTION AND ANALYSIS Search results were de-duplicated, data extracted (including author, publication year, country of origin, study design, population, participant characteristics, and clinical features). Quality of case-control and cohort studies was assessed by the Newcastle-Ottawa tool. Findings are reported descriptively and where possible data collated to report median (interquartile range, range) of outcomes of interest. MAIN RESULTS 1314 cases reported 2134 presenting symptoms. The most common presenting symptom was abnormal gait (1160 cases; 188 studies) followed by recurrent infections in classical ataxia-telangiectasia and movement disorders in variant ataxia-telangiectasia. 687 cases reported 752 causes of death among which malignancy was the most frequently reported cause. Median (IQR, range) age of death (n = 294) was 14 years 0 months (10 years 0 months to 23 years 3 months, 1 year 3 months to 76 years 0 months). CONCLUSIONS This review demonstrates the multi-system involvement in A-T, confirms that neurological symptoms are the most frequent presenting features in classical A-T but variants have diverse manifestations. We found that most individuals with A-T have life limited to teenage or early adulthood. Predominance of case reports, and case series demonstrate the lack of robust evidence to determine the natural history of A-T. We recommend population-based studies to fill this evidence gap.
Collapse
Affiliation(s)
- Emily Petley
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Alexander Yule
- United Lincolnshire Hospitals NHS Trust, Lincoln, United
Kingdom
| | - Shaun Alexander
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Children’s Hospital, University Hospitals of Derby and Burton, NHS
Foundation Trust, Derby, United Kingdom
| | - William P. Whitehouse
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Nottingham Children’s Hospital, Nottingham University Hospital NHS Trust,
Nottingham, United Kingdom
| |
Collapse
|
5
|
Moeini Shad T, Yazdani R, Amirifar P, Delavari S, Heidarzadeh Arani M, Mahdaviani SA, Sadeghi-Shabestari M, Aghamohammadi A, Rezaei N, Abolhassani H. Atypical Ataxia Presentation in Variant Ataxia Telangiectasia: Iranian Case-Series and Review of the Literature. Front Immunol 2022; 12:779502. [PMID: 35095854 PMCID: PMC8795590 DOI: 10.3389/fimmu.2021.779502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive neurodegenerative multisystem disorder. A minority of AT patients can present late-onset atypical presentations due to unknown mechanisms. The demographic, clinical, immunological and genetic data were collected by direct interview and examining the Iranian AT patients with late-onset manifestations. We also conducted a systematic literature review for reported atypical AT patients. We identified three Iranian AT patients (3/249, 1.2% of total registry) with later age at ataxia onset and slower neurologic progression despite elevated alpha-fetoprotein levels, history of respiratory infections, and immunological features of the syndrome. Of note, all patients developed autoimmunity in which a decrease of naïve T cells and regulatory T cells were observed. The literature searches also summarized data from 73 variant AT patients with atypical presentation indicating biallelic mild mutations mainly lead to an atypical phenotype with an increased risk of cancer. Variant AT patients present with milder phenotype or atypical form of classical symptoms causing under- or mis- diagnosis. Although missense mutations are more frequent, an atypical presentation can be associated with deleterious mutations due to unknown modifying factors.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
6
|
McGrath-Morrow SA, Rothblum-Oviatt CC, Wright J, Schlechter H, Lefton-Greif MA, Natale VA, Crawford TO, Lederman HM. Multidisciplinary Management of Ataxia Telangiectasia: Current Perspectives. J Multidiscip Healthc 2021; 14:1637-1644. [PMID: 34234451 PMCID: PMC8253936 DOI: 10.2147/jmdh.s295486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Ataxia telangiectasia (A-T) is a rare autosomal recessive disease caused by mutations in the ataxia telangiectasia mutated (ATM) gene. In the absence of a family history, the diagnosis of A-T is usually not made until the child is older and symptomatic. Classic A-T is characterized by a constellation of clinical symptoms including progressive ataxia, oculocutaneous telangiectasias and sinopulmonary disease and is usually associated with absence of ATM protein. Other laboratory features associated with A-T include elevated serum levels of alpha-fetoprotein (AFP) and increased chromosomal breakage with in vitro exposure to ionizing radiation. Sinopulmonary symptoms can occur to varying degrees across the lifespan. Some children will also have hypogammaglobulinemia and impaired antibody responses requiring supplemental gamma globulin. People with hypomorphic ATM mutations are often considered to have mild A-T with onset of ataxia and neurological progression occurring later in life with less impairment of the immune system. The risk of malignancy, however, is significantly increased in people with either classic or mild A-T. While hematological malignancies are most common in the first two decades of life, solid organ malignancies become increasingly common during young adulthood. Deterioration of neurologic function with age is associated with dysphagia with aspiration, growth faltering, loss of ambulation and decline in pulmonary function, morbidities that contribute to shortened life expectancy and decreased quality of life. Premature death is often due to malignancies or chronic respiratory insufficiency. A-T is currently managed with supportive care and symptomatic treatment. Current clinical trials, however, represent progress and hope towards disease-modifying therapies for A-T.
