1
|
Zierfuss B, Bojic M, Schernthaner GH, Höbaus C. FGF-23 and Long-term Outcome in Peripheral Artery Disease. Angiology 2025:33197251326637. [PMID: 40394833 DOI: 10.1177/00033197251326637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Atherosclerotic peripheral artery disease (PAD) and chronic kidney disease (CKD) are highly interconnected diseases, while causes for excess mortality are not well-defined. Fibroblast growth-factor 23 (FGF-23) is elevated in mineral bone disease of CKD and was shown to be associated with higher mortality. However, it is not known if this association extends to PAD. FGF-23 was measured by ELISA in serum samples of 298 patients with stable PAD (Fontaine stage I-II) with an estimated glomerular filtration rate (eGFR) of 72 (58-85) ml/min. Mortality was assessed after a long-term follow-up of up to 10 years. FGF-23 showed significant associations with markers of metabolic syndrome (triglycerides r = .25, P < .001, high-density lipoprotein cholesterol (HDL-C) r = -.28, P < .001, c-reactive protein (CRP) r = .14, P = .016). Multivariable Cox-regression outcome analyses showed significant associations between FGF-23 and all-cause mortality (hazard ratio 1.35, 95% confidence interval 1.05-1.74) in PAD patients even after adjustment for traditional cardiovascular risk factors and renal excretory function. FGF-23 is associated with higher mortality in patients with PAD. Our findings indicate that FGF-23 has detrimental effects on patients with PAD that are independent of renal excretory function.
Collapse
Affiliation(s)
- Bernhard Zierfuss
- Division of Angiology, Medicine II, Medical University of Vienna, Vienna, Austria
| | - Marija Bojic
- 1st Medical Department, Hanusch Hospital, Vienna, Austria
- Division of Nephrology and Dialysis, Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Clemens Höbaus
- Division of Angiology, Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Akiyama T, Iwazu Y, Usui J, Ebihara I, Ishizu T, Kobayashi M, Maeda Y, Kobayashi H, Yamagata K, Kuro-O M. Serum calciprotein particle-to-phosphate ratio as a predictor of cardiovascular events in incident hemodialysis patients. Ther Apher Dial 2025; 29:178-188. [PMID: 39229751 DOI: 10.1111/1744-9987.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Recent studies have identified increased blood calciprotein particle (CPP) levels as risk factors for vascular calcification and cardiovascular events in patients undergoing maintenance hemodialysis. Although positively correlated with serum phosphate levels, serum CPP levels vary considerably among patients with similar serum phosphate levels. We investigated the capacity of the ratio of serum CPP levels to serum phosphate levels (CPP/Pi ratio) to predict cardiovascular events in incident hemodialysis patients compared to the serum calcification propensity test (T50). METHODS AND RESULTS The association between the CPP/Pi ratio and major adverse cardiac and cerebrovascular events (MACCE) was investigated in 174 incident hemodialysis patients. Multivariate analysis revealed that the CPP/Pi ratio was independently associated with MACCE [hazard ratio 1.60, 95% confidence interval (1.15-2.23), p = 0.006] but serum T50 levels were not. CONCLUSIONS The CPP/Pi ratio is a useful, novel biomarker for predicting the risk of cardiovascular events in patients undergoing incident hemodialysis.
Collapse
Affiliation(s)
- Tomoki Akiyama
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshitaka Iwazu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Joichi Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Itaru Ebihara
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Japan
| | - Takashi Ishizu
- Department of Renal and Dialysis Medicine, Tsukuba Central Hospital, Ushiku, Japan
- Central Jin Clinic, Ryugasaki, Japan
| | - Masaki Kobayashi
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Yoshitaka Maeda
- Nephrology Division, Department of Internal Medicine, JA Toride Medical Center, Toride, Japan
| | - Hiroaki Kobayashi
- Department of Nephrology, Ibaraki Prefectural Central Hospital, Kasama, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
3
|
Rodelo-Haad C, Rodríguez-Ortiz ME, Garcia-Sáez R, Rivas-Domínguez A, Jurado-Montoya D, Martín-Malo A, Rodríguez M, Pendón-Ruiz de Mier MV, Muñoz-Castañeda JR. The true cost of phosphate control in chronic kidney disease. Clin Kidney J 2025; 18:i46-i60. [PMID: 40083951 PMCID: PMC11903093 DOI: 10.1093/ckj/sfae434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Indexed: 03/16/2025] Open
Abstract
The loss of kidney function entails the development of a positive phosphate balance. The burden of addressing elevated phosphate levels is high. Both parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are increased to promote phosphaturia, thereby preventing the rise in serum phosphate. However, if the phosphate load is excessive, the corresponding phosphaturia is maximal, kidney function deteriorates and hyperphosphataemia becomes clinically evident in advanced stages of chronic kidney disease (CKD). In addition to its role in CKD progression, hyperphosphataemia has been linked to a multitude of adverse outcomes, including overt inflammation, vascular calcifications, endothelial dysfunction, cardiovascular disease, renal osteodystrophy and secondary hyperparathyroidism. Collectively, these factors contribute to the markedly elevated mortality rates observed among individuals with CKD. Furthermore, hyperphosphataemia has been identified as a significant contributor to the development of inflammatory processes, oxidative stress and fibrosis, which underlie the aetiology of numerous comorbidities. Additionally, elevated levels of PTH and FGF23 have been demonstrated to independently induce organ and tissue injury, which is associated with poor outcomes in CKD. This article provides a concise overview of the current understanding of phosphate handling by the kidney in the context of CKD. It outlines the detrimental effects of phosphate on various organs and the mechanisms through which it contributes to CKD progression. Additionally, we discuss the tools available for clinicians to identify patients at risk of an excessive phosphate load.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| | - María E Rodríguez-Ortiz
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| | - Raquel Garcia-Sáez
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Antonio Rivas-Domínguez
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Daniel Jurado-Montoya
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Alejandro Martín-Malo
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| | - Mariano Rodríguez
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
- European Uremic Toxins Group (EUTOx)
- COST Action CA21165 – Personalized medicine in chronic kidney disease: improved outcome based on Big Data (PerMediK)
| | - M Victoria Pendón-Ruiz de Mier
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| | - Juan Rafael Muñoz-Castañeda
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Hamano T, Fukagawa M. Results of the EPISODE trial plead for reasonable practice-based serum phosphate lowering in patients on dialysis. Kidney Int 2024; 106:191-195. [PMID: 39032965 DOI: 10.1016/j.kint.2024.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Takayuki Hamano
- Department of Nephrology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Nephrology, The University of Osaka Graduate School of Medicine, Osaka, Japan
| | - Masafumi Fukagawa
- Department of Medicine, Ikegami General Hospital, Tokyo, Japan; Division of Nephrology and Kidney Center, Kobe University School of Medicine, Kobe, Japan; Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
5
|
Martínez-Heredia L, Canelo-Moreno JM, García-Fontana B, Muñoz-Torres M. Non-Classical Effects of FGF23: Molecular and Clinical Features. Int J Mol Sci 2024; 25:4875. [PMID: 38732094 PMCID: PMC11084844 DOI: 10.3390/ijms25094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism. Although it was traditionally thought that phosphate-calcium homeostasis was controlled exclusively by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular, immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis. Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses challenges due to its potential side effects. However, the approval of drugs such as burosumab represents a milestone in the treatment of FGF23-related diseases.
Collapse
Affiliation(s)
- Luis Martínez-Heredia
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
6
|
Petrović M, Brković V, Baralić M, Marić I, Petković N, Stanković S, Lalić N, Stanisavljević D, Đukanović L, Ležaić V. Comparative Analysis of Vascular Calcification Risk Factors in Pre-Hemodialysis and Prevalent Hemodialysis Adult Patients: Insights into Calcification Biomarker Associations and Implications for Intervention Strategies in Chronic Kidney Disease. Diagnostics (Basel) 2024; 14:824. [PMID: 38667470 PMCID: PMC11049133 DOI: 10.3390/diagnostics14080824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
This retrospective study aimed to compare risk factors for vascular calcification (VC) between pre-hemodialysis (HD) and prevalent HD adult patients while investigating associations with calcification biomarkers. Baseline data from 30 pre-HD and 85 HD patients were analyzed, including iPTH, vitamin D, FGF 23, fetuin-A, sclerostin, and VC scores (Adragao method). Prevalence of VC was similar in both groups, but HD patients had more frequent VC scores ≥ 6. Pre-HD patients were older, with higher prevalence of hypertension and less frequent use of calcium phosphate binders. Both groups showed similar patterns of hyperphosphatemia, low vitamin D, and iPTH. Fetuin-A and sclerostin levels were higher in pre-HD, while FGF 23 was elevated in HD patients. Higher VC risk in pre-HD patients was associated with male gender, older age, lower fetuin-A and higher sclerostin, lower ferritin, and no vitamin D treatment, while in HD patients with higher sclerostin, FGF 23 and urea, and lower iPTH. Conclusion: Biomarkers could be measurable indicators of biological processes underlying VC in CKD patients that may serve as a potential guide for considering personalized therapeutic approaches. Further studies are needed to elucidate the underlying pathways.
Collapse
Affiliation(s)
- Marko Petrović
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.P.); (M.B.)
| | - Voin Brković
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.P.); (M.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia (L.Đ.)
| | - Marko Baralić
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.P.); (M.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia (L.Đ.)
| | - Ivko Marić
- Special Hospital for Internal Diseases, 11550 Lazarevac, Serbia
| | - Nenad Petković
- Fresenius Medical Care Dialysis Center, 76230 Šamac, Bosnia and Herzegovina
| | - Sanja Stanković
- Centre for Medical Biochemistry, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nataša Lalić
- Uromedica Polyclinic Belgrade, 11000 Belgrade, Serbia
| | | | - Ljubica Đukanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia (L.Đ.)
| | - Višnja Ležaić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia (L.Đ.)
| |
Collapse
|
7
|
Wungu CDK, Susilo H, Alsagaff MY, Witarto BS, Witarto AP, Pakpahan C, Gusnanto A. Role of klotho and fibroblast growth factor 23 in arterial calcification, thickness, and stiffness: a meta-analysis of observational studies. Sci Rep 2024; 14:5712. [PMID: 38459119 PMCID: PMC10923819 DOI: 10.1038/s41598-024-56377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
This meta-analysis was conducted to clarify the role of klotho and fibroblast growth factor 23 (FGF-23) in human arterial remodeling across recent studies, in terms of arterial calcification, thickness, and stiffness. A systematic literature search was conducted on five databases for articles up to December 2023. Arterial calcification, thickness, and stiffness were determined using the calcification score and artery affected, carotid intima-media thickness (CIMT), and pulse wave velocity (PWV), respectively. Sixty-two studies with a total of 27,459 individuals were included in this meta-analysis. Most studies involved chronic kidney disease patients. Study designs were mostly cross-sectional with only one case-control and nine cohorts. FGF-23 was positively correlated with arterial calcification (r = 0.446 [0.254-0.611], p < 0.0001 and aOR = 1.36 [1.09-1.69], p = 0.006), CIMT (r = 0.188 [0.02-0.354], p = 0.03), and PWV (r = 0.235 [0.159-0.310], p < 0.00001). By contrast, Klotho was inversely correlated with arterial calcification (r = - 0.388 [- 0.578 to - 0.159], p = 0.001) and CIMT (r = - 0.38 [- 0.53 to - 0.207], p < 0.00001). In conclusion, FGF-23 and Klotho were associated with arterial calcification, thickness, and stiffness, clarifying their role in arterial remodeling processes.
