1
|
Palacios-Jaraquemada JM, Basanta NA, Nieto-Calvache ÁJ. Advanced repair of recurrent and low-large hysterotomy defects using a myometrial glide flap. J Matern Fetal Neonatal Med 2024; 37:2365344. [PMID: 38945839 DOI: 10.1080/14767058.2024.2365344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND The resolution of factors linked to the recurrence of cesarean section defects can be accomplished through a comprehensive technique that effectively addresses the dehiscent area, eliminates associated intraluminal fibrosis, and establishes a vascularized anterior wall by creating a sliding myometrial flap. OBJECTIVE Propose a comprehensive surgical repair for recurrent and large low hysterotomy defects in women seeking pregnancy or recurrent spotting. STUDY DESIGN A retrospective cohort analysis included 54 patients aged 25-41 with recurrent large cesarean scar defects treated at Otamendi, CEMIC, and Valle de Lili hospitals. Comprehensive surgical repair was performed by suprapubic laparotomy, involving a wide opening of the vesicouterine space, removal of the dehiscent cesarean scar and all intrauterine abnormal fibrous tissues, using a glide myometrial flap, and intramyometrial injection of autologous platelet-rich plasma. Qualitative variables were determined, and descriptive statistics were employed to analyze the data in absolute frequencies or percentages. The data obtained were processed using the InfostatTM statistic program. RESULTS Following the repair, all women experienced normal menstrual cycles and demonstrated an adequate lower uterine segment thickness, with no evidence of healing defects. All patients experienced early ambulation and were discharged within 24 h. Uterine hemostasis was achieved at specific points, minimizing the use of electrocautery. The standard duration of the procedure was 60 min (skin-to-skin), and the average bleeding was 80-100 ml. No perioperative complications were recorded. A control T2-weighted MRI was performed six months after surgery. All patients displayed a clean, unobstructed endometrial cavity with a thick anterior wall (Median: 14.98 mm, IQR 13-17). Twelve patients became pregnant again, all delivered by cesarean between 36.1 and 38.0 weeks, with a mean of 37.17 weeks. The thickness of the uterine segment before cesarean ranged between 3 and 7 mm, with a mean of 3.91 mm. No cases of placenta previa, dehiscence, placenta accreta spectrum (PAS), or postpartum hemorrhage were reported. CONCLUSIONS The comprehensive repair of recurrent low-large defects offers a holistic solution for addressing recurrent hysterotomy defects. Innovative repair concepts effectively address the wound defect and associated fibrosis, ensuring an appropriate myometrial thickness through a gliding myometrial flap.
Collapse
Affiliation(s)
- José M Palacios-Jaraquemada
- OB-GYN Department, Otamendi Hospital, City of Buenos Aires, Argentina
- OB-GYN Department, CEMIC University Hospital, Buenos Aires, Argentina
- Anatomy Department, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Nicolás A Basanta
- OB-GYN Department, Otamendi Hospital, City of Buenos Aires, Argentina
- Anatomy Department, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- Fernández Hospital, City of Buenos Aires, Argentina
| | | |
Collapse
|
2
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Nischwitz SP, Fink J, Schellnegger M, Luze H, Bubalo V, Tetyczka C, Roblegg E, Holecek C, Zacharias M, Kamolz LP, Kotzbeck P. The Role of Local Inflammation and Hypoxia in the Formation of Hypertrophic Scars-A New Model in the Duroc Pig. Int J Mol Sci 2022; 24:ijms24010316. [PMID: 36613761 PMCID: PMC9820621 DOI: 10.3390/ijms24010316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scars continue to be a major burden, especially after burns. Persistent inflammation during wound healing appears to be the precipitating aspect in pathologic scarring. The lack of a standardized model hinders research from fully elucidating pathophysiology and therapy, as most therapeutic approaches have sparse evidence. The goal of this project was to investigate the mechanisms of scar formation after prolonged wound inflammation and to introduce a method for generating standardized hypertrophic scars by inducing prolonged inflammation. Four wound types were created in Duroc pigs: full-thickness wounds, burn wounds, and both of them with induced hyperinflammation by resiquimod. Clinical assessment (Vancouver Scar Scale), tissue oxygenation by hyperspectral imaging, histologic assessment, and gene expression analysis were performed at various time points during the following five months. Native burn wounds as well as resiquimod-induced full-thickness and burn wounds resulted in more hypertrophic scars than full-thickness wounds. The scar scale showed significantly higher scores in burn- and resiquimod-induced wounds compared with full-thickness wounds as of day 77. These three wound types also showed relative hypoxia compared with uninduced full-thickness wounds in hyperspectral imaging and increased expression of HIF1a levels. The highest number of inflammatory cells was detected in resiquimod-induced full-thickness wounds with histologic features of hypertrophic scars in burn and resiquimod-induced wounds. Gene expression analysis revealed increased inflammation with only moderately altered fibrosis markers. We successfully created hypertrophic scars in the Duroc pig by using different wound etiologies. Inflammation caused by burns or resiquimod induction led to scars similar to human hypertrophic scars. This model may allow for the further investigation of the exact mechanisms of pathological scars, the role of hypoxia and inflammation, and the testing of therapeutic approaches.
