1
|
Collodet C, Blust K, Gkouma S, Ståhl E, Chen X, Hartman J, Hedhammar M. Development and characterization of a recombinant silk network for 3D culture of immortalized and fresh tumor-derived breast cancer cells. Bioeng Transl Med 2023; 8:e10537. [PMID: 37693069 PMCID: PMC10487315 DOI: 10.1002/btm2.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 09/12/2023] Open
Abstract
Traditional cancer models rely on 2D cell cultures or 3D spheroids, which fail to recapitulate cell-extracellular matrix (ECM) interactions, a key element of tumor development. Existing hydrogel-based 3D alternatives lack mechanical support for cell growth and often suffer from low reproducibility. Here we report a novel strategy to make 3D models of breast cancer using a tissue-like, well-defined network environment based on recombinant spider silk, functionalized with a cell adhesion motif from fibronectin (FN-silk). With this approach, the canonical cancer cells SK-BR-3, MCF-7, and MDA-MB-231, maintain their characteristic expression of markers (i.e., ERα, HER2, and PGR) while developing distinct morphology. Transcriptomic analyses demonstrate how culture in the FN-silk networks modulates the biological processes of cell adhesion and migration while affecting physiological events involved in malignancy, such as inflammation, remodeling of the ECM, and resistance to anticancer drugs. Finally, we show that integration in FN-silk networks promotes the viability of cells obtained from the superficial scraping of patients' breast tumors.
Collapse
Affiliation(s)
- Caterina Collodet
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Kelly Blust
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Savvini Gkouma
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Emmy Ståhl
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Xinsong Chen
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | - Johan Hartman
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - My Hedhammar
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
2
|
Singh M, Zhou X, Chen X, Santos GS, Peuget S, Cheng Q, Rihani A, Arnér ESJ, Hartman J, Selivanova G. Identification and targeting of selective vulnerability rendered by tamoxifen resistance. Breast Cancer Res 2020; 22:80. [PMID: 32727562 PMCID: PMC7388523 DOI: 10.1186/s13058-020-01315-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The estrogen receptor (ER)-positive breast cancer represents over 80% of all breast cancer cases. Even though adjuvant hormone therapy with tamoxifen (TMX) is saving lives of patients with ER-positive breast cancer, the acquired resistance to TMX anti-estrogen therapy is the main hurdle for successful TMX therapy. Here we address the mechanism for TMX resistance and explore the ways to eradicate TMX-resistant breast cancer in both in vitro and ex vivo experiments. EXPERIMENTAL DESIGN To identify compounds able to overcome TMX resistance, we used short-term and long-term viability assays in cancer cells in vitro and in patient samples in 3D ex vivo, analysis of gene expression profiles and cell line pharmacology database, shRNA screen, CRISPR-Cas9 genome editing, real-time PCR, immunofluorescent analysis, western blot, measurement of oxidative stress using flow cytometry, and thioredoxin reductase 1 enzymatic activity. RESULTS Here, for the first time, we provide an ample evidence that a high level of the detoxifying enzyme SULT1A1 confers resistance to TMX therapy in both in vitro and ex vivo models and correlates with TMX resistance in metastatic samples in relapsed patients. Based on the data from different approaches, we identified three anticancer compounds, RITA (Reactivation of p53 and Induction of Tumor cell Apoptosis), aminoflavone (AF), and oncrasin-1 (ONC-1), whose tumor cell inhibition activity is dependent on SULT1A1. We discovered thioredoxin reductase 1 (TrxR1, encoded by TXNRD1) as a target of bio-activated RITA, AF, and ONC-1. SULT1A1 depletion prevented the inhibition of TrxR1, induction of oxidative stress, DNA damage signaling, and apoptosis triggered by the compounds. Notably, RITA efficiently suppressed TMX-unresponsive patient-derived breast cancer cells ex vivo. CONCLUSION We have identified a mechanism of resistance to TMX via hyperactivated SULT1A1, which renders selective vulnerability to anticancer compounds RITA, AF, and ONC-1, and provide a rationale for a new combination therapy to overcome TMX resistance in breast cancer patients. Our novel findings may provide a strategy to circumvent TMX resistance and suggest that this approach could be developed further for the benefit of relapsed breast cancer patients.
Collapse
Affiliation(s)
- Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| | - Xiaolei Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden
| | - Gema Sanz Santos
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Ali Rihani
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden.