Collapse
Affiliation(s)
- Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Division of Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia.
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya, 60115, Indonesia.
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya, 60115, Indonesia
| | | | - Andro Pramana Witarto
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Cennikon Pakpahan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Arief Gusnanto
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
8
|
Edmonston D, Grabner A, Wolf M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 2024; 21:11-24. [PMID: 37443358 DOI: 10.1038/s41569-023-00903-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a 'portable' FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
9
|
van der Vaart A, Bakker SJL, Laverman GD, van Dijk PR, de Borst MH. NT-proBNP Mediates the Association Between FGF23 and All-Cause Mortality in Individuals With Type 2 Diabetes. J Am Heart Assoc 2023; 12:e031873. [PMID: 38014662 PMCID: PMC10727346 DOI: 10.1161/jaha.123.031873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND FGF23 (fibroblast growth factor 23) is associated with a higher mortality risk in type 2 diabetes, but the mechanism is unclear. We aimed to study whether NT-proBNP (N-terminal pro-brain natriuretic peptide) mediates the association between FGF23 and mortality. METHODS AND RESULTS We analyzed C-terminal FGF23 and NT-proBNP levels in 399 patients with type 2 diabetes. Cox regression analyses were performed, followed by mediation analyses using Structural Equation Modeling. During follow-up of 9.2 [7.6-11.3] years, 117 individuals died. FGF23 was associated with all-cause mortality, independent of potential confounders (fully adjusted hazard ratio [HR], 2.32 [95% CI, 1.21-4.43], P=0.01). The association was lost upon further adjustment for NT-proBNP (HR, 1.84; 95% CI, 0.91-3.73). NT-proBNP accounted for 26% of the mediation effect between FGF23 and all-cause mortality. CONCLUSIONS These findings suggest that a higher FGF23 level is associated with increased mortality in individuals with type 2 diabetes through an effect on volume homeostasis.
Collapse
Affiliation(s)
- Amarens van der Vaart
- Department of Internal Medicine, Division of NephrologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Internal Medicine, Division of EndocrinologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of NephrologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Gozewijn D. Laverman
- Division of Nephrology, Department of Internal MedicineZiekenhuisgroep TwenteHengeloThe Netherlands
| | - Peter R. van Dijk
- Department of Internal Medicine, Division of EndocrinologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of NephrologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
10
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Zheng XQ, Lin JL, Huang J, Wu T, Song CL. Targeting aging with the healthy skeletal system: The endocrine role of bone. Rev Endocr Metab Disord 2023; 24:695-711. [PMID: 37402956 DOI: 10.1007/s11154-023-09812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Aging is an inevitable biological process, and longevity may be related to bone health. Maintaining strong bone health can extend one's lifespan, but the exact mechanism is unclear. Bone and extraosseous organs, including the heart and brain, have complex and precise communication mechanisms. In addition to its load bearing capacity, the skeletal system secretes cytokines, which play a role in bone regulation of extraosseous organs. FGF23, OCN, and LCN2 are three representative bone-derived cytokines involved in energy metabolism, endocrine homeostasis and systemic chronic inflammation levels. Today, advanced research methods provide new understandings of bone as a crucial endocrine organ. For example, gene editing technology enables bone-specific conditional gene knockout models, which allows the study of bone-derived cytokines to be more precise. We systematically evaluated the various effects of bone-derived cytokines on extraosseous organs and their possible antiaging mechanism. Targeting aging with the current knowledge of the healthy skeletal system is a potential therapeutic strategy. Therefore, we present a comprehensive review that summarizes the current knowledge and provides insights for futures studies.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Tong Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
12
|
Dai Z, Zhang X. Pathophysiology and Clinical Impacts of Chronic Kidney Disease on Coronary Artery Calcification. J Cardiovasc Dev Dis 2023; 10:jcdd10050207. [PMID: 37233174 DOI: 10.3390/jcdd10050207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
The global prevalence of chronic kidney disease (CKD) has increased in recent years. Adverse cardiovascular events have become the main cause of life-threatening events in patients with CKD, and vascular calcification is a risk factor for cardiovascular disease. Vascular calcification, especially coronary artery calcification, is more prevalent, severe, rapidly progressive, and harmful in patients with CKD. Some features and risk factors are unique to vascular calcification in patients with CKD; the formation of vascular calcification is not only influenced by the phenotypic transformation of vascular smooth muscle cells, but also by electrolyte and endocrine dysfunction, uremic toxin accumulation, and other novel factors. The study on the mechanism of vascular calcification in patients with renal insufficiency can provide a basis and new target for the prevention and treatment of this disease. This review aims to illustrate the impact of CKD on vascular calcification and to discuss the recent research data on the pathogenesis and factors involved in vascular calcification, mainly focusing on coronary artery calcification, in patients with CKD.
Collapse
Affiliation(s)
- Zhuoming Dai
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
13
|
Mok Y, Wang F, Ballew SH, Menez S, Butler KR, Wagenknecht L, Sedaghat S, Lutsey PL, Coresh J, Blaha MJ, Matsushita K. Kidney function, bone-mineral metabolism markers, and calcification of coronary arteries, aorta, and cardiac valves in older adults. Atherosclerosis 2023; 368:35-43. [PMID: 36754659 PMCID: PMC9992265 DOI: 10.1016/j.atherosclerosis.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS The contribution of kidney dysfunction, especially at mild-to-moderate stages, and bone-mineral metabolism (BMM) markers to vascular calcification remains controversial or unclear. We comprehensively evaluated the association of kidney and BMM markers with coronary artery calcification (CAC) and extra-coronary calcification (ECC). METHODS In 1931 ARIC participants (age 73-95 years) without coronary heart disease at visit 7 (2018-19), we investigated the associations of estimated glomerular filtration rate (eGFR) (with creatinine, cystatin C, and both) and five serum BMM markers (calcium, fibroblast growth factor 23, magnesium, parathyroid hormone, and phosphorus) with high CAC and ECC (sex-race specific ≥75th vs. <75th percentile Agatston score) or any vs. zero CAC and ECC using multivariable logistic regression. For eGFR and BMM markers, we took their weighted cumulative averages from visit 1 (1987-89) to visit 5 (2011-13). RESULTS Lower eGFR, regardless of equations used, was not robustly associated with high CAC or ECC. Among BMM markers, only higher phosphorus levels, even within the normal range, showed robust associations with high CAC (only when modeled continuously) and ECC, independently of kidney function (e.g., odds ratio 1.94 [95%CI 1.38-2.73] for high aortic valve calcification, in the highest vs. lowest quartile). Results were generally consistent when analyzing any CAC or ECC, although cystatin C-based eGFR <60 mL/min/1.73 m2 became significantly associated with mitral valve calcification (odds ratio 1.69 [1.10-2.60]). CONCLUSIONS Among kidney and BMM measures tested, only serum phosphorus demonstrated robust associations with both CAC and ECC, supporting a key role of phosphorus in the pathophysiology of vascular calcification.
Collapse
Affiliation(s)
- Yejin Mok
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Frances Wang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shoshana H Ballew
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Steve Menez
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth R Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lynne Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sanaz Sedaghat
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Blaha
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Zeng D, Zha A, Lei Y, Yu Z, Cao R, Li L, Song Z, Li W, Li Y, Liu H, Huang S, Dong X, Krämer B, Hocher B, Yin L, Yun C, Morgera S, Guan B, Meng Y, Liu F, Hu B, Luan S. Correlation of Serum FGF23 and Chronic Kidney Disease-Mineral and Bone Abnormality Markers With Cardiac Structure Changes in Maintenance Hemodialysis Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6243771. [PMID: 37089720 PMCID: PMC10118877 DOI: 10.1155/2023/6243771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/01/2022] [Indexed: 04/25/2023]
Abstract
Background CKD-MBD is a mineral and bone metabolism syndrome caused by chronic kidney disease. FGF23 is an important factor regulating phosphorus and is the main influencer in the CKD-MBD process. In this study, we observed the correlation among serum FGF23 and calcium, phosphorus and parathyroid hormone, and the correlation between FGF23 levels and cardiac structural changes in MHD patients. Methods We examined serum FGF23 concentrations in 107 cases of MHD patients using the ELISA method, recorded demographic information and biochemical data, and analyzed the correlation between serum FGF23 levels and blood calcium and blood phosphorus and PTH levels. All patients were evaluated by cardiac color ultrasound, and we finally analyzed the association between the FGF23 level and cardiac structural changes. Results In 107 cases of MHD patients, serum FGF23 levels were linearly associated with serum calcium (r = 0.27 P < 0.01) and parathyroid hormone levels (r = 0.25, P < 0.05). FGF 23 was negatively correlated with age (r = -0.44, P < 0.01).Serum FGF23 levels were correlated with right atrial hypertrophy in HD patients (P < 0.05). No correlation was found among FGF23, left ventricular hypertrophy/enlargement, and valve calcification stenosis (P > 0.05). Conclusion Serum FGF23 showed a positive correlation among blood calcium levels and PTH levels in hemodialysis patients, and FGF23 levels can affect the incidence of right atrial hypertrophy in MHD patients.