Collapse
Affiliation(s)
- Sharon A McGrath-Morrow
- Division of Pulmonary and Sleep, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennifer Wright
- Division of Pediatric Allergy and Immunology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Haley Schlechter
- Institute for Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maureen A Lefton-Greif
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Thomas O Crawford
- Departments of Pediatrics and Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Howard M Lederman
- Division of Pediatric Allergy and Immunology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
7
|
Hepatosplenic αβ T-Cell Lymphoma as Second Malignancy in Young Adult Patient With Previously Undiagnosed Ataxia-Telangiectasia. J Pediatr Hematol Oncol 2020; 42:e463-e465. [PMID: 31259827 PMCID: PMC6933092 DOI: 10.1097/mph.0000000000001537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ataxia-telangiectasia is a rare autosomal recessive neurodegenerative disease characterized by ataxia, radiosensitivity, telangiectases, and increased risk for hematologic malignancies. We present a case of a female individual diagnosed with T-cell acute lymphocytic leukemia at 13 years and subsequently with αβ subtype of hepatosplenic T-cell lymphoma (HSTCL) at 20 years. During her diagnostic work up for HSTCL, paired tumor-germline sequencing identified a diagnosis of ataxia-telangiectasia. We also describe a very refractory clinical course of her αβ HSTCL, including only a brief response to multiagent chemotherapy and an allogenic bone marrow transplant.
Collapse
|
8
|
Fiévet A, Bellanger D, Rieunier G, Dubois d'Enghien C, Sophie J, Calvas P, Carriere JP, Anheim M, Castrioto A, Flabeau O, Degos B, Ewenczyk C, Mahlaoui N, Touzot F, Suarez F, Hully M, Roubertie A, Aladjidi N, Tison F, Antoine-Poirel H, Dahan K, Doummar D, Nougues MC, Ioos C, Rougeot C, Masurel A, Bourjault C, Ginglinger E, Prieur F, Siri A, Bordigoni P, Nguyen K, Philippe N, Bellesme C, Demeocq F, Altuzarra C, Mathieu-Dramard M, Couderc F, Dörk T, Auger N, Parfait B, Abidallah K, Moncoutier V, Collet A, Stoppa-Lyonnet D, Stern MH. Functional classification of ATM variants in ataxia-telangiectasia patients. Hum Mutat 2019; 40:1713-1730. [PMID: 31050087 DOI: 10.1002/humu.23778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Ataxia-telangiectasia (A-T) is a recessive disorder caused by biallelic pathogenic variants of ataxia-telangiectasia mutated (ATM). This disease is characterized by progressive ataxia, telangiectasia, immune deficiency, predisposition to malignancies, and radiosensitivity. However, hypomorphic variants may be discovered associated with very atypical phenotypes, raising the importance of evaluating their pathogenic effects. In this study, multiple functional analyses were performed on lymphoblastoid cell lines from 36 patients, comprising 49 ATM variants, 24 being of uncertain significance. Thirteen patients with atypical phenotype and presumably hypomorphic variants were of particular interest to test strength of functional analyses and to highlight discrepancies with typical patients. Western-blot combined with transcript analyses allowed the identification of one missing variant, confirmed suspected splice defects and revealed unsuspected minor transcripts. Subcellular localization analyses confirmed the low level and abnormal cytoplasmic localization of ATM for most A-T cell lines. Interestingly, atypical patients had lower kinase defect and less altered cell-cycle distribution after genotoxic stress than typical patients. In conclusion, this study demonstrated the pathogenic effects of the 49 variants, highlighted the strength of KAP1 phosphorylation test for pathogenicity assessment and allowed the establishment of the Ataxia-TeLangiectasia Atypical Score to predict atypical phenotype. Altogether, we propose strategies for ATM variant detection and classification.
