1
|
Fuchs C, Stalnaker KJ, Dalgard CL, Sukumar G, Hupalo D, Dreyfuss JM, Pan H, Wang Y, Pham L, Wu X, Jozic I, Anderson RR, Cho S, Meyerle JH, Tam J. Plantar Skin Exhibits Altered Physiology, Constitutive Activation of Wound-Associated Phenotypes, and Inherently Delayed Healing. J Invest Dermatol 2024; 144:1633-1648.e14. [PMID: 38237729 DOI: 10.1016/j.jid.2023.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 06/24/2024]
Abstract
Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.
Collapse
Affiliation(s)
- Christiane Fuchs
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine J Stalnaker
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Hupalo
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Linh Pham
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xunwei Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillp Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunghun Cho
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jon H Meyerle
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Moore JL, Bhaskar D, Gao F, Matte-Martone C, Du S, Lathrop E, Ganesan S, Shao L, Norris R, Campamà Sanz N, Annusver K, Kasper M, Cox A, Hendry C, Rieck B, Krishnaswamy S, Greco V. Cell cycle controls long-range calcium signaling in the regenerating epidermis. J Cell Biol 2023; 222:e202302095. [PMID: 37102999 PMCID: PMC10140546 DOI: 10.1083/jcb.202302095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze patterns of Ca2+ signaling. We show that basal cells display dynamic intercellular Ca2+ signaling among local neighborhoods. We find that these Ca2+ signals are coordinated across thousands of cells and that this coordination is an emergent property of the stem cell layer. We demonstrate that G2 cells are required to initiate normal levels of Ca2+ signaling, while connexin43 connects basal cells to orchestrate tissue-wide coordination of Ca2+ signaling. Lastly, we find that Ca2+ signaling drives cell cycle progression, revealing a communication feedback loop. This work provides resolution into how stem cells at different cell cycle stages coordinate tissue-wide signaling during epidermal regeneration.
Collapse
Affiliation(s)
- Jessica L. Moore
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Dhananjay Bhaskar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Shuangshuang Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachael Norris
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Andy Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Bastian Rieck
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
- Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Choi Y, Takasugi M, Takemura K, Yoshida Y, Kamiya T, Adachi J, Tsuruta D, Ohtani N. Characterization of Transcriptomic and Proteomic Changes in the Skin after Chronic Fluocinolone Acetonide Treatment. Biomolecules 2022; 12:biom12121822. [PMID: 36551249 PMCID: PMC9775701 DOI: 10.3390/biom12121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
While topical corticosteroid (TCS) treatment is widely used for many skin diseases, it can trigger adverse side effects, and some of such effects can last for a long time after stopping the treatment. However, molecular changes induced by TCS treatment remain largely unexplored, although transient changes in histology and some major ECM components have been documented. Here, we investigated transcriptomic and proteomic changes induced by fluocinolone acetonide (FA) treatment in the mouse skin by conducting RNA-Seq and quantitative proteomics. Chronic FA treatment affected the expression of 4229 genes, where downregulated genes were involved in cell-cycle progression and ECM organization, and upregulated genes were involved in lipid metabolism. The effects of FA on transcriptome and histology of the skin largely returned to normal by two weeks after the treatment. Only a fraction of transcriptomic changes were reflected by proteomic changes, and the expression of 46 proteins was affected one day after chronic FA treatment. A comparable number of proteins were differentially expressed between control and FA-treated skin samples even at 15 and 30 days after stopping chronic FA treatment. Interestingly, proteins affected during and after chronic FA treatment were largely different. Our results provide fundamental information of molecular changes induced by FA treatment in the skin.