Collapse
Affiliation(s)
- Dewang Zeng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Nephrology, Huadu District People's Hospital, Guangzhou, China
| | - Aiyun Zha
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ying Lei
- Department of Nephrology, Huadu District People's Hospital, Guangzhou, China
| | - Zongchao Yu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Rui Cao
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Li
- Hospital of South China Agricultural University, Guangzhou 510642, China
| | - Zhuoheng Song
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, Shenzhen 518110, China
| | - Weilong Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, Shenzhen 518110, China
| | - Yunyi Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Haiping Liu
- The Second People's Hospital of Lianping County, Heyuan, Guangdong 517139, China
| | - Shaoxing Huang
- The Second People's Hospital of Lianping County, Heyuan, Guangdong 517139, China
| | - Xiangnan Dong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bernhard Krämer
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Chen Yun
- Department of Nephrology, Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Stanislao Morgera
- Department of Nephrology, Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, Shenzhen 518110, China
| |
Collapse
|
15
|
Wolf M. FGF23 AND ALTERED MINERAL HOMEOSTASIS IN KIDNEY DISEASE AND FOLLOWING INTRAVENOUS IRON. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:262-273. [PMID: 37701608 PMCID: PMC10493719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Fibroblast growth factor 23 (FGF23) is an endocrine hormone that stimulates renal phosphate excretion and suppresses circulating concentrations of 1,25-dihydroxyvitamin D (1,25D). These effects of FGF23 are most evident in rare diseases that are characterized by FGF23-mediated hypophosphatemic rickets-osteomalacia. More commonly, elevated FGF23 is a ubiquitous, early consequence of chronic kidney disease (CKD) in which it helps to maintain normal serum phosphate levels but causes secondary hyperparathyroidism by suppressing 1,25D, and directly promotes cardiovascular disease and death. Elevated FGF23 is also a common complication of intravenous administration of ferric carboxymaltose (FCM), which is widely used to treat iron deficiency anemia. Among patients with normal kidney function who receive FCM, the resulting increase in FGF23 and subsequent FGF23-mediated reduction of 1,25D and secondary hyperparathyroidism promote hypophosphatemia that can be symptomatic, severe, and associated with musculoskeletal complications. Ongoing research is needed to design novel therapeutic approaches to mitigate FGF23-related illnesses.
Collapse
|
16
|
Campos-Obando N, Bosman A, Kavousi M, Medina-Gomez C, van der Eerden BCJ, Bos D, Franco OH, Uitterlinden AG, Zillikens MC. Genetic Evidence for a Causal Role of Serum Phosphate in Coronary Artery Calcification: The Rotterdam Study. J Am Heart Assoc 2022; 11:e023024. [PMID: 35904204 PMCID: PMC9375490 DOI: 10.1161/jaha.121.023024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Hyperphosphatemia has been associated with coronary artery calcification (CAC) mostly in chronic kidney disease, but the association between phosphate levels within the normal phosphate range and CAC is unclear. Our objectives were to evaluate associations between phosphate levels and CAC among men and women from the general population and assess causality through Mendelian randomization. Methods and Results CAC, measured by electron‐beam computed tomography, and serum phosphate levels were assessed in 1889 individuals from the RS (Rotterdam Study). Phenotypic associations were tested through linear models adjusted for age, body mass index, blood pressure, smoking, prevalent cardiovascular disease and diabetes, 25‐hydroxyvitamin D, total calcium, C‐reactive protein, glucose, and total cholesterol : high‐density lipoprotein cholesterol ratio. Mendelian randomization was implemented through an allele score including 8 phosphate‐related single‐nucleotide polymorphisms. In phenotypic analyses, serum phosphate (per 1 SD) was associated with CAC with evidence for sex interaction (Pinteraction=0.003) (men β, 0.44 [95% CI, 0.30–0.59]; P=3×10−9; n=878; women β, 0.24 [95% CI, 0.08–0.40]; P=0.003; n=1011). Exclusion of hyperphosphatemia, chronic kidney disease (estimated glomerular filtration rate <60 mL/min per 1.73 m2) and prevalent cardiovascular disease yielded similar results. In Mendelian randomization analyses, instrumented phosphate was associated with CAC (total population β, 0.93 [95% CI: 0.07–1.79]; P=0.034; n=1693), even after exclusion of hyperphosphatemia, chronic kidney disease and prevalent cardiovascular disease (total population β, 1.23 [95% CI, 0.17–2.28]; P=0.023; n=1224). Conclusions Serum phosphate was associated with CAC in the general population with stronger effects in men. Mendelian randomization findings support a causal relation, also for serum phosphate and CAC in subjects without hyperphosphatemia, chronic kidney disease, and cardiovascular disease. Further research into underlying mechanisms of this association and sex differences is needed.
Collapse
Affiliation(s)
- Natalia Campos-Obando
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Ariadne Bosman
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Daniel Bos
- Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Department of Radiology and Nuclear Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Oscar H Franco
- Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Institute of Social and Preventive Medicine (ISPM) University of Bern Switzerland
| | - André G Uitterlinden
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| |
Collapse
|
17
|
Vergara N, de Mier MVPR, Rodelo-Haad C, Revilla-González G, Membrives C, Díaz-Tocados JM, Martínez-Moreno JM, Torralbo AI, Herencia C, Rodríguez-Ortiz ME, López-Baltanás R, Richards WG, Felsenfeld A, Almadén Y, Martin-Malo A, Ureña J, Santamaría R, Soriano S, Rodríguez M, Muñoz-Castañeda JR. The direct effect of fibroblast growth factor 23 on vascular smooth muscle cell phenotype and function. Nephrol Dial Transplant 2022; 38:322-343. [PMID: 35867864 PMCID: PMC9923714 DOI: 10.1093/ndt/gfac220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In chronic kidney disease (CKD) patients, increased levels of fibroblast growth factor 23 (FGF23) are associated with cardiovascular mortality. The relationship between FGF23 and heart hypertrophy has been documented, however, it is not known whether FGF23 has an effect on vasculature. Vascular smooth muscle cells VSMCs may exhibit different phenotypes; our hypothesis is that FGF23 favours a switch from a contractile to synthetic phenotype that may cause vascular dysfunction. Our objective was to determine whether FGF23 may directly control a change in VSMC phenotype. METHODS This study includes in vitro, in vivo and ex vivo experiments and evaluation of patients with CKD stages 2-3 studying a relationship between FGF23 and vascular dysfunction. RESULTS In vitro studies show that high levels of FGF23, by acting on its specific receptor FGFR1 and Erk1/2, causes a change in the phenotype of VSMCs from contractile to synthetic. This change is mediated by a downregulation of miR-221/222, which augments the expression of MAP3K2 and PAK1. miR-221/222 transfections recovered the contractile phenotype of VSMCs. Infusion of recombinant FGF23 to rats increased vascular wall thickness, with VSMCs showing a synthetic phenotype with a reduction of miR-221 expression. Ex-vivo studies on aortic rings demonstrate also that high FGF23 increases arterial stiffening. In CKD 2-3 patients, elevation of FGF23 was associated with increased pulse wave velocity and reduced plasma levels of miR-221/222. CONCLUSION In VSMCs, high levels of FGF23, through the downregulation of miR-221/222, causes a change to a synthetic phenotype. This change in VSMCs increases arterial stiffening and impairs vascular function, which might ultimately worsen cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Gonzalo Revilla-González
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Departemento de Fisiología Médica y Biofísica, Sevilla, Spain
| | - Cristina Membrives
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Juan M Díaz-Tocados
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Julio M Martínez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Ana I Torralbo
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Carmen Herencia
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | | | - Rodrigo López-Baltanás
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | | | - Arnold Felsenfeld
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System and the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yolanda Almadén
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,Internal Medicine Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Biomedical Research Networking Centre consortium for the area of Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Alejandro Martin-Malo
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain,Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain, and the European Uremic Toxins group
| | - Juan Ureña
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Departemento de Fisiología Médica y Biofísica, Sevilla, Spain
| | | | - Sagrario Soriano
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain,Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain, and the European Uremic Toxins group
| | | | | |
Collapse
|
18
|
Cao YC, Shan SK, Guo B, Li CC, Li FXZ, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, Ou-Yang WL, Duan JY, Wu YY, Ullah MHE, Zhou ZA, Xu F, Lin X, Wu F, Liao XB, Yuan LQ. Histone Lysine Methylation Modification and Its Role in Vascular Calcification. Front Endocrinol (Lausanne) 2022; 13:863708. [PMID: 35784574 PMCID: PMC9243330 DOI: 10.3389/fendo.2022.863708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Histone methylation is an epigenetic change mediated by histone methyltransferase, and has been connected to the beginning and progression of several diseases. The most common ailments that affect the elderly are cardiovascular and cerebrovascular disorders. They are the leading causes of death, and their incidence is linked to vascular calcification (VC). The key mechanism of VC is the transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like phenotypes, which is a highly adjustable process involving a variety of complex pathophysiological processes, such as metabolic abnormalities, apoptosis, oxidative stress and signalling pathways. Many researchers have investigated the mechanism of VC and related targets for the prevention and treatment of cardiovascular and cerebrovascular diseases. Their findings revealed that histone lysine methylation modification may play a key role in the various stages of VC. As a result, a thorough examination of the role and mechanism of lysine methylation modification in physiological and pathological states is critical, not only for identifying specific molecular markers of VC and new therapeutic targets, but also for directing the development of new related drugs. Finally, we provide this review to discover the association between histone methylation modification and VC, as well as diverse approaches with which to investigate the pathophysiology of VC and prospective treatment possibilities.
Collapse
Affiliation(s)
- Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Ferreira AC, Mendes M, Silva C, Cotovio P, Aires I, Navarro D, Caeiro F, Ramos R, Salvador R, Correia B, Cabral G, Nolasco F, Ferreira A. Improvement of Mineral and Bone Disorders After Renal Transplantation. Transplantation 2022; 106:e251-e261. [PMID: 35266925 PMCID: PMC9038238 DOI: 10.1097/tp.0000000000004099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Posttransplant mineral and bone diseases are causes of fractures, and their association with cardiovascular events is being studied. METHODS We analyzed the evolution of biochemical, histological, and imaging parameters pre- and 1 y post-renal transplantation in 69 patients and correlated mineral and bone findings with coronary calcifications. At inclusion and after 12 mo, clinical data and echocardiographic findings were recorded, and laboratory evaluations, radiography of the pelvis and hands, and bone biopsy were performed. Noncontrast cardiac computed tomography was performed during the second evaluation. RESULTS Serum levels of fibroblast growth factor 23 and sclerostin decreased in all patients, parathyroid hormone levels decreased in 89.8% of patients, bone alkaline phosphatase levels decreased in 68.1% of patients, and alpha-Klotho levels increased in 65.2% of patients. More than half of the patients presented with renal osteodystrophy at both biopsies, but histological findings improved: a significant transition from high to normal or low turnover and no significant differences in volume, mineralization defect, or cortical porosity at the 2 evaluations. Alpha-Klotho, sclerostin, and bone alkaline phosphatase shifts affect bone changes. Neither echocardiographic findings nor vascular calcification scores differed between the 2 points. Both the pretransplant period (dialysis vintage, sclerostin, and low bone volume at baseline) and the maintenance of abnormalities in the posttransplant period (high turnover posttransplant) were the most reliable predictors of the severity of the coronary calcification percentile. CONCLUSIONS Renal transplantation improved bone and mineral abnormalities. The pretransplant period determines the severity of calcification.