Collapse
Affiliation(s)
- Sebastian P. Nischwitz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Correspondence:
| | - Julia Fink
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Marlies Schellnegger
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Hanna Luze
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Vladimir Bubalo
- Biomedical Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Carolin Tetyczka
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Christian Holecek
- HEALTH—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Petra Kotzbeck
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
4
|
Childers RC, Lucchesi PA, Gooch KJ. Decreased Substrate Stiffness Promotes a Hypofibrotic Phenotype in Cardiac Fibroblasts. Int J Mol Sci 2021; 22:ijms22126231. [PMID: 34207723 PMCID: PMC8230133 DOI: 10.3390/ijms22126231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
A hypofibrotic phenotype has been observed in cardiac fibroblasts (CFs) isolated from a volume overload heart failure model, aortocaval fistula (ACF). This paradoxical phenotype results in decreased ECM synthesis despite increased TGF-β presence. Since ACF results in decreased tissue stiffness relative to control (sham) hearts, this study investigates whether the effects of substrate stiffness could account for the observed hypofibrotic phenotype in CFs isolated from ACF. CFs isolated from ACF and sham hearts were plated on polyacrylamide gels of a range of stiffness (2 kPa to 50 kPa). Markers related to cytoskeletal and fibrotic proteins were measured. Aspects of the hypofibrotic phenotype observed in ACF CFs were recapitulated by sham CFs on soft substrates. For instance, sham CFs on the softest gels compared to ACF CFs on the stiffest gels results in similar CTGF (0.80 vs. 0.76) and transgelin (0.44 vs. 0.57) mRNA expression. The changes due to stiffness may be explained by the observed decreased nuclear translocation of transcriptional regulators, MRTF-A and YAP. ACF CFs appear to have a mechanical memory of a softer environment, supported by a hypofibrotic phenotype overall compared to sham with less YAP detected in the nucleus, and less CTGF and transgelin on all stiffnesses.
Collapse
Affiliation(s)
- Rachel C. Childers
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Pamela A. Lucchesi
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Correspondence: (P.A.L.); (K.J.G.)
| | - Keith J. Gooch
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA;
- Correspondence: (P.A.L.); (K.J.G.)
| |
Collapse
|
5
|
Strowitzki MJ, Ritter AS, Kimmer G, Schneider M. Hypoxia-adaptive pathways: A pharmacological target in fibrotic disease? Pharmacol Res 2019; 147:104364. [PMID: 31376431 DOI: 10.1016/j.phrs.2019.104364] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Wound healing responses are physiological reactions to injuries and share common characteristics and phases independently of the injured organ or tissue. A major hallmark of wound healing responses is the formation of extra-cellular matrix (ECM), mainly consisting of collagen fibers, to restore the initial organ architecture and function. Overshooting wound healing responses result in unphysiological accumulation of ECM and collagen deposition, a process called fibrosis. Importantly, hypoxia (oxygen demand exceeds supply) plays a significant role during wound healing responses and fibrotic diseases. Under hypoxic conditions, cells activate a gene program, including the stabilization of hypoxia-inducible factors (HIFs), which induces the expression of HIF target genes counteracting hypoxia. In contrast, in normoxia, so-called HIF-prolyl hydroxylases (PHDs) oxygen-dependently hydroxylate HIF-α, which marks it for proteasomal degradation. Importantly, PHDs can be pharmacologically inhibited (PHI) by so-called PHD inhibitors. There is mounting evidence that the HIF-pathway is continuously up-regulated during the development of tissue fibrosis, and that pharmacological (HIFI) or genetic inhibition of HIF can prevent organ fibrosis. By contrast, initial (short-term) activation of the HIF pathway via PHI during wound healing seems to be beneficial in several models of inflammation or acute organ injury. Thus, timing and duration of PHI and HIFI treatment seem to be crucial. In this review, we will highlight the role of hypoxia-adaptive pathways during wound healing responses and development of fibrotic disease. Moreover, we will discuss whether PHI and HIFI might be a promising treatment option in fibrotic disease, and consider putative pitfalls that might result from this approach.