1
|
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
2
|
Association of Paraoxonase1 enzyme and its genetic single nucleotide polymorphisms with cardio-metabolic and neurodegenerative diseases. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Bacha K, Tariku Y, Gebreyesus F, Zerihun S, Mohammed A, Weiland-Bräuer N, Schmitz RA, Mulat M. Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: Implication for development of potent antimicrobial agents. BMC Microbiol 2016; 16:139. [PMID: 27400878 PMCID: PMC4939588 DOI: 10.1186/s12866-016-0765-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traditional medicinal plants have been used as an alternative medicine in many parts of the world, including Ethiopia. There are many documented scientific reports on antimicrobial activities of the same. To our knowledge, however, there is no report on the anti-Quorum Sensing (Quorum Quenching, QQ) potential of traditional Ethiopian medicinal plants. As many of the opportunistic pathogenic bacteria depend on Quorum Sensing (QS) systems to coordinate their virulence expression, interference with QS could be a novel approach to control bacterial infections. Thus, the aim of this study was to evaluate selected medicinal plants from Ethiopia for their antimicrobial activities against bacterial and fungal pathogens; and to assess the interference of these plant extracts with QS of bacteria. METHODS Antimicrobial activities of plant extracts (oil, resins and crude extracts) were evaluated following standard agar diffusion technique. The minimum inhibitory concentrations (MIC) of potent extracts were determined using 96 well micro-titer plates and optical densities were measured using an ELISA Microplate reader. Interference with Quorum Sensing activities of extracts was determined using the recently established E. coli based reporter strain AI1-QQ.1 and signaling molecule N-(ß-ketocaproyl)-L-homoserine lactone (3-oxo-C6-HSL). RESULTS Petroleum ether extract of seed of Nigella sativa exhibited the highest activity against both the laboratory isolated Bacillus cereus [inhibition zone (IZ), 44 ± 0.31 mm] and B. cereus ATCC 10987 (IZ, 40 ± 2.33 mm). Similarly, oil extract from mature ripe fruit husk of Aframomum corrorima and mature unripe fruit of A. corrorima revealed promising activities against Candida albicans ATCC 90028 (IZ, 35 ± 1.52 mm) and Staphylococcus aureus DSM 346 (IZ, 25 ± 1.32 mm), respectively. Antimicrobial activities of oil extract from husk of A. corrorima and petroleum ether extract of seed of N. sativa were significantly higher than that of the control antibiotic [Gentamycin sulfate, (IZ, 25-30 mm)]. The lowest MIC value (12.5 mg/mL) was recorded for oil from husk of A. corrorima against Pseudomonas aeruginosa. Of the total eighteen extracts evaluated, two of the extracts [Methanol extract of root of Albiza schimperiana (ASRM) and petroleum ether extract of seed of Justica schimperiana (JSSP)] interfered with cell-cell communication most likely by interacting with the signaling molecules. CONCLUSION Traditional medicinal plants from Ethiopia are potential source of alternative medicine for the local community and scientific research in search for alternative drugs to halt challenges associated with the emerging antimicrobial resistance. Furthermore, the Quorum Quenching activities observed in two of the plant extracts calls for more comprehensive evaluation of medicinal plants for the control of many bacterial processes and phenotypic behaviors such as pathogenicity, swarming, and biofilm formation. Being the first assessment of its kind on the potential application of Ethiopian traditional medicinal plants for interference in microbial cell-cell communication (anti-Quorum Sensing activities), the detailed chemistry of the active compounds and possible mechanism(s) of actions of the bio-molecules responsible for the observed interference were not addressed in the current study. Thus, further evaluation for the nature of those active compounds (bio-molecules) and detailed mechanism(s) of their interaction with microbial processes are recommended.
Collapse
Affiliation(s)
- Ketema Bacha
- Depatment of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia.
| | - Yinebeb Tariku
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Fisseha Gebreyesus
- Department of Horticulture, College of Agriculture, Adigrat University, Adigrat, Ethiopia
| | - Shibru Zerihun
- Department of Horticulture and Plant Science, College of Agriculture and Natural Resources Management, Gambella University, Gambella, Ethiopia
| | - Ali Mohammed
- Departemnt of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Nancy Weiland-Bräuer
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ruth A Schmitz
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Mulugeta Mulat
- Depatment of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia.,Derpartment of Biology, College of Natural and Computational Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
4
|
Novel reporter for identification of interference with acyl homoserine lactone and autoinducer-2 quorum sensing. Appl Environ Microbiol 2016; 81:1477-89. [PMID: 25527543 DOI: 10.1128/aem.03290-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of these Escherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, these E. coli strains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained the E. coli ccdB lethal gene under the control of the E. coli lsrA promoter. The second reporter strain (AI1-QQ.1) contained the Vibrio fischeri luxI promoter fused to the ccdB gene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum- quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacterium sp., Pseudoalteromonas sp., and Vibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes.