Collapse
Affiliation(s)
- Ana Carina Ferreira
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Marco Mendes
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Cecília Silva
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Patrícia Cotovio
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Inês Aires
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - David Navarro
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Fernando Caeiro
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Rúben Ramos
- Cardiology Department, Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Rute Salvador
- CEDOC, Tissue Repair and Inflammation Lab, Lisbon, Portugal
| | - Bruna Correia
- CEDOC, Tissue Repair and Inflammation Lab, Lisbon, Portugal
| | | | - Fernando Nolasco
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Aníbal Ferreira
- Nephrology Department, Hospital Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| |
Collapse
|
20
|
Jovanovich A, Cai X, Frazier R, Bundy JD, He J, Rao P, Lora C, Dobre M, Go A, Shafi T, Feldman HI, Rhee EP, Miyazaki M, Isakova T, Chonchol M. Deoxycholic Acid and Coronary Artery Calcification in the Chronic Renal Insufficiency Cohort. J Am Heart Assoc 2022; 11:e022891. [PMID: 35322682 PMCID: PMC9075491 DOI: 10.1161/jaha.121.022891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Background Deoxycholic acid (DCA) is a secondary bile acid that may promote vascular calcification in experimental settings. Higher DCA levels were associated with prevalent coronary artery calcification (CAC) in a small group of individuals with advanced chronic kidney disease. Whether DCA levels are associated with CAC prevalence, incidence, and progression in a large and diverse population of individuals with chronic kidney disease stages 2 to 4 is unknown. Methods and Results In the CRIC (Chronic Renal Insufficiency Cohort) study, we evaluated cross-sectional (n=1057) and longitudinal (n=672) associations between fasting serum DCA levels and computed tomographic CAC using multivariable-adjusted regression models. The mean age was 57±12 years, 47% were women, and 41% were Black. At baseline, 64% had CAC (CAC score >0 Agatston units). In cross-sectional analyses, models adjusted for demographics and clinical factors showed no association between DCA levels and CAC >0 compared with no CAC (prevalence ratio per 1-SD higher log DCA, 1.08 [95% CI, 0.91-1.26). DCA was not associated with incident CAC (incidence per 1-SD greater log DCA, 1.08 [95% CI, 0.85-1.39]) or CAC progression (risk for increase in ≥100 and ≥200 Agatston units per year per 1-SD greater log DCA, 1.05 [95% CI, 0.84-1.31] and 1.26 [95% CI, 0.77-2.06], respectively). Conclusions Among CRIC study participants, DCA was not associated with prevalent, incident, or progression of CAC.
Collapse
Affiliation(s)
- Anna Jovanovich
- Renal SectionVA Eastern Colorado Healthcare SystemAuroraCO
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Xuan Cai
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Rebecca Frazier
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Josh D. Bundy
- Nephrology and HypertensionTulane UniversityNew OrleansLA
| | - Jiang He
- Nephrology and HypertensionTulane UniversityNew OrleansLA
| | | | - Claudia Lora
- Division of NephrologyUniversity of Illinois at ChicagoChicagoIL
| | - Mirela Dobre
- Division of NephrologyCase Western Reserve UniversityClevelandOH
| | - Alan Go
- Division of ResearchKaiser Permanente Northern CaliforniaOaklandCA
| | - Tariq Shafi
- Division of NephrologyUniversity of MississippiJacksonMI
| | - Harold I. Feldman
- Division of Renal Electrolyte and HypertensionUniversity of PennsylvaniaPhiladelphiaPA
| | - Eugene P. Rhee
- Nephrology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Makoto Miyazaki
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Tamara Isakova
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Michel Chonchol
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
21
|
Ferreira AC, Cotovio P, Aires I, Mendes M, Navarro D, Silva C, Caeiro F, Salvador R, Correia B, Cabral G, Nolasco F, Ferreira A. The Role of Bone Volume, FGF23 and Sclerostin in Calcifications and Mortality; a Cohort Study in CKD Stage 5 Patients. Calcif Tissue Int 2022; 110:215-224. [PMID: 34477944 DOI: 10.1007/s00223-021-00910-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Chronic kidney disease-mineral and bone disorder has been associated with increasing morbid-mortality. The aim of this study was to determine the prevalence and phenotype of bone disease before transplantation and to correlate FGF23 and sclerostin levels with bone histomorphometry, and study possible associations between FGF23, sclerostin, and bone histomorphometry with cardiovascular disease and mortality. We performed a cross-sectional cohort study of a sample of 84 patients submitted to renal transplant, which were prospectively followed for 12 months. Demographic, clinical, and echocardiographic data were collected, laboratory evaluation, bone biopsy, and X-ray of the pelvis and hands were performed. Patient and graft survival were recorded. We diagnosed low bone turnover in 16 patients (19.5%); high bone turnover in 22 patients (26.8%); osteomalacia in 1 patient (1.2%), and mixed renal osteodystrophy in 3 patients (3.7%). At the end of 12 months, 5 patients had graft failure (5.9%), 4 had a cardiovascular event (4.8%), and 4 died. Age was associated with low remodeling disease, whereas high BALP and phosphorus and low sclerostin with high turnover disease. Sclerostin was a risk factor for isolated low bone volume. High BALP, low phosphorus, and low FGF23 were risk factors for abnormal mineralization. FGF23 appears as an independent factor for severity of vascular calcifications and for cardiovascular events, whereas the presence of valve calcifications was associated with low volume and with turnover deviations. Sclerostin was associated a higher HR for death. Sclerostin and FGF23 seemed to provide higher cardiovascular risk, as well as low bone volume, which associated with extra-osseous calcifications.
Collapse
Affiliation(s)
- Ana Carina Ferreira
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal.
- Nova Medical School, Lisbon, Portugal.
| | - Patrícia Cotovio
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - Inês Aires
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Marco Mendes
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - David Navarro
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - Cecília Silva
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - Fernando Caeiro
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - Rute Salvador
- CEDOC, Tissue Repair and Inflammation Lab, Lisbon, Portugal
| | - Bruna Correia
- CEDOC, Tissue Repair and Inflammation Lab, Lisbon, Portugal
| | | | - Fernando Nolasco
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Aníbal Ferreira
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| |
Collapse
|
22
|
Chen HH, Pan JY, Lu WH, Wu CJ, Tseng CJ. Prazosin improves neurogenic acute heart failure through downregulation of fibroblast growth factor 23 in rat hearts. CHINESE J PHYSIOL 2022; 65:179-186. [DOI: 10.4103/cjp.cjp_9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Fibroblast Growth Factor 23 as Regulator of Vitamin D Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:47-54. [DOI: 10.1007/978-3-030-91623-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Robert P, Alina M, Sylwia D, Jolanta MB, Marta B, Anna GG, Jacek N, Bartosz H, Mariusz G, Piotr R. Higher Serum Phosphorus Is Not an Independent Risk Factor of Mortality in Heart Failure with Reduced Ejection Fraction. Nutrients 2021; 13:4004. [PMID: 34836258 PMCID: PMC8618855 DOI: 10.3390/nu13114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022] Open
Abstract
Higher serum phosphorus has detrimental health effects. Even high-normal rage sP is associated with worse outcomes. The relationship of serum phosphorus with prognostic markers in heart failure remains unclear. We investigated the association of serum phosphorus with heart failure prognostic factors and risk of mortality related to serum phosphorus. In 1029 stable heart failure patients, we investigated the distribution of markers of more advanced heart failure stage across quintiles of serum phosphorus and estimated the relative risk of mortality in comparison to reference. Higher serum phosphorus levels sP were associated with markers of a worse outcome. The best survival was observed in low-normal serum levels. The unadjusted hazard ratio for mortality increased toward higher phosphorus quintiles but not to lower levels of sP. The correction for age, sex, BMI, percent weight loss, inflammation, kidney function, and LVEF did not modify the risk profile substantially. The adjustment for NYHA, natriuretic peptides, serum sodium, and treatment characteristics broke down the risk relationship completely. A higher serum phosphorus is associated with markers of a more risky profile of heart failure. Elevated serum levels of phosphorus sP does not provide independent prognostic information beyond the strongest markers of the severity of the syndrome. The potential involvement of higher serum phosphorus as a mediator in the pathophysiology of heart failure warrants further study.
Collapse
Affiliation(s)
- Partyka Robert
- Clinical Division of Anesthesiology and Intensive Therapy of the Department of Anesthesiology, Intensive Treatment and Emergency Medicine, Medical University of Silesia, 41-800 Zabrze, Poland;
| | - Mroczek Alina
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.A.); (D.S.); (M.-B.J.); (B.M.); (G.-G.A.)
| | - Duda Sylwia
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.A.); (D.S.); (M.-B.J.); (B.M.); (G.-G.A.)
| | - Malinowska-Borowska Jolanta
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.A.); (D.S.); (M.-B.J.); (B.M.); (G.-G.A.)
| | - Buczkowska Marta
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.A.); (D.S.); (M.-B.J.); (B.M.); (G.-G.A.)
| | - Głogowska-Gruszka Anna
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.A.); (D.S.); (M.-B.J.); (B.M.); (G.-G.A.)
| | - Niedziela Jacek
- Third Department of Cardiology, SMDZ in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease, 41-800 Zabrze, Poland; (N.J.); (H.B.); (G.M.)
| | - Hudzik Bartosz
- Third Department of Cardiology, SMDZ in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease, 41-800 Zabrze, Poland; (N.J.); (H.B.); (G.M.)
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Gąsior Mariusz
- Third Department of Cardiology, SMDZ in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease, 41-800 Zabrze, Poland; (N.J.); (H.B.); (G.M.)
| | - Rozentryt Piotr
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.A.); (D.S.); (M.-B.J.); (B.M.); (G.-G.A.)