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Leinhos L, Peters J, Krull S, Helbig L, Vogler M, Levay M, van Belle GJ, Ridley AJ, Lutz S, Katschinski DM, Zieseniss A. Hypoxia suppresses myofibroblast differentiation by changing RhoA activity. J Cell Sci 2019; 132:jcs223230. [PMID: 30659117 DOI: 10.1242/jcs.223230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Fibroblasts show a high range of phenotypic plasticity, including transdifferentiation into myofibroblasts. Myofibroblasts are responsible for generation of the contraction forces that are important for wound healing and scar formation. Overactive myofibroblasts, by contrast, are involved in abnormal scarring. Cell stretching and extracellular signals such as transforming growth factor β can induce the myofibroblastic program, whereas microenvironmental conditions such as reduced tissue oxygenation have an inhibitory effect. We investigated the effects of hypoxia on myofibroblastic properties and linked this to RhoA activity. Hypoxia reversed the myofibroblastic phenotype of primary fibroblasts. This was accompanied by decreased αSMA (ACTA2) expression, alterations in cell contractility, actin reorganization and RhoA activity. We identified a hypoxia-inducible induction of ARHGAP29, which is critically involved in myocardin-related transcription factor-A (MRTF-A) signaling, the differentiation state of myofibroblasts and modulates RhoA activity. This novel link between hypoxia and MRTF-A signaling is likely to be important for ischemia-induced tissue remodeling and the fibrotic response.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lisa Leinhos
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Johannes Peters
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Sabine Krull
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Lena Helbig
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Melanie Vogler
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Magdolna Levay
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Gijsbert J van Belle
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Anne J Ridley
- Randall Centre of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
7
|
de Sousa FD, Vasconselos PD, da Silva AFB, Mota EF, da Rocha Tomé A, Mendes FRDS, Gomes AMM, Abraham DJ, Shiwen X, Owen JS, Lourenzoni MR, Campos AR, Moreira RDA, Monteiro-Moreira ACDO. Hydrogel and membrane scaffold formulations of Frutalin (breadfruit lectin) within a polysaccharide galactomannan matrix have potential for wound healing. Int J Biol Macromol 2019; 121:429-442. [PMID: 30326222 DOI: 10.1016/j.ijbiomac.2018.10.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/17/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Plant lectins are carbohydrate-binding proteins, which can interact with cell surfaces to initiate anti-inflammatory pathways, as well as immunomodulatory functions. Here, we have extracted, purified and part-characterized the bioactivity of Jacalin, Frutalin, DAL and PNA, before evaluating their potential for wound healing in cultured human skin fibroblasts. Only Frutalin stimulated fibroblast migration in vitro, prompting further studies which established its low cytotoxicity and interaction with TLR4 receptors. Frutalin also increased p-ERK expression and stimulated IL-6 secretion. The in vivo potential of Frutalin for wound healing was then assessed in hybrid combination with the polysaccharide galactomannan, purified from Caesalpinia pulcherrima seeds, using both hydrogel and membrane scaffolds formulations. Physical-chemical characterization of the hybrid showed that lectin-galactomannan interactions increased the pseudoplastic behaviour of solutions, reducing viscosity and increasing Frutalin's concentration. Furthermore, infrared spectroscopy revealed -OH band displacement, likely caused by interaction of Frutalin with galactose residues present on galactomannan chains, while average membrane porosity was 100 μm, sufficient to ensure water vapor permeability. Accelerated angiogenesis and increased fibroblast and keratinocyte proliferation were observed with the optimal hybrid recovering the lesioned area after 11 days. Our findings indicate Frutalin as a biomolecule with potential for tissue repair, regeneration and chronic wound healing.
Collapse
Affiliation(s)
- Felipe Domingos de Sousa
- Northeast Biotechnology Network (RENORBIO), Centre of Experimental Biology (Nubex), University of Fortaleza (UNIFOR), CEP 60811-905 Fortaleza, Ceará, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceará (UFC), Campus do Pici s/n, Bloco 907, CEP 60451-970 Fortaleza, Ceará, Brazil.