Collapse
Affiliation(s)
- Alice Fiévet
- Institut Curie, PSL Research University, INSERM U830, Paris, France.,Institut Curie, Hôpital, Service de Génétique, Paris, France
| | - Dorine Bellanger
- Institut Curie, PSL Research University, INSERM U830, Paris, France
| | | | | | - Julia Sophie
- CHU de Toulouse, Service de Génétique Médicale, Toulouse, France
| | - Patrick Calvas
- CHU de Toulouse, Service de Génétique Médicale, Toulouse, France
| | - Jean-Paul Carriere
- Hopital des enfants de Toulouse, Unité de Neuropédiatrie, Toulouse, France
| | - Mathieu Anheim
- CHU de Strasbourg, Service de Neurologie, Strasbourg, France
| | - Anna Castrioto
- CHU de Grenoble, Pole de Psychiatrie et de Neurologie, Grenoble, France
| | - Olivier Flabeau
- CH de la côte Basque, Service de Neurologie, Bayonne, France
| | - Bertrand Degos
- Département des Maladies du Système Nerveux, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France
| | - Claire Ewenczyk
- Hôpitaux universitaires Pitié Salpêtrière - Charles Foix, Service de Génétique, Paris, France
| | - Nizar Mahlaoui
- Hôpital Necker Enfants Malades, Service d'Immunologie, d'Hématologie et de Rhumatologie Pédiatriques, Paris, France
| | - Fabien Touzot
- Hôpital Necker Enfants Malades, Service d'Immunologie, d'Hématologie et de Rhumatologie Pédiatriques, Paris, France
| | - Felipe Suarez
- Hôpital Necker Enfants Malades, Service d'Hématologie Adulte, Paris, France
| | - Marie Hully
- Hôpital Necker Enfants Malades, Service de Neurologie Pédiatrique, Paris, France
| | - Agathe Roubertie
- CHU de Montpellier, Service de Neuropédiatrie, Montpellier, France
| | | | - François Tison
- CHU de Bordeaux, Département de Neurologie, Bordeaux, France
| | - Hélène Antoine-Poirel
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc & Université Catholique de Louvain, Brussels, Belgium
| | - Karine Dahan
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc & Université Catholique de Louvain, Brussels, Belgium
| | - Diane Doummar
- Hopital Armand Trousseau, Service de Neurologie Pédiatrique, Paris, France
| | | | - Christine Ioos
- Hôpital Raymond Poincaré, Pôle de Pédiatrie, Garches, France
| | | | - Alice Masurel
- Hopital d'Enfants de Dijon, Service de Génétique, Dijon, France
| | - Caroline Bourjault
- CH de Bretagne sud, Site du Scorff, Service de Pédiatrie, Lorient, France
| | | | - Fabienne Prieur
- CHU de St Etienne, Hôpital Nord, Service de Génétique Médicale, Saint Etienne, France
| | - Aurélie Siri
- CHU de Nancy, Service de Neurologie, Nancy, France
| | - Pierre Bordigoni
- CHU Nancy, Hôpitaux de Brabois, Service de Pédiatrie II, Vandoeuvre, France
| | - Karine Nguyen
- Département de Génétique Médicale, Hopital de la Timone, Marseille, France
| | - Noel Philippe
- Hopital Debrousse, Service d'Hématologie Pédiatrique, Lyon, France
| | - Céline Bellesme
- GH Cochin-saint-Vincent de Paul, Service d'Endocrinologie et de Neurologie Pédiatrique, Paris, France