- Third Department of Cardiology, SMDZ in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease, 41-800 Zabrze, Poland; (N.J.); (H.B.); (G.M.)
| |
Collapse
|
25
|
Understanding the Stony Bridge between Osteoporosis and Vascular Calcification: Impact of the FGF23/Klotho axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7536614. [PMID: 34539972 PMCID: PMC8448600 DOI: 10.1155/2021/7536614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A relationship between osteoporosis (OP) and vascular calcification (VC) is now proposed. There are common mechanisms underlying the regulation of them. Fibroblast growth factor- (FGF-) 23 and Klotho are hormones associated with the metabolic axis of osteovascular metabolism. Most recently, it was suggested that the FGF23-klotho axis is associated with increasing incidence of fractures and is potentially involved in the progression of the aortic-brachial stiffness ratio. Herein, we discussed the potential role of the FGF23/Klotho axis in the pathophysiology of OP and VC. We want to provide an update review in order to allow a better understanding of the potential role of the FGF23/Klotho axis in comorbidity of OP and VC. We believe that a better understanding of the relationship between both entities can help in proposing new therapeutic targets for reducing the increasing prevalence of OP and VC in the aging population.
Collapse
|
26
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
27
|
Reducing the burden of cardiovascular disease in children with chronic kidney disease: prevention vs. damage limitation. Pediatr Nephrol 2021; 36:2537-2544. [PMID: 34143301 DOI: 10.1007/s00467-021-05102-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Cardiovascular disease (CVD) is a life-limiting condition in patients with chronic kidney disease (CKD) and is rapidly progressive, especially in those with stage 5 CKD and on dialysis. Cardiovascular mortality, although reducing, remains at least 30 times higher than in the general pediatric population. The American Heart Association guidelines for cardiovascular risk reduction in high-risk pediatric patients has stratified pediatric CKD patients in the "high risk" category for the development of CVD, with associated pathological and/or clinical evidence for manifest coronary disease before 30 years of age. While improving patient survival is a key priority, other patient-related outcomes, such as psychosocial development, quality of life and growth are of major importance to children and their caregivers. Once vascular damage or calcification has developed, there are no data to suggest that they can be reversed. Treatments such as intensified dialysis and transplantation may attenuate the progression of subclinical cardiovascular disease, but no treatment to date has shown that the inexorable progression of CVD in CKD can be reversed. Thus, our management must focus on early diagnosis and robust preventative strategies to give our patients the best chance of optimal cardiovascular health and survival. In this review, the pathophysiology and importance of preventing the development of CVD in CKD is discussed.
Collapse
|
28
|
van der Vaart A, Yeung S, van Dijk P, Bakker S, de Borst M. Phosphate and fibroblast growth factor 23 in diabetes. Clin Sci (Lond) 2021; 135:1669-1687. [PMID: 34283205 PMCID: PMC8302806 DOI: 10.1042/cs20201290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with a strongly elevated risk of cardiovascular disease, which is even more pronounced in patients with diabetic nephropathy. Currently available guideline-based efforts to correct traditional risk factors are only partly able to attenuate this risk, underlining the urge to identify novel treatment targets. Emerging data point towards a role for disturbances in phosphate metabolism in diabetes. In this review, we discuss the role of phosphate and the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) in diabetes. We address deregulations of phosphate metabolism in patients with diabetes, including diabetic ketoacidosis. Moreover, we discuss potential adverse consequences of these deregulations, including the role of deregulated phosphate and glucose as drivers of vascular calcification propensity. Finally, we highlight potential treatment options to correct abnormalities in phosphate and FGF23. While further studies are needed to more precisely assess their clinical impact, deregulations in phosphate and FGF23 are promising potential target in diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Amarens van der Vaart
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen,The Netherlands
- Department of Medicine, Division of Endocrinology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stanley M.H. Yeung
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen,The Netherlands
| | - Peter R. van Dijk
- Department of Medicine, Division of Endocrinology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stephan J.L. Bakker
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen,The Netherlands
| | - Martin H. de Borst
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen,The Netherlands
| |
Collapse
|
29
|
Tang PK, Geddes RF, Jepson RE, Elliott J. A feline-focused review of chronic kidney disease-mineral and bone disorders - Part 2: Pathophysiology of calcium disorder and extraosseous calcification. Vet J 2021; 275:105718. [PMID: 34329743 DOI: 10.1016/j.tvjl.2021.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Derangements in mineral metabolism are one of the main entities in chronic kidney disease-mineral and bone disorder (CKD-MBD). This is the second of a two-part review of the physiology and pathophysiology of calcium homeostasis in feline CKD-MBD. While dysregulation in calcium homeostasis is known to contribute to the development of vascular calcification in CKD, evidence characterising the relationship between serum calcium concentration and nephrocalcinosis and nephrolithiasis is limited. Recently, fibroblast growth factor 23 (FGF23) and α-Klotho have gained increased research interest and been shown to be important biomarkers for the prediction of CKD progression in human patients. However, conflicting evidence exists on their role in calcium homeostasis and vascular and soft tissue calcification. This review details the pathophysiology of calcium disorders associated with CKD-MBD and its implications on vascular and soft tissue mineralisation in human and feline patients. Further prospective studies investigating the clinical consequences of calcium disturbances in cats with CKD are warranted and this may provide additional insight into the pathophysiology of feline CKD-MBD.
Collapse
Affiliation(s)
- Pak-Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom.
| | - Rebecca F Geddes
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
30
|
Kumric M, Borovac JA, Ticinovic Kurir T, Martinovic D, Frka Separovic I, Baric L, Bozic J. Role of Matrix Gla Protein in the Complex Network of Coronary Artery Disease: A Comprehensive Review. Life (Basel) 2021; 11:737. [PMID: 34440481 PMCID: PMC8398385 DOI: 10.3390/life11080737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
Coronary artery disease (CAD) is widely recognized as one of the most important clinical entities. In recent years, a large body of accumulated data suggest that coronary artery calcification, a process highly prevalent in patients with CAD, occurs via well-organized biologic processes, rather than passively, as previously regarded. Matrix Gla protein (MGP), a vitamin K-dependent protein, emerged as an important inhibitor of both intimal and medial vascular calcification. The functionality of MGP hinges on two post-translational modifications: phosphorylation and carboxylation. Depending on the above-noted modifications, various species of MGP may exist in circulation, each with their respective level of functionality. Emerging data suggest that dysfunctional species of MGP, markedly, dephosphorylated-uncarboxylated MGP, might find its application as biomarkers of microvascular health, and assist in clinical decision making with regard to initiation of vitamin K supplementation. Hence, in this review we summarized the current knowledge with respect to the role of MGP in the complex network of vascular calcification with concurrent inferences to CAD. In addition, we discussed the effects of warfarin use on MGP functionality, with concomitant implications to coronary plaque stability.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.A.B.); (T.T.K.); (D.M.); (I.F.S.)
| | - Josip A. Borovac
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.A.B.); (T.T.K.); (D.M.); (I.F.S.)
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.A.B.); (T.T.K.); (D.M.); (I.F.S.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.A.B.); (T.T.K.); (D.M.); (I.F.S.)
| | - Ivan Frka Separovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.A.B.); (T.T.K.); (D.M.); (I.F.S.)
| | - Ljupka Baric
- Institute of Emergency Medicine of Split-Dalmatia County (ZHM SDZ), Spinčićeva 1, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.A.B.); (T.T.K.); (D.M.); (I.F.S.)
| |
Collapse
|
31
|
Memmos E, Papagianni A. New Insights into the Role of FGF-23 and Klotho in Cardiovascular Disease in Chronic Kidney Disease Patients. Curr Vasc Pharmacol 2021; 19:55-62. [PMID: 32310050 DOI: 10.2174/1570161118666200420102100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
Alterations of fibroblast growth factor 23 (FGF-23) and Klotho levels are considered to be the earliest biochemical abnormality of chronic kidney disease - mineral and bone disease (CKDMBD) syndrome. Moreover, emerging data suggests that the dysregulated FGF-23 and Klotho axis has many effects on the cardiovascular (CV) system and contributes significantly to the increased CV morbidity and mortality rates of CKD patients. This review examines recent evidence on the role of FGF-23 and Klotho in the development and progression of CV complications of uremia namely cardiac hypertrophy, uremic cardiomyopathy, and atherosclerotic and arteriosclerotic vascular lesions. Moreover, the available evidence on their associations with adverse clinical outcomes are summarized. Undoubtedly, more studies are needed to further elucidate the effects of FGF-23 and Klotho on the heart and vessels and to gain insights into their prognostic value as CV risk factors. Finally, large prospective studies are required to test the hypothesis that modification of their levels would have a favourable impact on the unacceptably high mortality rates of these patient populations.
Collapse
Affiliation(s)
- Evangelos Memmos
- Department of Nephrology, Aristotle University of Thessaloniki, General Hospital "Hippokratio", Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, General Hospital "Hippokratio", Thessaloniki, Greece
| |
Collapse
|
32
|
Tsuchiya K, Akihisa T. The Importance of Phosphate Control in Chronic Kidney Disease. Nutrients 2021; 13:nu13051670. [PMID: 34069053 PMCID: PMC8156430 DOI: 10.3390/nu13051670] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
A series of problems including osteopathy, abnormal serum data, and vascular calcification associated with chronic kidney disease (CKD) are now collectively called CKD-mineral bone disease (CKD-MBD). The pathophysiology of CKD-MBD is becoming clear with the emerging of αKlotho, originally identified as a progeria-causing protein, and bone-derived phosphaturic fibroblast growth factor 23 (FGF23) as associated factors. Meanwhile, compared with calcium and parathyroid hormone, which have long been linked with CKD-MBD, phosphate is now attracting more attention because of its association with complications and outcomes. Incidentally, as the pivotal roles of FGF23 and αKlotho in phosphate metabolism have been unveiled, how phosphate metabolism and hyperphosphatemia are involved in CKD-MBD and how they can be clinically treated have become of great interest. Thus, the aim of this review is reconsider CKD-MBD from the viewpoint of phosphorus, its involvement in the pathophysiology, causing complications, therapeutic approach based on the clinical evidence, and clarifying the importance of phosphorus management.