| | - Pedrinha Diógenes Vasconselos
- Northeast Biotechnology Network (RENORBIO), Centre of Experimental Biology (Nubex), University of Fortaleza (UNIFOR), CEP 60811-905 Fortaleza, Ceará, Brazil
| | | | - Erika Freitas Mota
- Department of Biology, Federal University of Ceará (UFC), Campus do Pici s/n, Bloco 906, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Adriana da Rocha Tomé
- State University of Ceará, Campus of Itaperi, CEP 60740-000 Fortaleza, Ceará, Brazil
| | - Francisco Rogênio da Silva Mendes
- Northeast Biotechnology Network (RENORBIO), Centre of Experimental Biology (Nubex), University of Fortaleza (UNIFOR), CEP 60811-905 Fortaleza, Ceará, Brazil
| | - Anida Maria Moraes Gomes
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, PO Box 6021, Fortaleza, Brazil
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Xu Shiwen
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London NW3 2PF, UK
| | - James S Owen
- Institute of Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Marcos Roberto Lourenzoni
- Fiocruz, Fundação Oswaldo Cruz - Ceará, Drugs and Biopharmaceuticals Development Group: Evolution, In Silico and In Vitro of Biomolecules. CEP 60175-047 Fortaleza, CE, Brazil
| | - Adriana Rolim Campos
- Northeast Biotechnology Network (RENORBIO), Centre of Experimental Biology (Nubex), University of Fortaleza (UNIFOR), CEP 60811-905 Fortaleza, Ceará, Brazil
| | - Renato de Azevedo Moreira
- Northeast Biotechnology Network (RENORBIO), Centre of Experimental Biology (Nubex), University of Fortaleza (UNIFOR), CEP 60811-905 Fortaleza, Ceará, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceará (UFC), Campus do Pici s/n, Bloco 907, CEP 60451-970 Fortaleza, Ceará, Brazil
| | | |
Collapse
|
8
|
Uetake Y, Sluder G. Activation of the apoptotic pathway during prolonged prometaphase blocks daughter cell proliferation. Mol Biol Cell 2018; 29:2632-2643. [PMID: 30133342 PMCID: PMC6249836 DOI: 10.1091/mbc.e18-01-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When untransformed human cells spend >1.5 h in prometaphase under standard culture conditions, all daughters arrest in G1 despite normal division of their mothers. We investigate what happens during prolonged prometaphase that leads to daughter cell arrest in the absence of DNA damage. We find that progressive loss of anti-apoptotic MCL-1 activity and oxidative stress act in concert to partially activate the apoptosis pathway, resulting in the delayed death of some daughters and senescence for the rest. At physiological oxygen levels, longer prometaphase durations are needed for all daughters to arrest. Partial activation of apoptosis during prolonged prometaphase leads to persistent caspase activity, which activates the kinase cascade mediating the post–mitotic activation of p38. This in turn activates p53, and the consequent expression of p21stops the cell cycle. This mechanism can prevent cells suffering intractable mitotic defects, which modestly prolong mitosis but allow its completion without DNA damage, from producing future cell generations that are susceptible to the evolution of a transformed phenotype.
Collapse
Affiliation(s)
- Yumi Uetake
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Greenfield Sluder
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
9
|
Lee HJ, Jang YJ. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int J Mol Sci 2018; 19:ijms19030711. [PMID: 29498630 PMCID: PMC5877572 DOI: 10.3390/ijms19030711] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic scars and keloids are fibroproliferative disorders that may arise after any deep cutaneous injury caused by trauma, burns, surgery, etc. Hypertrophic scars and keloids are cosmetically problematic, and in combination with functional problems such as contractures and subjective symptoms including pruritus, these significantly affect patients’ quality of life. There have been many studies on hypertrophic scars and keloids; but the mechanisms underlying scar formation have not yet been well established, and prophylactic and treatment strategies remain unsatisfactory. In this review, the authors introduce and summarize classical concepts surrounding wound healing and review recent understandings of the biology, prevention and treatment strategies for hypertrophic scars and keloids.
Collapse
Affiliation(s)
- Ho Jun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Korea.
| | - Yong Ju Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
10
|
Islam MS, Akhtar MM, Segars JH, Castellucci M, Ciarmela P. Molecular targets of dietary phytochemicals for possible prevention and therapy of uterine fibroids: Focus on fibrosis. Crit Rev Food Sci Nutr 2018; 57:3583-3600. [PMID: 28609115 DOI: 10.1080/10408398.2016.1245649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uterine fibroids (myomas or leiomyomas) are common benign tumors of reproductive aged women. Fibroids are clinically apparent in 20-50% of women, and cause abnormal uterine bleeding, abdominal pain and discomfort, pregnancy complications and infertility. Unfortunately, limited numbers of medical treatment are available but no effective preventive strategies exist. Moreover, the benefits of medical treatments are tempered by lack of efficacy or serious adverse side effects. Fibrosis has recently been recognized as a key pathological event in leiomyoma development and growth. It is defined by the excessive deposition of extracellular matrix (ECM). ECM plays important role in making bulk structure of leiomyoma, and ECM-rich rigid structure is believed to be a cause of abnormal bleeding and pelvic pain/pressure. Dietary phytochemicals are known to regulate fibrotic process in different biological systems, and being considered as potential tool to manage human health. At present, very few dietary phytochemicals have been studied in uterine leiomyoma, and they are mostly known for their antiproliferative effects. Therefore, in this review, our aim was to introduce some dietary phytochemicals that could target fibrotic processes in leiomyoma. Thus, this review could serve as useful resource to develop antifibrotic drugs for possible prevention and treatment of uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,b Biotechnology and Microbiology Laboratory, Department of Botany , University of Rajshahi , Rajshahi , Bangladesh