Collapse
|
5
|
Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 2015; 40:86-116. [PMID: 26432822 DOI: 10.1093/femsre/fuv038] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Quorum sensing (QS) refers to the capacity of bacteria to monitor their population density and regulate gene expression accordingly: the QS-regulated processes deal with multicellular behaviors (e.g. growth and development of biofilm), horizontal gene transfer and host-microbe (symbiosis and pathogenesis) and microbe-microbe interactions. QS signaling requires the synthesis, exchange and perception of bacterial compounds, called autoinducers or QS signals (e.g. N-acylhomoserine lactones). The disruption of QS signaling, also termed quorum quenching (QQ), encompasses very diverse phenomena and mechanisms which are presented and discussed in this review. First, we surveyed the QS-signal diversity and QS-associated responses for a better understanding of the targets of the QQ phenomena that organisms have naturally evolved and are currently actively investigated in applied perspectives. Next the mechanisms, targets and molecular actors associated with QS interference are presented, with a special emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Selected QQ paradigms are detailed to exemplify the mechanisms and biological roles of QS inhibition in microbe-microbe and host-microbe interactions. Finally, some QQ strategies are presented as promising tools in different fields such as medicine, aquaculture, crop production and anti-biofouling area.
Collapse
Affiliation(s)
- Catherine Grandclément
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Mélanie Tannières
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Solange Moréra
- Institut for Integrative Biology of the Cell, Department of Structural Biology, CNRS CEA Paris-Sud University, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Yves Dessaux
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Denis Faure
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
6
|
Mackness M, Mackness B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 2015; 567:12-21. [PMID: 25965560 DOI: 10.1016/j.gene.2015.04.088] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022]
Abstract
Human PON1 is a HDL-associated lipolactonase capable of preventing LDL and cell membrane oxidation and is therefore considered to be atheroprotective. PON1 contributes to the antioxidative function of HDL and reductions in HDL-PON1 activity, prevalent in a wide variety of diseases with an inflammatory component, are believed to lead to dysfunctional HDL which can promote inflammation and atherosclerosis. However, PON1 is multifunctional and may contribute to other HDL functions such as in innate immunity, preventing infection by quorum sensing gram negative bacteria by destroying acyl lactone mediators of quorum sensing, and putative new roles in cancer development and the promotion of healthy ageing. In this review we explore the physiological roles of PON1 in disease development, as well as PON1 gene and protein structure, promiscuous activities and the roles of SNPs and ethnicity in determining PON1 activity.
Collapse
Affiliation(s)
- Mike Mackness
- Avenida Príncipe D'España, Miami Platja, 43892 Tarragona, Spain.
| | - Bharti Mackness
- Avenida Príncipe D'España, Miami Platja, 43892 Tarragona, Spain
| |
Collapse
|
7
|
Fetzner S. Quorum quenching enzymes. J Biotechnol 2014; 201:2-14. [PMID: 25220028 DOI: 10.1016/j.jbiotec.2014.09.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 01/12/2023]
Abstract
Bacteria use cell-to-cell communication systems based on chemical signal molecules to coordinate their behavior within the population. These quorum sensing systems are potential targets for antivirulence therapies, because many bacterial pathogens control the expression of virulence factors via quorum sensing networks. Since biofilm maturation is also usually influenced by quorum sensing, quenching these systems may contribute to combat biofouling. One possibility to interfere with quorum sensing is signal inactivation by enzymatic degradation or modification. Such quorum quenching enzymes are wide-spread in the bacterial world and have also been found in eukaryotes. Lactonases and acylases that hydrolyze N-acyl homoserine lactone (AHL) signaling molecules have been investigated most intensively, however, different oxidoreductases active toward AHLs or 2-alkyl-4(1H)-quinolone signals as well as other signal-converting enzymes have been described. Several approaches have been assessed which aim at alleviating virulence, or biofilm formation, by reducing the signal concentration in the bacterial environment. These involve the application or stimulation of signal-degrading bacteria as biocontrol agents in the protection of crop plants against soft-rot disease, the use of signal-degrading bacteria as probiotics in aquaculture, and the immobilization or entrapment of quorum quenching enzymes or bacteria to control biofouling in membrane bioreactors. While most approaches to use quorum quenching as antivirulence strategy are still in the research phase, the growing number of organisms and enzymes known to interfere with quorum sensing opens up new perspectives for the development of innovative antibacterial strategies.
Collapse
Affiliation(s)
- Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology, University of Muenster, Corrensstrasse 3, D-48149 Muenster, Germany.