Collapse
Affiliation(s)
- Yongsu Choi
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Masaki Takasugi
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Correspondence: (M.T.); (N.O.)
| | - Kazuaki Takemura
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Tomonori Kamiya
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki City 567-0085, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Correspondence: (M.T.); (N.O.)
| |
Collapse
|
4
|
Manning D, Dart C, Evans RL. Store-operated calcium channels in skin. Front Physiol 2022; 13:1033528. [PMID: 36277201 PMCID: PMC9581152 DOI: 10.3389/fphys.2022.1033528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The skin is a complex organ that acts as a protective layer against the external environment. It protects the internal tissues from harmful agents, dehydration, ultraviolet radiation and physical injury as well as conferring thermoregulatory control, sensation, immunological surveillance and various biochemical functions. The diverse cell types that make up the skin include 1) keratinocytes, which form the bulk of the protective outer layer; 2) melanocytes, which protect the body from ultraviolet radiation by secreting the pigment melanin; and 3) cells that form the secretory appendages: eccrine and apocrine sweat glands, and the sebaceous gland. Emerging evidence suggests that store-operated Ca2+ entry (SOCE), whereby depletion of intracellular Ca2+ stores triggers Ca2+ influx across the plasma membrane, is central to the normal physiology of these cells and thus skin function. Numerous skin pathologies including dermatitis, anhidrotic ectodermal dysplasia, hyperhidrosis, hair loss and cancer are now linked to dysfunction in SOCE proteins. Principal amongst these are the stromal interaction molecules (STIMs) that sense Ca2+ depletion and Orai channels that mediate Ca2+ influx. In this review, the roles of STIM, Orai and other store-operated channels are discussed in the context of keratinocyte differentiation, melanogenesis, and eccrine sweat secretion. We explore not only STIM1-Orai1 as drivers of SOCE, but also independent actions of STIM, and emerging signal cascades stemming from their activities. Roles are discussed for the elusive transient receptor potential canonical channel (TRPC) complex in keratinocytes, Orai channels in Ca2+-cyclic AMP signal crosstalk in melanocytes, and Orai isoforms in eccrine sweat gland secretion.
Collapse
Affiliation(s)
- Declan Manning
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Caroline Dart
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard L Evans
- Unilever Research and Development, Port Sunlight Laboratory, Bebington, Wirral, United Kingdom
- *Correspondence: Richard L Evans,
| |
Collapse
|
5
|
Kaya G, Kaya A, Sorg O, Saurat JH. Dermatoporosis: a further step to recognition. J Eur Acad Dermatol Venereol 2019; 32:189-191. [PMID: 29465833 DOI: 10.1111/jdv.14777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- G Kaya
- Department of Dermatology, University of Geneva, Geneva, Switzerland
| | - A Kaya
- Department of Clinical Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland
| | - O Sorg
- Department of Clinical Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland
| | - J-H Saurat
- Department of Clinical Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Dermatoporosis, a prevalent skin condition affecting the elderly: current situation and potential treatments. Clin Dermatol 2019; 37:346-350. [DOI: 10.1016/j.clindermatol.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kaya G, Kaya A, Saurat JH. Induction of Hyalurosome by Topical Hyaluronate Fragments Results in Superficial Filling of the Skin Complementary to Hyaluronate Filler Injections. Dermatopathology (Basel) 2019; 6:45-49. [PMID: 31700843 PMCID: PMC6827440 DOI: 10.1159/000500493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
Hyaluronate (HA) plays a major role in the process of skin aging. The main use of HA has been for hydration and dermal fillers. Another approach, based on the discovery of the signaling effects of topically applied hyaluronate fragments (HAF), has subsequently been developed. It has been thoroughly demonstrated that topical applications of HAF of a very specific size induce HA filling of the epidermis and the upper dermis. These effects are particularly visible in dermatoporotic patients. Moreover, the combination of HA-based filler injections with topical applications of HAFs/retinoids showed an optimization of the effects of HA. Thus, a new classification of the different effects of HA is proposed here.