| | - Most Mauluda Akhtar
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,c Department of Clinical and Molecular Sciences , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - James H Segars
- d Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences, Department of Gynecology and Obstetrics , Johns Hopkins School of Medicine , Baltimore , Maryland , USA
| | - Mario Castellucci
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - Pasquapina Ciarmela
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,e Department of Information Engineering , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
11
|
Ugolini GS, Pavesi A, Rasponi M, Fiore GB, Kamm R, Soncini M. Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro. eLife 2017; 6. [PMID: 28315522 PMCID: PMC5407858 DOI: 10.7554/elife.22847] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
Upon cardiac pathological conditions such as ischemia, microenvironmental changes instruct a series of cellular responses that trigger cardiac fibroblasts-mediated tissue adaptation and inflammation. A comprehensive model of how early environmental changes may induce cardiac fibroblasts (CF) pathological responses is far from being elucidated, partly due to the lack of approaches involving complex and simultaneous environmental stimulation. Here, we provide a first analysis of human primary CF behavior by means of a multi-stimulus microdevice for combined application of cyclic mechanical strain and controlled oxygen tension. Our findings elucidate differential human CFs responses to different combinations of the above stimuli. Individual stimuli cause proliferative effects (PHH3+ mitotic cells, YAP translocation, PDGF secretion) or increase collagen presence. Interestingly, only the combination of hypoxia and a simulated loss of contractility (2% strain) is able to additionally induce increased CF release of inflammatory and pro-fibrotic cytokines and matrix metalloproteinases. DOI:http://dx.doi.org/10.7554/eLife.22847.001 When the supply of oxygen to the heart is reduced, its cells start to die within hours, the heart muscle becomes less able to contract, and the area becomes inflamed. This inflammation is accompanied by an influx of immune cells. It also activates other cells known as cardiac fibroblasts that help to break down the framework of molecules that supported the damaged heart tissue and replace it with a scar. This response is part of the normal repair process, but it can lead to the formation of scar tissue in non-damaged areas of the heart. Excess scar tissue makes the heart muscle less able to contract and increases the affected individual’s chance of dying. Understanding how this repair process works is an important step in developing strategies to minimise the damage caused by coronary artery disease or heart attacks. However, existing laboratory models are only partly able to recreate the conditions seen in real heart tissue. To properly understand the response at the level of living cells, a more complete model is needed. Ugolini et al. now report improvements to a small device, referred to as a lab-on-chip, that can subject cells to mechanical strain. The improvements mean the device could also recreate other conditions seen early on in damaged heart tissue, specifically the reduced supply of oxygen. Replicating combinations of mechanical changes and oxygen supplies meant that the impact of these conditions on human cardiac fibroblasts could be directly observed in the laboratory for the first time. Ugolini et al. found that a lack of contraction and low oxygen levels triggered the cardiac fibroblasts to produce inflammatory molecules and molecules associated with the formation of scar tissue. This resembles the response seen in living hearts. The next step is to improve the lab-on-chip device further by adding other cell types, including heart muscle cells and immune cells. A more complete model may aid future research into how our hearts operate in both health and disease. DOI:http://dx.doi.org/10.7554/eLife.22847.002
Collapse
Affiliation(s)
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Biosym IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Roger Kamm
- Biosym IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
12
|
Zhao B, Guan H, Liu JQ, Zheng Z, Zhou Q, Zhang J, Su LL, Hu DH. Hypoxia drives the transition of human dermal fibroblasts to a myofibroblast-like phenotype via the TGF-β1/Smad3 pathway. Int J Mol Med 2016; 39:153-159. [PMID: 27909731 PMCID: PMC5179176 DOI: 10.3892/ijmm.2016.2816] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Keloids, partially considered as benign tumors, are characterized by the overgrowth of fibrosis beyond the boundaries of the wound and are regulated mainly by transforming growth factor (TGF)-β1, which induces the transition of fibroblasts to myofibroblasts. Hypoxia is an important driving force in the development of lung and liver fibrosis by activating hypoxia inducible factor-1α and stimulating epithelial-mesenchymal transition. However, it is unknown whether and hypoxia can influence human dermal scarring. The aim of this study was to investigate whether hypoxia drives the transition of dermal fibroblasts to myofibroblasts and to clarify the potential transduction mechanisms involved. First, we observed that keloids are a relatively hypoxic tissue. Second, we found that hypoxia drives the transition of normal dermal fibroblasts to a myofibroblast-like phenotype [high expression of α-smooth muscle actin (α-SMA) and collagen I and III]. Finally, hypoxia effectively facilitated the nuclear import of the Smad2 and Smad3 complex, while blockade with the Smad3 inhibitor, SIS3, significantly impaired the expression of hypoxia-induced fibrosis-related molecules. Taken together, to the best of our knowledge, this study demonstrates for the first time that hypoxia facilitates the transition of dermal fibroblasts to myofibroblasts through the activation of the TGF-β1/Smad3 signaling pathway and our findings may provide a potential target for the treatment of keloids.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jia-Qi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin-Lin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Da-Hai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