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
3
|
Costa TDF, Zhuang T, Lorent J, Turco E, Olofsson H, Masia-Balague M, Zhao M, Rabieifar P, Robertson N, Kuiper R, Sjölund J, Spiess M, Hernández-Varas P, Rabenhorst U, Roswall P, Ma R, Gong X, Hartman J, Pietras K, Adams PD, Defilippi P, Strömblad S. PAK4 suppresses RELB to prevent senescence-like growth arrest in breast cancer. Nat Commun 2019; 10:3589. [PMID: 31399573 PMCID: PMC6689091 DOI: 10.1038/s41467-019-11510-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
Overcoming cellular growth restriction, including the evasion of cellular senescence, is a hallmark of cancer. We report that PAK4 is overexpressed in all human breast cancer subtypes and associated with poor patient outcome. In mice, MMTV-PAK4 overexpression promotes spontaneous mammary cancer, while PAK4 gene depletion delays MMTV-PyMT driven tumors. Importantly, PAK4 prevents senescence-like growth arrest in breast cancer cells in vitro, in vivo and ex vivo, but is not needed in non-immortalized cells, while PAK4 overexpression in untransformed human mammary epithelial cells abrogates H-RAS-V12-induced senescence. Mechanistically, a PAK4 – RELB - C/EBPβ axis controls the senescence-like growth arrest and a PAK4 phosphorylation residue (RELB-Ser151) is critical for RELB-DNA interaction, transcriptional activity and expression of the senescence regulator C/EBPβ. These findings establish PAK4 as a promoter of breast cancer that can overcome oncogene-induced senescence and reveal a selective vulnerability of cancer to PAK4 inhibition. Oncogene induced senescence protects cells from unrestricted growth and cancer. Here, the authors show that PAK4 overrides this senescence in breast cancer cells through phosphorylation of RELB, thereby inhibiting transcription of the senescence regulator C/EBPβ.
Collapse
Affiliation(s)
- Tânia D F Costa
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Ting Zhuang
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Julie Lorent
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Emilia Turco
- Department of Genetics, Biology and Biochemistry, University of Torino, 10126, Torino, Italy
| | - Helene Olofsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Miriam Masia-Balague
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Miao Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Parisa Rabieifar
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Neil Robertson
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Raoul Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, SE-141 57, Huddinge, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81, Lund, Sweden
| | - Matthias Spiess
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Pablo Hernández-Varas
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Uta Rabenhorst
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Pernilla Roswall
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Ran Ma
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Xiaowei Gong
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81, Lund, Sweden.,Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Peter D Adams
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.,Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Paola Defilippi
- Department of Genetics, Biology and Biochemistry, University of Torino, 10126, Torino, Italy
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden.
| |
Collapse
|
4
|
Pellegrini P, Dyczynski M, Sbrana FV, Karlgren M, Buoncervello M, Hägg-Olofsson M, Ma R, Hartman J, Bajalica-Lagercrantz S, Grander D, Kharaziha P, De Milito A. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells. Oncotarget 2018; 7:35703-35723. [PMID: 27248168 PMCID: PMC5094956 DOI: 10.18632/oncotarget.9601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023] Open
Abstract
Sustained autophagy contributes to the metabolic adaptation of cancer cells to hypoxic and acidic microenvironments. Since cells in such environments are resistant to conventional cytotoxic drugs, inhibition of autophagy represents a promising therapeutic strategy in clinical oncology. We previously reported that the efficacy of hydroxychloroquine (HCQ), an autophagy inhibitor under clinical investigation is strongly impaired in acidic tumor environments, due to poor uptake of the drug, a phenomenon widely associated with drug resistance towards many weak bases. In this study we identified salinomycin (SAL) as a potent inhibitor of autophagy and cytotoxic agent effective on several cancer cell lines under conditions of transient and chronic acidosis. Since SAL has been reported to specifically target cancer-stem cells (CSC), we used an established model of breast CSC and CSC derived from breast cancer patients to examine whether this specificity may be associated with autophagy inhibition. We indeed found that CSC-like cells are more sensitive to autophagy inhibition compared to cells not expressing CSC markers. We also report that the ability of SAL to inhibit mammosphere formation from CSC-like cells was dramatically enhanced in acidic conditions. We propose that the development and use of clinically suitable SAL derivatives may result in improved autophagy inhibition in cancer cells and CSC in the acidic tumor microenvironment and lead to clinical benefits.