| | - François Demeocq
- CHU de Clermont-Ferrand, Hôtel Dieu, Service de Pédiatrie B, Clermont-Ferrand, France
| | | | | | - Fanny Couderc
- CH d'Aix en Provence - du Pays d'Aix, Service de Pédiatrie, Aix en Provence, France
| | - Thilo Dörk
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Nathalie Auger
- Gustave Roussy, Service Génétique des Tumeurs, Villejuif, France
| | - Béatrice Parfait
- Centre de ressources Biologiques, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | - Agnès Collet
- Institut Curie, Hôpital, Service de Génétique, Paris, France
| | - Dominique Stoppa-Lyonnet
- Institut Curie, PSL Research University, INSERM U830, Paris, France.,Institut Curie, Hôpital, Service de Génétique, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, INSERM U830, Paris, France.,Institut Curie, Hôpital, Service de Génétique, Paris, France
| |
Collapse
|
9
|
van Os NJH, Hensiek A, van Gaalen J, Taylor AMR, van Deuren M, Weemaes CMR, Willemsen MAAP, van de Warrenburg BPC. Trajectories of motor abnormalities in milder phenotypes of ataxia telangiectasia. Neurology 2019; 92:e19-e29. [PMID: 30504431 DOI: 10.1212/wnl.0000000000006700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe and classify the neurologic trajectories in patients with mild neurologic forms of ataxia telangiectasia (A-T) from the Dutch A-T cohort, combined with patients reported in the literature. METHODS Clinical, genetic, and laboratory data of 14 patients with mild neurologic phenotypes of A-T from the Dutch cohort were analyzed and combined with corresponding data from the literature. A mild neurologic phenotype was defined by a later onset, nonataxia presenting or dominant feature, or slower progression compared to the classic A-T phenotype. Neurologic trajectories were classified based on age at onset, presenting feature, and follow-up data. RESULTS One hundred five patients were included in the study. Neurologic trajectories were categorized into 6 groups: patients with childhood-onset extrapyramidal (EP) features with cerebellar symptoms developing later (group 1; 18 patients), childhood-onset cerebellar symptoms, with EP features developing later (group 2; 35 patients), childhood- to adolescence-onset dystonia, without cerebellar symptoms (group 3; 23 patients), childhood- to adolescence-onset isolated cerebellar symptoms (group 4; 22 patients), childhood- to adult-onset prominent muscle weakness (group 5; 2 patients), and patients with adult-onset EP features, with anterior horn cell disease arising subsequently (group 6; 5 patients). CONCLUSIONS This systematic study of the different motor abnormalities and their course over time in patients with mild phenotypes of A-T, enabled us to recognize 6 essentially different phenotypic patterns. Awareness of these different trajectories of motor abnormalities in milder forms of A-T will contribute to a reduction of diagnostic delay in this severe multisystem disorder.