13
|
Ghatak S, Li J, Chan YC, Gnyawali SC, Steen E, Yung BC, Khanna S, Roy S, Lee RJ, Sen CK. AntihypoxamiR functionalized gramicidin lipid nanoparticles rescue against ischemic memory improving cutaneous wound healing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1827-1831. [PMID: 27033464 DOI: 10.1016/j.nano.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/22/2016] [Accepted: 03/09/2016] [Indexed: 12/22/2022]
Abstract
Peripheral vasculopathies cause severe wound hypoxia inducing the hypoxamiR miR-210. High level of miR-210, persisting in wound-edge tissue as ischemic memory, suppresses oxidative metabolism and inhibits cell proliferation necessary for healing. In wound-edge tissue of chronic wound patients, elevated miR-210 was tightly associated with inhibition of epidermal cell proliferation as evident by lowered Ki67 immunoreactivity. To inhibit miR-210 in murine ischemic wound-edge tissue, we report the formulation of antihypoxamiR functionalized gramicidin lipid nanoparticles (AFGLN). A single intradermal delivery of AFGLN encapsulating LNA-conjugated anti-hypoximiR-210 (AFGLNmiR-210) lowered miR-210 level in the ischemic wound-edge tissue. In repTOP™mitoIRE mice, AFGLNmiR-210 rescued keratinocyte proliferation as visualized by in vivo imaging system (IVIS). 31P NMR studies showed elevated ATP content at the ischemic wound-edge tissue following AFGLNmiR-210 treatment indicating recovering bioenergetics necessary for healing. Consistently, AFGLNmiR-210 improved ischemic wound closure. The nanoparticle based approach reported herein is effective for miR-directed wound therapeutics warranting further translational development.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jilong Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yuk C Chan
- Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Surya C Gnyawali
- Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Erin Steen
- Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bryant C Yung
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Savita Khanna
- Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sashwati Roy
- Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Chandan K Sen
- Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
14
|
Chen L, Peng Z, Meng Q, Mongan M, Wang J, Sartor M, Chen J, Niu L, Medvedovic M, Kao W, Xia Y. Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop. Protein Cell 2016; 7:338-50. [PMID: 26946493 PMCID: PMC4853320 DOI: 10.1007/s13238-015-0241-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
Using forward and reverse genetics and global gene expression analyses, we explored the crosstalk between the IκB kinase β (IKKβ) and the transforming growth factor β (TGFβ) signaling pathways. We show that in vitro ablation of Ikkβ in fibroblasts led to progressive ROS accumulation and TGFβ activation, and ultimately accelerated cell migration, fibroblast-myofibroblast transformation and senescence. Mechanistically, the basal IKKβ activity was required for anti-oxidant gene expression and redox homeostasis. Lacking this activity, IKKβ-null cells showed ROS accumulation and activation of stress-sensitive transcription factor AP-1/c-Jun. AP-1/c-Jun activation led to up-regulation of the Tgfβ2 promoter, which in turn further potentiated intracellular ROS through the induction of NADPH oxidase (NOX). These data suggest that by blocking the autocrine amplification of a ROS-TGFβ loop IKKβ plays a crucial role in the prevention of fibroblast-myofibroblast transformation and senescence.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Zhimin Peng
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Qinghang Meng
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Maureen Mongan
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Jingcai Wang
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Maureen Sartor
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Jing Chen
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Liang Niu
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Winston Kao
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Ying Xia
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA. .,Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA.
| |
Collapse
|
15
|
Dmitrieva RI, Revittser AV, Klukina MA, Sviryaev YV, Korostovtseva LS, Kostareva AA, Zaritskey AY, Shlyakhto EV. Functional properties of bone marrow derived multipotent mesenchymal stromal cells are altered in heart failure patients, and could be corrected by adjustment of expansion strategies. Aging (Albany NY) 2015; 7:14-25. [PMID: 25606985 PMCID: PMC4350322 DOI: 10.18632/aging.100716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bone marrow multipotent mesenchymal stromal cells (BM-MMSC) considered as a prospective substrate for cell therapy applications, however adult stem cells could be affected by donor-specific factors: age, gender, medical history. Our aim was to investigate how HF affects the functional properties of BM-MMSC. MATERIALS AND METHODS BM-MMSC from 10 healthy donors (HD), and 16 donors with chronic HF were evaluated for proliferative activity, ability to differentiate, replicative senescence, expression of genes that affect regeneration and fibrosis. The effect of culturing conditions on efficiency of BM-MMSC expansion was determined. RESULTS HF-derived BM-MMSC demonstrated early decrease of proliferative activity and upregulation of genes that control both, regeneration and fibrosis: Tgf-β pathway, synthesis of ECM, remodeling enzymes, adhesion molecules. We assume that these effects were related to increase of frequency of myofibroblast-like CD146+/SMAα+ CFU-F in HF samples; (ii) low seeding density and hypoxia resulted in predominant purification and expansion of CD146+/SMAα- CFU-Fs. (iii) the activity of NPs system was downregulated in HF BM-MMSC; CONCLUSIONS downregulation of NP signaling in combination with upregulation of Tgf-β pathway in BM-MMSC would result in pro-fibrotic phenotype and make these cells non-effective for therapeutic applications; the corrections in culturing strategy resulted in 2(3)-2(7) increase of expansion efficiency.