Collapse
Affiliation(s)
- Ken Tsuchiya
- Department of Blood Purification, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence:
| | - Taro Akihisa
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| |
Collapse
|
33
|
Jiang L, Yin Q, Yang M, Li M, Pan M, Han Y, Zhao Z, Wang Z, Zhu L, Wei Q, Tu Y, Gao M, Liu H, Zhang X, Liu BC, Wang B. Fibroblast Growth Factor 21 Predicts and Promotes Vascular Calcification in Haemodialysis Patients. KIDNEY DISEASES 2021; 7:227-240. [PMID: 34179118 DOI: 10.1159/000512750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/31/2020] [Indexed: 01/02/2023]
Abstract
Background Cardiovascular disease (CVD) is the leading cause of death in haemodialysis (HD) patients. Vascular calcification (VC) is dramatically accelerated and is strongly associated with CVD events and mortality in HD patients. VC coexists with osteoporosis in many studies. Fibroblast growth factor 21 (FGF21) which is known as an adipocytokine is a new hypoglycemic strategy and is inversely related to bone mineral density. Methods To evaluate the contribution of FGF21 to VC in HD patients, we detected circulating FGF21 levels and measured the whole thoracic aorta calcification scores (TACS) and calcification scores of the 3 segments of thoracic aorta, including ascending thoracic aorta (ATACS), aortic arch (AoACS), and descending thoracic aorta (DTACS) of our HD patients in this cross-sectional study. In addition, we pre-incubated human aortic endothelial cells (HAECs) with FGF21 in the presence or absence of parathyroid hormone (PTH) in vitro. Results The median serum FGF21 level in HD patients was 11-fold higher than that in healthy controls. Ln(FGF21) was positively correlated with Ln(TACS+1), Ln(ATACS+1), Ln(AoACS+1), and Ln(DTACS+1), respectively, in HD patients. Serum FGF21 was independently associated with TACS and ATACS, AoACS, and DTACS. FGF21 which was combined with age, calcium, and intact PTH demonstrated a high area under the curve of 0.84 with optimal sensitivity (84%) and specificity (71%) for the prediction of VC in HD patients. Our vitro results showed that FGF21 enhanced the calcification effect of PTH on HAECs by increasing calcium deposition and endothelial-to-mesenchymal transition. Conclusions Circulating FGF21 was notably higher and was a potential predictor and promoter of VC in HD patients.
Collapse
Affiliation(s)
- Liqiong Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.,Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Min Li
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingming Pan
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yuchen Han
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhen Zhao
- Department of Radiology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhi Wang
- Department of Radiology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lili Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qing Wei
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan Tu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
34
|
Salam S, Gallagher O, Gossiel F, Paggiosi M, Eastell R, Khwaja A. Vascular calcification relationship to vascular biomarkers and bone metabolism in advanced chronic kidney disease. Bone 2021; 143:115699. [PMID: 33091638 DOI: 10.1016/j.bone.2020.115699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Vascular calcification (VC) and renal osteodystrophy are important complications of advanced chronic kidney disease (CKD). High resolution peripheral quantitative computed tomography (HRpQCT) is able to assess bone microstructure in renal osteodystrophy and lower leg arterial calcification (LLAC) is usually seen as an incidental finding. LLAC can be a useful quantitative assessment of VC in CKD but the relationship between LLAC and vascular biomarkers and bone is unknown. We aimed to assess the relationship between LLAC and biomarkers, bone turnover and microstructure. METHODS In this cross-sectional study, fasting blood samples were taken from 69 CKD stages 4-5D patients and 68 healthy controls. HRpQCT of distal tibia and radius were performed. 43 CKD patients had trans-iliac bone biopsy after tetracycline labelling. RESULTS LLAC was more severe in CKD than controls (median [IQR] 1.043 [0.05-16.52] vs 0 [0-0.55] mgHA, p < 0.001). CKD patients with diabetes (28%) had significantly higher LLAC compared to non-diabetic CKD (median [IQR] 24.07 [3.42-61.30] vs 0.23 [0-3.78] mgHA, p < 0.001). LLAC mass in CKD correlated with serum phosphate (rho = 0.29, p < 0.05), calcium x phosphate product (rho = 0.31, p < 0.05), intact parathyroid hormone (rho = 0.38, p < 0.01), intact fibroblast growth factor-23 (iFGF23) (rho = 0.40, p = 0.001), total alkaline phosphatase (rho = 0.41, p < 0.001), bone alkaline phosphatase (rho = 0.29, p < 0.05), osteocalcin (rho = 0.32, p < 0.05), osteoprotegerin (rho = 0.40, p = 0.001) and dephosphorylated-uncarboxylated matrix Gla protein (rho = 0.31, p < 0.05). LLAC in CKD also correlated with worse distal tibia cortical bone mineral density, thickness and porosity. No association was found between LLAC and bone turnover, mineralization or volume on biopsy in CKD. In multivariate analysis, only age, diabetes, iPTH and iFGF23 were independently associated with LLAC in CKD. CONCLUSIONS High levels of PTH and FGF23, along with older age and the presence of diabetes may all play independent roles in the development of LLAC in advanced CKD.
Collapse
Affiliation(s)
- Syazrah Salam
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom; Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, United Kingdom.
| | - Orla Gallagher
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, United Kingdom
| | - Fatma Gossiel
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, United Kingdom
| | - Margaret Paggiosi
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, United Kingdom
| | - Richard Eastell
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, United Kingdom
| | - Arif Khwaja
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
35
|
Chen C, Wu L, Xie C, Zhao X, Mao H, Xing C. The role of AMP-activated protein kinase α1-mediated endoplasmic reticulum stress in alleviating the toxic effect of uremic toxin indoxyl sulfate on vascular endothelial cells by Klotho. J Appl Toxicol 2021; 41:1446-1455. [PMID: 33458837 PMCID: PMC8451879 DOI: 10.1002/jat.4135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Recently, the Klotho protein (Klotho) has received substantial attention as protective factor against cardiovascular complications of chronic kidney disease (CKD). However, the direct effect and mechanism of Klotho on endothelial cells injury are not well-known. In this study, we incubated human vein umbilical endothelial cells (HUVECs) with uremic toxin indoxyl sulfate (IS) to mimic CKD internal environment and investigated the direct effect of Klotho on the HUVECs injury induced by IS and to explore the mechanism in this process. We found IS inhibited cell viability, increased endoplasmic reticulum stress, and mediated apoptosis of HUVECs. Treatment with Klotho significantly attenuated IS-induced above effects. Furthermore, Klotho alleviated the IS toxic effect on HUVECs via promoting AMP-activated protein kinase (AMPK) α1 phosphorylation instead of directly upregulating AMPKα1, which could be partly blocked by AMPK pathway inhibitor-Compound C. In addition, Klotho also inhibited intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression induced by IS. Altogether, these results indicated that Klotho can protect HUVECs from IS-induced injury by alleviating AMPKα1-mediated endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lin Wu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Caidie Xie
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiufen Zhao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
36
|
High cut-off dialysis mitigates pro-calcific effects of plasma on vascular progenitor cells. Sci Rep 2021; 11:1144. [PMID: 33441772 PMCID: PMC7807056 DOI: 10.1038/s41598-020-80016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Mortality of patients with end-stage renal disease tremendously exceeds that of the general population due to excess cardiovascular morbidity. Large middle-sized molecules (LMM) including pro-inflammatory cytokines are major drivers of uremic cardiovascular toxicity and cannot be removed sufficiently by conventional high-flux (HFL) hemodialysis. We tested the ability of plasma from 19 hemodialysis patients participating in a trial comparing HFL with high cut-off (HCO) membranes facilitating removal of LMM to induce calcification in mesenchymal stromal cells (MSC) functioning as vascular progenitors. HCO dialysis favorably changed plasma composition resulting in reduced pro-calcific activity. LMM were removed more effectively by HCO dialysis including FGF23, a typical LMM we found to promote osteoblastic differentiation of MSC. Protein-bound uremic retention solutes with known cardiovascular toxicity but not LMM inhibited proliferation of MSC without direct toxicity in screening experiments. We could not attribute the effect of HCO dialysis on MSC calcification to distinct mediators. However, we found evidence of sustained reduced inflammation that might parallel other anti-calcifying mechanisms such as altered generation of extracellular vesicles. Our findings imply protection of MSC from dysfunctional differentiation by novel dialysis techniques targeted at removal of LMM. HCO dialysis might preserve their physiologic role in vascular regeneration and improve outcomes in dialysis patients.
Collapse
|
37
|
Bacchetta J, Bernardor J, Garnier C, Naud C, Ranchin B. Hyperphosphatemia and Chronic Kidney Disease: A Major Daily Concern Both in Adults and in Children. Calcif Tissue Int 2021; 108:116-127. [PMID: 31996964 DOI: 10.1007/s00223-020-00665-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
Hyperphosphatemia is common in chronic kidney disease (CKD). Often seen as the "silent killer" because of its dramatic effect on vascular calcifications, hyperphosphatemia explains, at least partly, the onset of the complex mineral and bone disorders associated with CKD (CKD-MBD), together with hypocalcemia and decreased 1-25(OH)2 vitamin D levels. The impact of CKD-MBD may be immediate with abnormalities of bone and mineral metabolism with secondary hyperparathyroidism and increased FGF23 levels, or delayed with poor growth, bone deformities, fractures, and vascular calcifications, leading to increased morbidity and mortality. The global management of CKD-MBD has been detailed in international guidelines for adults and children, however, with difficulties to obtain an agreement on the ideal PTH targets. The clinical management of hyperphosphatemia is a daily challenge for nephrologists and pediatric nephrologists, notably because of the phosphate overload in occidental diets that is mainly due to the phosphate "hidden" in food additives. The management begins with a dietary restriction of phosphate intake, and is followed by the use of calcium-based and non-calcium-based phosphate binders, and/or the intensification of dialysis. The objective of this review is to provide an overview of the pathophysiology of hyperphosphatemia in CKD, with a focus on its deleterious effects and a description of the clinical management of hyperphosphatemia in a more global setting of CKD-MBD.
Collapse
Affiliation(s)
- Justine Bacchetta
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence Des Maladies Rénales Rares, Centre de Référence Des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, Boulevard Pinel, 69677, Bron Cedex, France.
- Université de Lyon, Lyon, France.
- INSERM 1033 Research Unit, Lyon, France.
| | - Julie Bernardor
- Unité de Néphrologie pédiatrique, Hôpital L'Archet, CHU de Nice, Nice, France
| | - Charlotte Garnier
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence Des Maladies Rénales Rares, Centre de Référence Des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, Boulevard Pinel, 69677, Bron Cedex, France
| | - Corentin Naud
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence Des Maladies Rénales Rares, Centre de Référence Des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, Boulevard Pinel, 69677, Bron Cedex, France
| | - Bruno Ranchin
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence Des Maladies Rénales Rares, Centre de Référence Des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, Boulevard Pinel, 69677, Bron Cedex, France
| |
Collapse
|
38
|
Mosca M, Bernardor J, Lemoine S, Bertholet-Thomas A, Bacchetta J. Rare diseases of phosphate and calcium metabolism: Crossing glances between nephrology and endocrinology. ANNALES D'ENDOCRINOLOGIE 2020; 82:30-35. [PMID: 33316222 DOI: 10.1016/j.ando.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rare diseases of phosphate/calcium metabolism correspond to a wide and heterogeneous spectrum of diseases. Recent knowledge in physiology and genetics has made it possible to better characterize them and to propose attractive therapeutic approaches based on the underlying pathophysiology. These diseases are often at the interface between nephrology and endocrinology. In this spirit of a multidisciplinary care, each specialty can bring its own critical point of view and its own specificities to improve patient care. The objective of this manuscript is to "read" with a nephrologist's point of view the main frameworks of diseases of phosphate/calcium metabolism, to illustrate the three crucial messages of nephro-protection sent to endocrinologists. First, calciuria must be interpreted both in absolute value (concentration hypercalciuria) and in ratio (flow hypercalciuria). Second, renal monitoring of therapies inducing hypercalciuria on kidneys with normal renal function (e.g. active vitamin D analogs or teriparatide) should be systematic. Last, hyperphosphatemia, often latent in hypoparathyroidism and pseudo-hypoparathyroidism, should be detected and at least benefit from dietary measures, in the context of Western diets rich in phosphate hidden in food additives.