Collapse
Affiliation(s)
- Nienke J H van Os
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Anke Hensiek
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith van Gaalen
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander M R Taylor
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel van Deuren
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Corry M R Weemaes
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michèl A A P Willemsen
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart P C van de Warrenburg
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Tariq H, Imran R, Naz S. A Novel Homozygous Variant of SETX Causes Ataxia with Oculomotor Apraxia Type 2. J Clin Neurol 2018; 14:498-504. [PMID: 30198223 PMCID: PMC6172491 DOI: 10.3988/jcn.2018.14.4.498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/21/2023] Open
Abstract
Background and Purpose Autosomal recessive cerebellar ataxias constitute a highly heterogeneous group of neurodegenerative disorders. This study was carried out to determine the clinical and genetic causes of ataxia in two families from Pakistan. Methods Detailed clinical investigations were carried out on probands in two consanguineous families. Magnetic resonance imaging was performed. Exome sequencing data were examined for likely pathogenic variants. Candidate variants were checked for cosegregation with the phenotype using Sanger sequencing. Public databases including ExAC, GnomAD, dbSNP, and the 1,000 Genome Project as well as ethnically matched controls were checked to determine the frequencies of the alleles. Conservation of missense variants was ensured by aligning orthologous protein sequences from diverse vertebrate species. Results Reverse phenotyping identified spinocerebellar ataxia, autosomal recessive 1 [OMIM 606002, also referred to as ataxia oculomotor apraxia type 2 (AOA2)] and ataxia telangiectasia (OMIM 208900) in the two families. A novel homozygous missense mutation c.202 C>T (p.Arg68Cys) was identified within senataxin, SETX in the DNA of both patients in one of the families with AOA2. The patients in the second family were homozygous for a known variant in ataxia-telangiectasia mutated (ATM) gene: c.7327 C>T (p.Arg2443Ter). Both variants were absent from 100 ethnically matched control chromosomes and were either absent or present at very low frequencies in the public databases. Conclusions This report extends the allelic heterogeneity of SETX mutations causing AOA2 and also presents an asymptomatic patient with a pathogenic ATM variant.
Collapse
Affiliation(s)
- Huma Tariq
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Rashid Imran
- Punjab Institute of Neurosciences, Lahore General Hospital, Lahore, Pakistan
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
11
|
Kuznetsova MV, Trofimov DY, Shubina ES, Kochetkova TO, Karetnikova NA, Barkov IY, Bakharev VA, Gusev OA, Sukhikh GT. Two Novel Mutations Associated With Ataxia-Telangiectasia Identified Using an Ion AmpliSeq Inherited Disease Panel. Front Neurol 2017; 8:570. [PMID: 29163336 PMCID: PMC5670107 DOI: 10.3389/fneur.2017.00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022] Open
Abstract
Ataxia-telangiectasia (A-T), or Louis-Bar syndrome, is a rare neurodegenerative disorder associated with immunodeficiency. For families with at least one affected child, timely A-T genotyping during any subsequent pregnancy allows the parents to make an informed decision about whether to continue to term when the fetus is affected. Mutations in the ATM gene, which is 150 kb long, give rise to A-T; more than 600 pathogenic variants in ATM have been characterized since 1990 and new mutations continue to be discovered annually. Therefore, limiting genetic screening to previously known SNPs by PCR or hybridization with microarrays may not identify the specific pathogenic genotype in ATM for a given A-T family. However, recent developments in next-generation sequencing technology offer prompt high-throughput full-length sequencing of genomic fragments of interest. This allows the identification of the whole spectrum of mutations in a gene, including any novel ones. We report two A-T families with affected children and current pregnancies. Both families are consanguineous and originate from Caucasian regions of Russia and Azerbaijan. Before our study, no ATM mutations had been identified in the older children of these families. We used ion semiconductor sequencing and an Ion AmpliSeq™ Inherited Disease Panel to perform complete ATM gene sequencing in a single member of each family. Then we compared the experimentally determined genotype with the affected/normal phenotype distribution in the whole family to provide unambiguous evidence of pathogenic mutations responsible for A-T. A single novel SNP was allocated to each family. In the first case, we found a mononucleotide deletion, and in the second, a mononucleotide insertion. Both mutations lead to truncation of the ATM protein product. Identification of the pathogenic mutation in each family was performed in a timely fashion, allowing the fetuses to be tested and diagnosed. The parents chose to continue with both pregnancies as both fetuses had a healthy genotype and thus were not at risk of A-T.
Collapse
Affiliation(s)
- Maria V Kuznetsova
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Dmitry Yu Trofimov
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | | | | | | | - Ilya Yu Barkov
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | | | - Oleg A Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,RIKEN Innovation Center, RIKEN, Yokohama, Japan.,Preventive Medicine and Diagnosis Innovation Program, Center for Life Science Technologies, Yokohama, Japan
| | - Gennady T Sukhikh
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|