Collapse
Affiliation(s)
| | - Alla V Revittser
- Federal Almazov Medical Research Centre, St. Petersburg, Russia.,St. Petersburg State Polytechnical University, Branch of Medical Physics and Bioengineering, Russia
| | - Maria A Klukina
- Federal Almazov Medical Research Centre, St. Petersburg, Russia
| | - Yuri V Sviryaev
- Federal Almazov Medical Research Centre, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
16
|
Sammarco MC, Simkin J, Fassler D, Cammack AJ, Wilson A, Van Meter K, Muneoka K. Endogenous bone regeneration is dependent upon a dynamic oxygen event. J Bone Miner Res 2014; 29:2336-45. [PMID: 24753124 PMCID: PMC5828154 DOI: 10.1002/jbmr.2261] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/17/2014] [Accepted: 03/31/2014] [Indexed: 11/08/2022]
Abstract
Amputation of the digit tip within the terminal phalangeal bone of rodents, monkeys, and humans results in near-perfect regeneration of bone and surrounding tissues; however, amputations at a more proximal level fail to produce the same regenerative result. Digit regeneration is a coordinated, multifaceted process that incorporates signaling from bioactive growth factors both in the tissue matrix and from several different cell populations. To elucidate the mechanisms involved in bone regeneration we developed a novel multi-tissue slice-culture model that regenerates bone ex vivo via direct ossification. Our study provides an integrated multi-tissue system for bone and digit regeneration and allows us to circumvent experimental limitations that exist in vivo. We used this slice-culture model to evaluate the influence of oxygen on regenerating bone. Micro-computed tomography (µCT) and histological analysis revealed that the regenerative response of the digit is facilitated in part by a dynamic oxygen event, in which mutually exclusive high and low oxygen microenvironments exist and vacillate in a coordinated fashion during regeneration. Areas of increased oxygen are initially seen in the marrow and then surrounding areas of vasculature in the regenerating digit. Major hypoxic events are seen at 7 days postamputation (DPA 7) in the marrow and again at DPA 12 in the blastema, and manipulation of oxygen tensions during these hypoxic phases can shift the dynamics of digit regeneration. Oxygen increased to 21% oxygen tension can either accelerate or attenuate bone mineralization in a stage-specific manner in the regenerative timeline. These studies not only reveal a circumscribed frame of oxygen influence during bone regeneration, but also suggest that oxygen may be one of the primary signaling influences during regeneration.
Collapse
Affiliation(s)
- Mimi C Sammarco
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, McArdle A, Paik KJ, Duscher D, Gurtner GC, Lorenz HP, Longaker MT. The Role of Hypoxia-Inducible Factor in Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:390-399. [PMID: 24804159 DOI: 10.1089/wound.2013.0520] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/30/2014] [Indexed: 12/14/2022] Open
Abstract
Significance: Poor wound healing remains a significant health issue for a large number of patients in the United States. The physiologic response to local wound hypoxia plays a critical role in determining the success of the normal healing process. Hypoxia-inducible factor-1 (HIF-1), as the master regulator of oxygen homeostasis, is an important determinant of healing outcomes. HIF-1 contributes to all stages of wound healing through its role in cell migration, cell survival under hypoxic conditions, cell division, growth factor release, and matrix synthesis throughout the healing process. Recent Advances: Positive regulators of HIF-1, such as prolyl-4-hydroxylase inhibitors, have been shown to be beneficial in enhancing diabetic ischemic wound closure and are currently undergoing clinical trials for treatment of several human-ischemia-based conditions. Critical Issues: HIF-1 deficiency and subsequent failure to respond to hypoxic stimuli leads to chronic hypoxia, which has been shown to contribute to the formation of nonhealing ulcers. In contrast, overexpression of HIF-1 has been implicated in fibrotic disease through its role in increasing myofibroblast differentiation leading to excessive matrix production and deposition. Both positive and negative regulators of HIF-1 therefore provide important therapeutic targets that can be used to manipulate HIF-1 expression where an excess or deficiency in HIF-1 is known to correlate with pathogenesis. Future Directions: Targeting HIF-1 during wound healing has many important clinical implications for tissue repair. Counteracting the detrimental effects of excessive or deficient HIF-1 signaling by modulating HIF-1 expression may improve future management of poorly healing wounds.