Collapse
Affiliation(s)
- Mélodie Mosca
- Centre de référence des maladies rares du calcium et du phosphore, centre de référence des maladies rénales rares, filières de santé maladies rares OSCAR, ORKID et ERKNet, service de néphrologie rhumatologie et dermatologie pédiatriques, hôpital femme mère enfant, Bron, France
| | - Julie Bernardor
- INSERM 1033, prévention des maladies osseuses, Lyon, France; Service de néphrologie pédiatrique, CHU de Nice, hôpital Archet, Nice, France
| | - Sandrine Lemoine
- Service d'exploration fonctionnelle rénale, centre de référence des maladies rares du calcium et du phosphore, centre de référence des maladies rénales rares, filières de santé maladies rares OSCAR et ORKID, département de néphrologie, hôpital Edouard-Herriot, Lyon, France; Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Aurélia Bertholet-Thomas
- Centre de référence des maladies rares du calcium et du phosphore, centre de référence des maladies rénales rares, filières de santé maladies rares OSCAR, ORKID et ERKNet, service de néphrologie rhumatologie et dermatologie pédiatriques, hôpital femme mère enfant, Bron, France; INSERM 1033, prévention des maladies osseuses, Lyon, France
| | - Justine Bacchetta
- Centre de référence des maladies rares du calcium et du phosphore, centre de référence des maladies rénales rares, filières de santé maladies rares OSCAR, ORKID et ERKNet, service de néphrologie rhumatologie et dermatologie pédiatriques, hôpital femme mère enfant, Bron, France; INSERM 1033, prévention des maladies osseuses, Lyon, France; Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France.
| |
Collapse
|
39
|
Yeung SMH, Bakker SJL, Laverman GD, De Borst MH. Fibroblast Growth Factor 23 and Adverse Clinical Outcomes in Type 2 Diabetes: a Bitter-Sweet Symphony. Curr Diab Rep 2020; 20:50. [PMID: 32857288 PMCID: PMC7455586 DOI: 10.1007/s11892-020-01335-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) is a key phosphate-regulating hormone that has been associated with adverse outcomes in patients with chronic kidney disease (CKD). Emerging data suggest that FGF23 plays a specific role in type 2 diabetes, partly independent of kidney function. We aimed to summarize current literature on the associations between FGF23 and outcomes in patients with type 2 diabetes with or without CKD. RECENT FINDINGS Several cohort studies have shown strong associations between plasma FGF23 and cardiovascular outcomes in diabetic CKD. Moreover, recent data suggest that FGF23 are elevated and may also be a risk factor for cardiovascular disease and mortality in type 2 diabetes patients without CKD, although the magnitude of the association is smaller than in CKD patients. Diabetes-related factors may influence plasma FGF23 levels, and a higher FGF23 levels seem to contribute to a higher cardiovascular and mortality risk in patients with type 2 diabetes. Although this risk may be relevant in diabetic individuals with preserved kidney function, it is strongly accentuated in diabetic nephropathy. Future studies should clarify if FGF23 is merely a disease severity marker or a contributor to adverse outcomes in type 2 diabetes and establish if antidiabetic medication can modify FGF23 levels.
Collapse
Affiliation(s)
- Stanley M. H. Yeung
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Gozewijn D. Laverman
- Department of Internal Medicine/Nephrology, Ziekenhuisgroep Twente Hospital, Almelo and Hengelo, the Netherlands
| | - Martin H. De Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
40
|
Fitzpatrick J, Kim ED, Sozio SM, Jaar BG, Estrella MM, Monroy-Trujillo JM, Parekh RS. Calcification Biomarkers, Subclinical Vascular Disease, and Mortality Among Multiethnic Dialysis Patients. Kidney Int Rep 2020; 5:1729-1737. [PMID: 33102965 PMCID: PMC7569684 DOI: 10.1016/j.ekir.2020.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 06/21/2020] [Accepted: 07/28/2020] [Indexed: 01/15/2023] Open
Abstract
Introduction Vascular calcification and stiffness are associated with higher mortality and cardiovascular disease in hemodialysis patients, but the underlying mechanism is not well elucidated and previous studies have been contradictory. We sought to determine the association of circulating calcification biomarkers with calcification, stiffness, and mortality in a multiethnic incident dialysis population. Methods Among 391 incident hemodialysis participants enrolled in the Predictors of Arrhythmic and Cardiovascular Risk in End Stage Renal Disease (PACE) study, we examined the cross-sectional associations of baseline fibroblast growth factor 23 (FGF23), desphospho-uncarboxylated matrix Gla protein (dp-ucMGP), fetuin-A, and osteoprotegerin (OPG) according to total coronary artery calcium score (CAC, using the Agatston calcification criteria) at baseline, vascular stiffness (pulse wave velocity [PWV]) over 4 study visits, and all-cause mortality. Results Patients' mean age was 55 years; 40% were female, 72% were African American, and 58% had diabetes. Higher OPG and FGF23 were associated with a 1.09-fold (per 5-pmol/l increase in OPG; 95% confidence interval [CI]: 1.01-1.17) and 1.12-fold (per increase of 100 log RU/ml in FGF23; 95% CI: 1.02‒1.34) higher prevalence of CAC, independent of demographics, comorbidities, dialysis factors, and serum klotho levels. Higher OPG was associated with higher baseline PWV. Higher FGF23 was associated with lower PWV over follow-up. dp-ucMGP and fetuin-A were not associated with either CAC or vascular stiffness. After adjustment, circulating biomarkers were not associated with mortality risk. Conclusion Several circulating calcification biomarkers were only modestly associated with subclinical cardiovascular disease in an incident multiethnic hemodialysis population; none were associated with mortality. Understanding whether these associations persist in larger, diverse hemodialysis populations is warranted before planning trials.
Collapse
Affiliation(s)
- Jessica Fitzpatrick
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Esther D Kim
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, USA
| | - Stephen M Sozio
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bernard G Jaar
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Nephrology Center of Maryland, Baltimore, Maryland, USA
| | - Michelle M Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco, San Franscisco, California, USA.,Department of Medicine, San Francisco VA Medical Center, San Francisco, California, USA
| | - Jose M Monroy-Trujillo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rulan S Parekh
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Nephrology, Department of Pediatrics and Medicine, The Hospital for Sick Children, University Health Network and University of Toronto, Ontario, Canada
| |
Collapse
|
41
|
Therapeutic options for chronic kidney disease-associated pulmonary hypertension. Curr Opin Nephrol Hypertens 2020; 29:497-507. [DOI: 10.1097/mnh.0000000000000624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Kondo Y, Komaba H, Fukagawa M. Endocrine fibroblast growth factors as potential biomarkers for chronic kidney disease. Expert Rev Mol Diagn 2020; 20:715-724. [PMID: 32513031 DOI: 10.1080/14737159.2020.1780918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Among the family of fibroblast growth factors (FGFs), FGF19, FGF21, and FGF23 act as circulating hormones and are called endocrine FGFs. FGF19 and FGF21 regulate bile acid and energy homeostasis, respectively, whereas FGF23 regulates vitamin D and phosphate homeostasis. Accumulating evidence suggests that FGF23 plays a critical role in disturbed mineral metabolisms, left ventricular hypertrophy, immunosuppression, inflammation, among others in patients with chronic kidney disease (CKD), highlighting the potential both as a biomarker and a therapeutic target. Several studies have also examined the potential role of FGF19 and FGF21 in CKD patients. AREAS COVERED In this review, we present a brief overview of the biology of FGF19, FGF21, and FGF23, and summarize recent clinical and experimental studies on the pathophysiological roles of endocrine FGFs, mainly FGF23, in CKD patients. EXPERT OPINION Among the endocrine FGFs, FGF23 represents the most promising biomarker in CKD patients. If future studies confirm that FGF23 is directly toxic in CKD patients, FGF23 could be regarded as a therapeutic target and its measurement would be valuable if applied in clinical practice. Despite their potentially important roles, the clinical relevance of FGF19 and FGF21 in CKD patients is unclear, and much more studies are required.
Collapse
Affiliation(s)
- Yuichiro Kondo
- Interactive Translational Research Center for Kidney Diseases, Tokai University School of Medicine , Isehara, Japan
| | - Hirotaka Komaba
- Interactive Translational Research Center for Kidney Diseases, Tokai University School of Medicine , Isehara, Japan.,Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine , Isehara, Japan.,The Institute of Medical Sciences, Tokai University , Isehara, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine , Isehara, Japan
| |
Collapse
|
43
|
Bouma-de Krijger A, Vervloet MG. Fibroblast growth factor 23: are we ready to use it in clinical practice? J Nephrol 2020; 33:509-527. [PMID: 32130720 PMCID: PMC7220896 DOI: 10.1007/s40620-020-00715-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
Patients with chronic kidney disease (CKD) have a greatly enhanced risk of cardiovascular morbidity and mortality. Over the past decade it has come clear that a disturbed calcium-phosphate metabolism, with Fibroblast Growth Factor-23 as a key hormone, is partly accountable for this enhanced risk. Numerous studies have been performed unravelling FGF23s actions and its association with clinical conditions. As FGF23 is strongly associated with adverse outcome it may be a promising biomarker for risk prediction or, even more important, targeting FGF23 may be a strategy to improve patient outcome. This review elaborates on the clinical usefulness of FGF23 measurement. Firstly it discusses the reliability of the FGF23 measurement. Secondly, it evaluates whether FGF23 measurement may lead to improved patient risk classification. Finally, and possibly most importantly, this review evaluates if lowering of FGF23 should be a target for therapy. For this, the review discusses the current evidence indicating that FGF23 may be in the causal pathway to cardiovascular pathology, provides an overview of strategies to lower FGF23 levels and discusses the current evidence concerning the benefit of lowering FGF23.