| |
Collapse
|
8
|
Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014; 237:208-19. [PMID: 25244505 DOI: 10.1016/j.atherosclerosis.2014.09.001] [Citation(s) in RCA: 469] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/30/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
In the vascular wall, reactive oxygen species (ROS) are produced by several enzyme systems including NADPH oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase (eNOS) and the mitochondrial electron transport chain. On the other hand, the vasculature is protected by antioxidant enzyme systems, including superoxide dismutases, catalase, glutathione peroxidases and paraoxonases, which detoxify ROS. Cardiovascular risk factors such as hypercholesterolemia, hypertension, and diabetes mellitus enhance ROS generation, resulting in oxidative stress. This leads to oxidative modification of lipoproteins and phospholipids, mechanisms that contribute to atherogenesis. In addition, oxidation of tetrahydrobiopterin may cause eNOS uncoupling and thus potentiation of oxidative stress and reduction of eNOS-derived NO, which is a protective principle in the vasculature. This review summarizes the latest advances in the role of ROS-producing enzymes, antioxidative enzymes as well as NO synthases in the initiation and development of atherosclerosis.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Sven Horke
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
9
|
HSL Attenuates the Follicular Oxidative Stress and Enhances the Hair Growth in ob/ob Mice. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2013; 1:e60. [PMID: 25289255 PMCID: PMC4174062 DOI: 10.1097/gox.0000000000000000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/30/2013] [Indexed: 12/04/2022]
Abstract
Summary: We demonstrated enhanced hair regeneration following topical administration of N-(3-oxododecanoyl)-l-homoserine lactone (HSL) in ob/ob mice. The ob/ob mice showed delayed hair regeneration (more than 6 wk) after depilation, which rapidly induced transition to anagen in the hair cycle in wild-type mice. Vehicle and HSL solutions were applied to the depilated dorsal skin of ob/ob mice. The depilated skin of the HSL-treated mice was fully covered with hair, whereas no macroscopic alteration was observed in vehicle-treated group by the fourth week after depilation. Oxidative stress was drastically decreased and the expression of the antioxidative enzymes PON1 and PON3 was increased in the HSL-treated skin with highly proliferative anagen follicles. These results suggest that HSL is a candidate therapeutic agent for alopecia in metabolic syndrome.
Collapse
|
10
|
Devarajan A, Bourquard N, Grijalva VR, Gao F, Ganapathy E, Verma J, Reddy ST. Role of PON2 in innate immune response in an acute infection model. Mol Genet Metab 2013; 110:362-70. [PMID: 23911207 PMCID: PMC3800229 DOI: 10.1016/j.ymgme.2013.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/07/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022]
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone (3OC(12)-HSL) is a quorum-sensing molecule produced by gram-negative microbial pathogens such as Pseudomonas aeruginosa (PAO1). 3OC(12)-HSL is involved in the regulation of bacterial virulence factors and also alters the function of the host immune cells. Others and we have previously shown that paraoxonase 2 (PON2), a member of the paraoxonase gene family expressed in immune cells, hydrolyzes 3OC(12)-HSL. In this study, we examined i) whether macrophage PON2 participates in 3OC(12)-HSL hydrolysis, ii) the effect of PON2 deficiency in acute PAO1 infection in mice and iii) the effect of 3OC(12)-HSL on PON2 deficient (PON2-def) macrophages. When compared to wild type macrophages, both intact cells and membrane-enriched protein lysates obtained from PON2-def macrophages show a marked impairment in their ability to hydrolyze 3OC(12)-HSL. PON2 expression (message and protein) is not altered in response to 3OC(12)-HSL in macrophages. 3OC(12)-HSL treated PON2-def macrophages showed i) an increase in ER stress and oxidative stress, ii) defective phosphatidylinositol 3-kinase (PI3 kinase)/AKT activation, and iii) reduced phagocytosis function. Moreover, the nitration to phosphorylation ratio of Tyr458 in p85 protein, the regulatory subunit of PI3-kinase that has been correlated with the phagocytosis function of macrophages, was increased in PON2-def macrophages. Antioxidant treatment reversed the effects of PON2 deficiency in macrophage phagocytosis function. Furthermore, following administration of 1.6 × 10(7) CFU of PAO1, bacterial clearance was significantly reduced in the lungs (5.7 fold), liver (2.5 fold), and spleen (14.8 fold) of PON2-def mice when compared to wild type mice. Our results suggest that PON2 plays an important role in innate immune defense against PAO1 infection.
Collapse
Affiliation(s)
- Asokan Devarajan
- Division of Cardiology, Department of Medicine, University of California Los Angeles, CA 90095, USA
| | - Noam Bourquard
- Division of Cardiology, Department of Medicine, University of California Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, CA 90095, USA
| | - Victor R Grijalva
- Division of Cardiology, Department of Medicine, University of California Los Angeles, CA 90095, USA
| | - Feng Gao
- Department of Obstetrics and Gynecology, University of California Los Angeles, CA 90095, USA
| | - Ekambaram Ganapathy
- Department of Obstetrics and Gynecology, University of California Los Angeles, CA 90095, USA
| | - Jitendra Verma
- Division of Cardiology, Department of Medicine, University of California Los Angeles, CA 90095, USA
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, University of California Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Harder J, Schröder JM, Gläser R. The skin surface as antimicrobial barrier: present concepts and future outlooks. Exp Dermatol 2012; 22:1-5. [DOI: 10.1111/exd.12046] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Jürgen Harder
- Department of Dermatology; University Hospital of Schleswig-Holstein; Kiel; Germany
| | | | - Regine Gläser
- Department of Dermatology; University Hospital of Schleswig-Holstein; Kiel; Germany
| |
Collapse
|