Collapse
Affiliation(s)
- Wan Xing Hong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Department of Radiology, Stanford University School of Medicine, Stanford, California
- University of Central Florida College of Medicine, Orlando, Florida
| | - Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Department of Surgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - Mikaela Esquivel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Grace Y. Liang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Robert C. Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Adrian McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Kevin J. Paik
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - H. Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Van De Water L, Varney S, Tomasek JJ. Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention. Adv Wound Care (New Rochelle) 2013; 2:122-141. [PMID: 24527336 DOI: 10.1089/wound.2012.0393] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 12/31/2022] Open
Abstract
SIGNIFICANCE Myofibroblasts are responsible for wound closure that occurs in healed acute wounds. However, their actions can result in disfiguring scar contractures, compromised organ function, and a tumor promoting stroma. Understanding the mechanisms regulating their contractile machinery, gene expression, and lifespan is essential to develop new therapies to control their function. RECENT ADVANCES Mechanical stress and transforming growth factor beta-1 (TGF-β1) regulate myofibroblast differentiation from mesenchymal progenitors. As these precursor cells differentiate, they assemble a contractile apparatus to generate the force used to contract wounds. The mechanisms by which mechanical stress promote expression of contractile genes through the TGF-β1 and serum response factor pathways and offer therapeutic targets to limit myofibroblast function are being elucidated. CRITICAL ISSUES Emerging evidence suggests that the integration of mechanical cues with intracellular signaling pathways is critical to myofibroblast function via its effects on gene expression, cellular contraction, and paracrine signaling with neighboring cells. In addition, while apoptosis is clearly one pathway that can limit myofibroblast lifespan, recent data suggest that pathogenic myofibroblasts can become senescent and adopt a more beneficial phenotype, or may revert to a quiescent state, thereby limiting their function. FUTURE DIRECTIONS Given the important role that myofibroblasts play in pathologies as disparate as cutaneous scarring, organ fibrosis, and tumor progression, knowledge gained in the areas of intracellular signaling networks, mechanical signal transduction, extracellular matrix biology, and cell fate will support efforts to develop new therapies with a wide impact.
Collapse
Affiliation(s)
| | - Scott Varney
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - James J. Tomasek
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
19
|
Daigle P, Despatis MA, Grenier G. How mechanical deformations contribute to the effectiveness of negative-pressure wound therapy. Wound Repair Regen 2013; 21:498-502. [PMID: 23627711 DOI: 10.1111/wrr.12052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/31/2013] [Indexed: 12/27/2022]
Abstract
Negative-pressure wound therapy (NPWT) has significantly improved healing rates and patient comfort since its inception. However, a considerable number of questions have been raised regarding its mechanisms of action. Many health care workers and researchers have attempted to clarify the role of NPWT in wound healing. The purpose of this perspective article is to assemble some of the concepts that have been put forward in order to propose an integrated view of the mechanisms involved in NPWT. Particular emphasis will be placed on mechanically induced tissue deformations and their involvement in some of the key processes of wound healing, including nutrient and oxygen transport, blood vessel formation, and cellular proliferation and differentiation, mainly of myofibroblasts.
Collapse
Affiliation(s)
- Patrick Daigle
- Étienne-LeBel Clinical Research Centre, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
20
|
Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/etp.12008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Chen L, Gajendrareddy PK, DiPietro LA. Differential expression of HIF-1α in skin and mucosal wounds. J Dent Res 2012; 91:871-6. [PMID: 22821237 DOI: 10.1177/0022034512454435] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite accelerated epithelial closure, oral mucosal wounds exhibit lower levels of VEGF and a more refined angiogenic response than do skin wounds. The specific differences in angiogenesis suggest that skin and oral mucosal wounds may experience dissimilar levels of hypoxia and HIF-1α. Using a model of comparable wounds on murine dorsal skin and tongue, we determined levels of hypoxia and HIF-1α. Skin wounds were found to be significantly more hypoxic and had higher levels of HIF-1α than mucosal wounds. Furthermore, under stressed conditions, skin wounds, but not mucosal wounds, exhibited a further elevation of HIF-1α beyond that of non-stressed levels. To determine if manipulation of oxygen levels might equalize the repair response of each tissue, we exposed mice to hyperbaric oxygen treatment (HBOT) following wounding. HBOT did not significantly change HIF-1α or VEGF expression in either skin or mucosal wounds, nor did it alter wound bed vascularity. These studies suggest that skin wounds have higher levels of hypoxia than do mucosal wounds, along with a differential expression of HIF-1α. Interestingly, modulation of oxygen by HBOT does not ameliorate this difference. These results suggest that differential responses to hypoxia may underlie the distinctive wound-healing phenotypes seen in skin and oral mucosa.
Collapse
Affiliation(s)
- L Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina St., MC 859, Chicago, IL 60612, USA
| | | | | |
Collapse
|