Collapse
Affiliation(s)
- Annet Bouma-de Krijger
- Department of Nephrology, Amsterdam Cardiovascular Science, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marc G. Vervloet
- Department of Nephrology, Amsterdam Cardiovascular Science, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
44
|
Nelson AJ, Raggi P, Wolf M, Gold AM, Chertow GM, Roe MT. Targeting Vascular Calcification in Chronic Kidney Disease. JACC Basic Transl Sci 2020; 5:398-412. [PMID: 32368697 PMCID: PMC7188874 DOI: 10.1016/j.jacbts.2020.02.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
Cardiovascular (CV) disease remains an important cause of morbidity and mortality for patients with chronic kidney disease (CKD). Although clustering of traditional risk factors with CKD is well recognized, kidney-specific mechanisms are believed to drive the disproportionate burden of CV disease. One perturbation that is frequently observed at high rates in patients with CKD is vascular calcification, which may be a central mediator for an array of CV sequelae. This review summarizes the pathophysiological bases of intimal and medial vascular calcification in CKD, current strategies for diagnosis and management, and posits vascular calcification as a risk marker and therapeutic target.
Collapse
Key Words
- CAC, coronary artery calcification
- CI, confidence interval
- CKD, chronic kidney disease
- CT, computed tomography
- CV, cardiovascular
- CVD, cardiovascular disease
- ESKD, end-stage kidney disease
- FGF, fibroblast growth factor
- HR, hazard ratio
- LDL-C, low-density lipoprotein cholesterol
- MGP, matrix Gla protein
- PTH, parathyroid hormone
- VSMC, vascular smooth muscle cell
- chronic kidney disease
- dialysis
- eGFR, estimated glomerular filtration rate
- medial calcification
- vascular calcification
Collapse
Affiliation(s)
- Adam J. Nelson
- Division of Cardiology, Duke Clinical Research Institute, Durham, North Carolina
| | - Paolo Raggi
- Division of Cardiology, Department of Medicine, University of Alberta and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, and Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Alexander M. Gold
- Research and Development, Sanifit Therapeutics, San Diego, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Glenn M. Chertow
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Matthew T. Roe
- Division of Cardiology, Duke Clinical Research Institute, Durham, North Carolina
| |
Collapse
|
45
|
Research Models for Studying Vascular Calcification. Int J Mol Sci 2020; 21:ijms21062204. [PMID: 32210002 PMCID: PMC7139511 DOI: 10.3390/ijms21062204] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Calcification of the vessel wall contributes to high cardiovascular morbidity and mortality. Vascular calcification (VC) is a systemic disease with multifaceted contributing and inhibiting factors in an actively regulated process. The exact underlying mechanisms are not fully elucidated and reliable treatment options are lacking. Due to the complex pathophysiology, various research models exist evaluating different aspects of VC. This review aims to give an overview of the cell and animal models used so far to study the molecular processes of VC. Here, in vitro cell culture models of different origins, ex vivo settings using aortic tissue and various in vivo disease-induced animal models are summarized. They reflect different aspects and depict the (patho)physiologic mechanisms within the VC process.
Collapse
|
46
|
COBAN M, YİLMAZ U, DOLU S, ASİLTURK E, SOZER Y, EROL B, ELLİDAG HY. Intact Fibroblast Growth Factor 23 and Peripheral Vascular Complications in Patients on Hemodialysis. DICLE MEDICAL JOURNAL 2020. [DOI: 10.5798/dicletip.706013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Muñoz-Castañeda JR, Rodelo-Haad C, Pendon-Ruiz de Mier MV, Martin-Malo A, Santamaria R, Rodriguez M. Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins (Basel) 2020; 12:E185. [PMID: 32188018 PMCID: PMC7150840 DOI: 10.3390/toxins12030185] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Fibroblast Growth Factor 23 (FGF23) and Klotho play an essential role in the regulation of mineral metabolism, and both are altered as a consequence of renal failure. FGF23 increases to augment phosphaturia, which prevents phosphate accumulation at the early stages of chronic kidney disease (CKD). This effect of FGF23 requires the presence of Klotho in the renal tubules. However, Klotho expression is reduced as soon as renal function is starting to fail to generate a state of FGF23 resistance. Changes in these proteins directly affect to other mineral metabolism parameters; they may affect renal function and can produce damage in other organs such as bone, heart, or vessels. Some of the mechanisms responsible for the changes in FGF23 and Klotho levels are related to modifications in the Wnt signaling. This review examines the link between FGF23/Klotho and Wnt/β-catenin in different organs: kidney, heart, and bone. Activation of the canonical Wnt signaling produces changes in FGF23 and Klotho and vice versa; therefore, this pathway emerges as a potential therapeutic target that may help to prevent CKD-associated complications.
Collapse
Affiliation(s)
- Juan Rafael Muñoz-Castañeda
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Cristian Rodelo-Haad
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Pendon-Ruiz de Mier
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alejandro Martin-Malo
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rafael Santamaria
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Mariano Rodriguez
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
48
|
Bacchetta J. Treatment of hyperphosphatemia: the dangers of high PTH levels. Pediatr Nephrol 2020; 35:493-500. [PMID: 31696357 DOI: 10.1007/s00467-019-04400-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/01/2022]
Abstract
The control of secondary hyperparathyroidism (SHPT) in pediatric chronic kidney disease is of utmost importance. Even though parathyroid hormone (PTH) is an important biomarker of mineral and bone disorders associated to CKD (CKD-MBD), calcium, phosphate, alkaline phosphatase, and vitamin D are also crucial and should be assessed together. In pediatric dialysis, high PTH levels have been associated with impaired longitudinal growth, bone disease, cardiovascular comorbidities, left ventricular hypertrophy, anemia, and even mortality (when PTH levels were above 500 pg/mL, i.e., 8.3-fold the upper normal limit (UNL)). As such, high PTH levels are for sure deleterious, but too low PTH levels have also been shown to impair growth and to promote vascular calcifications because of the underlying adynamic bone. This manuscript is part of a pros and cons debate for keeping PTH levels within the normal range in pediatric CKD, focusing on the pros. High bone turnover lesions can occur at lower PTH levels than "current" guidelines would suggest; thus, PTH alone is not a good predictor of the underlying osteodystrophy. PTH results can vary locally depending on the assay. Existing guidelines for PTH targets are conflicting and based on a very little evidence. However, the 120-180 pg/mL (2- to 3-fold the UNL) range is common to most of the guidelines; it seems to be a reasonable target in children undergoing dialysis, even though it does not correspond to "normal" PTH levels. As always, the philosophy of PTH levels in pediatric dialysis may be balanced, i.e., "not too low, not too high, and keep phosphate under control."
Collapse
Affiliation(s)
- Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, Boulevard Pinel, 69677, Bron Cedex, France. .,Université de Lyon, Lyon, France. .,INSERM 1033 Research Unit, Université de Lyon, Lyon, France.
| |
Collapse
|
49
|
Salanova Villanueva L, Gil Giraldo Y, Santos Sánchez-Rey B, Aguilera Peralta A. Paricalcitol regulatory effect on inflammatory, fibrotic and anticalcificating parameters in renal patiente. Far beyond mineral bone disease regulation. Nefrologia 2020; 40:171-179. [PMID: 31740151 DOI: 10.1016/j.nefro.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/28/2019] [Accepted: 08/23/2019] [Indexed: 01/09/2023] Open
Abstract
BACKWARD Cardiovascular events are the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). Inflammation and mineral-bone disorder are pathological conditions that have been associated with an increased cardiovascular risk. OBJECTIVE Show paricalcitol regulation overinflammatory, fibrotic and mineral disorder parameters in CKD. MATERIAL AND METHODS Prospective Study in 46 CKD stages III-V patients without dialysis patients whith elevated parathormone in which we introduced paricalcitol. We evaluated classic and newest mineral and bone metabolism serum parameters (calcium, phosphorus, parathormone, fibroblast growth factor-23 [FGF-23], Klotho, calcidiol), inflammatory-fibrosis and anticalcifying parameters (interleukin-6 and 10, tumor necrosis factor-a [TNF- α], transforming growth factor-b [TGF-β],bone morphogenic protein-7 [BMP-7] and fetuin-A) for four months. RESULTS At the end of study soluble Klotho increased (p=.001), FGF-23 remained stable, calcium and phosphorus levels were not increased, calcidiol increased (p=.010) and PTH decreased (p=.002). Inflammation-fibrosis and calcification parameters showed positive regulation after paricalcitol treatment: interleukin-6 decreased significantly (p=.001) and also TNF-α did (p=.005), on the contrary, interleukin-10 and fetuin-A increased (p=.001 for both). Anti-fibrosis marker BMP-7 increased (p=.001) and TGF-b decreased (p=.001). We did not find significant changes in renal function. CONCLUSIONS Paricalcitol treatment might be profitable in regulating inflammatory and anticalcificant parameters, unmodified calcium or phosphorus seric levels and preserving kidney function in renal patients with no dialysis. Our selected parameters could indicate paricalcitol effects in mineral and endothelial disorder related to renal disease.
Collapse
|
50
|
Jagieła J, Bartnicki P, Rysz J. Selected cardiovascular risk factors in early stages of chronic kidney disease. Int Urol Nephrol 2020; 52:303-314. [PMID: 31955363 DOI: 10.1007/s11255-019-02349-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases, including hypertension, congestive heart failure, myocardial infarction, stroke and atherosclerosis, are common in patients with chronic kidney disease. Aside from the standard biomarkers, measured to determine cardiovascular risk, new ones have emerged: markers of oxidative stress, apoptosis, inflammation, vascular endothelium dysfunction, atherosclerosis, organ calcification and fibrosis. Unfortunately, their utility for routine clinical application remains to be elucidated. A causal relationship between new markers and cardiovascular diseases in patients with chronic kidney disease remains to be established. First of all, there is a lack of large, randomized trials. Moreover, most studies focus on patients with end-stage renal disease as well as on dialysed patients. In such patients, cardiovascular diseases are already present and advanced while early detection of cardiovascular disease risk factor in patients with early-stages of chronic kidney disease would allow more precise prognosis and, as a result, changes in treatment algorithm. In this article, we conduct a comprehensive review of literature for publications relating to cardiovascular risk factors in patients with early-stages of chronic kidney disease. Overall, there are many encouraging advances in detection of cardiovascular risk factors that are making the future more promising for patients suffering from chronic kidney disease.
Collapse
Affiliation(s)
- Joanna Jagieła
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Żeromskiego 113, 90-549, Lodz, Poland.
| | - Piotr Bartnicki
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Żeromskiego 113, 90-549, Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Żeromskiego 113, 90-549, Lodz, Poland
| |
Collapse
|