Collapse
Affiliation(s)
- Gürkan Kaya
- Department of Dermatology, University Hospital of Geneva, Geneva, Switzerland
| | - Aysin Kaya
- Department of Clinical Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland
| | - Jean-Hilaire Saurat
- Department of Clinical Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Abstract
Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca2+) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca2+ release from intracellular stores, such as the ER and Ca2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hun Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Nunes-Hasler P, Maschalidi S, Lippens C, Castelbou C, Bouvet S, Guido D, Bermont F, Bassoy EY, Page N, Merkler D, Hugues S, Martinvalet D, Manoury B, Demaurex N. STIM1 promotes migration, phagosomal maturation and antigen cross-presentation in dendritic cells. Nat Commun 2017; 8:1852. [PMID: 29176619 PMCID: PMC5701258 DOI: 10.1038/s41467-017-01600-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Antigen cross-presentation by dendritic cells (DC) stimulates cytotoxic T cell activation to promote immunity to intracellular pathogens, viruses and cancer. Phagocytosed antigens generate potent T cell responses, but the signalling and trafficking pathways regulating their cross-presentation are unclear. Here, we show that ablation of the store-operated-Ca2+-entry regulator STIM1 in mouse myeloid cells impairs cross-presentation and DC migration in vivo and in vitro. Stim1 ablation reduces Ca2+ signals, cross-presentation, and chemotaxis in mouse bone-marrow-derived DCs without altering cell differentiation, maturation or phagocytic capacity. Phagosomal pH homoeostasis and ROS production are unaffected by STIM1 deficiency, but phagosomal proteolysis and leucyl aminopeptidase activity, IRAP recruitment, as well as fusion of phagosomes with endosomes and lysosomes are all impaired. These data suggest that STIM1-dependent Ca2+ signalling promotes the delivery of endolysosomal enzymes to phagosomes to enable efficient cross-presentation. STIM proteins sense Ca2+ depletion in the ER and activate store-operated Ca2+-entry (SOCE) in response, a process associated with dendritic cell functions. Here the authors show STIM1 is the major isoform controlling SOCE in mouse dendritic cells and provide a mechanism for its requirement in antigen cross-presentation.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland.
| | - Sophia Maschalidi
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, 75015, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine Paris Descartes, Paris, 75015, France
| | - Carla Lippens
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Samuel Bouvet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Daniele Guido
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Flavien Bermont
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Esen Y Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Bénédicte Manoury
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine Paris Descartes, Paris, 75015, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, 75014, France.,Centre National de la Recherche Scientifique, Unité 8253, Paris, 75014, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
10
|
Kumamoto J, Goto M, Nagayama M, Denda M. Real-time imaging of human epidermal calcium dynamics in response to point laser stimulation. J Dermatol Sci 2017; 86:13-20. [PMID: 28119009 DOI: 10.1016/j.jdermsci.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/24/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Changes of epidermal calcium ion concentration are involved in regulation of barrier homeostasis and keratinocyte differentiation. Moreover, intracellular calcium dynamics might play a role in skin sensation. But, although calcium dynamics of cultured keratinocytes in response to mechanical stresses has been well studied, calcium propagation in stimulated human epidermis is still poorly understood. OBJECTIVE The aim of this study was to demonstrate a novel method for real-time measurement of calcium dynamics in response to point stimulation of human epidermis at the single-cell level. METHODS We examined calcium propagation in cross-sectional samples of living human epidermis ex vivo, as well as in cultured human keratinocytes, by means of two-photon microscopy after stimulating cells in stratum granulosum with the emission laser of a two-photon microscope. RESULTS Cells in different epidermal layers showed different responses, and those in stratum basale showed the greatest elevation of intracellular calcium. Calcium propagation in epidermis was inhibited in the presence of apyrase (which degrades adenosine triphosphate; ATP) or gap-junction blockers. In cultured keratinocytes, on the other hand, calcium propagated in a simple concentric wave-like manner from the stimulation site, and propagation was strongly suppressed by apyrase. CONCLUSION Our results suggested that ATP and gap junctions play important roles in calcium propagation induced by point laser stimulation of the uppermost layer of epidermis. Our method should be broadly useful to study calcium dynamics, epidermal physiological mechanisms, and mechanisms of skin sensation at the single-cell level.
Collapse
Affiliation(s)
- Junichi Kumamoto
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Makiko Goto
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Shiseido Global Innovation Center, Yokohama, Japan.
| | - Masaharu Nagayama
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Mitsuhiro Denda
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Shiseido Global Innovation Center, Yokohama, Japan
| |
Collapse
|
11
|
Abstract
Ca(2+) influx controls essential epidermal functions, including proliferation, differentiation, cell migration, itch, and barrier homeostasis. The Orai1 ion channel allows capacitive Ca(2+) influx after Ca(2+) release from the endoplasmic reticulum, and it has now been shown to modulate epidermal atrophy. These findings reveal new interactions among various Ca(2+) signaling pathways and uncover novel functions for Ca(2+) signaling via the Orai1 channel.
Collapse
|