Collapse
Affiliation(s)
- Paola Pellegrini
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Matheus Dyczynski
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | | | - Maria Karlgren
- Department of Pharmacy and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP) - Science for Life Laboratory, Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, Sweden
| | | | - Maria Hägg-Olofsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Ran Ma
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | | | - Dan Grander
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Pedram Kharaziha
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Ma R, Karthik GM, Lövrot J, Haglund F, Rosin G, Katchy A, Zhang X, Viberg L, Frisell J, Williams C, Linder S, Fredriksson I, Hartman J. Estrogen Receptor β as a Therapeutic Target in Breast Cancer Stem Cells. J Natl Cancer Inst 2017; 109:1-14. [PMID: 28376210 PMCID: PMC5441302 DOI: 10.1093/jnci/djw236] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 09/20/2016] [Indexed: 12/14/2022] Open
Abstract
Background Breast cancer cells with tumor-initiating capabilities (BSCs) are considered to maintain tumor growth and govern metastasis. Hence, targeting BSCs will be crucial to achieve successful treatment of breast cancer. Methods We characterized mammospheres derived from more than 40 cancer patients and two breast cancer cell lines for the expression of estrogen receptors (ERs) and stem cell markers. Mammosphere formation and proliferation assays were performed on cells from 19 cancer patients and five healthy individuals after incubation with ER-subtype selective ligands. Transcriptional analysis was performed to identify pathways activated in ERβ-stimulated mammospheres and verified using in vitro experiments. Xenograft models (n = 4 or 5 per group) were used to study the role of ERs during tumorigenesis. Results We identified an absence of ERα but upregulation of ERβ in BSCs associated with phenotypic stem cell markers and responsible for the proliferative role of estrogens. Knockdown of ERβ caused a reduction of mammosphere formation in cell lines and in patient-derived cancer cells (40.7%, 26.8%, and 39.1%, respectively). Gene set enrichment analysis identified glycolysis-related pathways (false discovery rate < 0.001) upregulated in ERβ-activated mammospheres. We observed that tamoxifen or fulvestrant alone was insufficient to block proliferation of patient-derived BSCs while this could be accomplished by a selective inhibitor of ERβ (PHTPP; 53.7% in luminal and 45.5% in triple-negative breast cancers). Furthermore, PHTPP reduced tumor initiation in two patient-derived xenografts (75.9% and 59.1% reduction in tumor volume, respectively) and potentiated tamoxifen-mediated inhibition of tumor growth in MCF7 xenografts. Conclusion We identify ERβ as a mediator of estrogen action in BSCs and a novel target for endocrine therapy.
Collapse
Affiliation(s)
- Ran Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Govindasamy-Muralidharan Karthik
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - John Lövrot
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Laboratory, Stockholm, Sweden
| | - Gustaf Rosin
- Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anne Katchy
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Xiaonan Zhang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Viberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Jan Frisell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,Science for Life Laboratory, Department of Proteomics, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Stig Linder
- Department of Medical and Health Sciences, Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Irma Fredriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Laboratory, Stockholm, Sweden
| |
Collapse
|
6
|
Campos AHJFM, Carraro DM, Soares FA. Biobanking and cytopathology: Challenges and opportunities from a Brazilian perspective. Cancer Cytopathol 2017; 125:373-377. [PMID: 28371528 DOI: 10.1002/cncy.21836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Antonio Hugo J F M Campos
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, Sao Paulo, Brazil.,A.C. Camargo Biobank, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Dirce Maria Carraro
- A.C. Camargo Biobank, A.C. Camargo Cancer Center, Sao Paulo, Brazil.,International Research Center-CIPE, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | | |
Collapse
|
7
|
Karthik GM, Ma R, Lövrot J, Kis LL, Lindh C, Blomquist L, Fredriksson I, Bergh J, Hartman J. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells. Cancer Lett 2015. [PMID: 26208432 DOI: 10.1016/j.canlet.2015.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer cells with stem cell characteristics (CSC) are a distinct cell population with phenotypic similarities to mammary stem cells. CSCs are important drivers of tumorigenesis and the metastatic process. Tamoxifen is the most widely used hormonal therapy for estrogen receptor (ER) positive cancers. In our study, tamoxifen was effective in reducing proliferation of ER + adherent cancer cells, but not their CSC population. We isolated, expanded and incubated CSC from seven breast cancers with or without tamoxifen. By genome-wide transcriptional analysis we identified tamoxifen-induced transcriptional pathways associated with ribosomal biogenesis and mRNA translation, both regulated by the mTOR-pathway. We observed induction of the key mTOR downstream targets S6K1, S6RP and 4E-BP1 in-patient derived CSCs by tamoxifen on protein level. Using the mTOR inhibitors rapamycin, everolimus and PF-04691502 (a dual PI3K/mTOR inhibitor) and in combination with tamoxifen, significant reduction in mammosphere formation was observed. Hence, we suggest that the CSC population play a significant role during endocrine resistance through activity of the mTOR pathway. In addition, tamoxifen further stimulates the mTOR-pathway but can be antagonized using mTOR-inhibitors.
Collapse
Affiliation(s)
| | - Ran Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - John Lövrot
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lorand Levente Kis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Claes Lindh
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | | | - Irma Fredriksson
- Department of Breast and Endocrine Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Radiumhemmet - Karolinska Oncology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden.
| |
Collapse
|
8
|
Krishnamurthy S. Biospecimen repositories and cytopathology. Cancer Cytopathol 2014; 123:152-61. [PMID: 25524469 DOI: 10.1002/cncy.21505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
Biospecimen repositories are important for the advancement of biomedical research. Literature on the potential for biobanking of fine-needle aspiration, gynecologic, and nongynecologic cytology specimens is very limited. The potential for biobanking of these specimens as valuable additional resources to surgically excised tissues appears to be excellent. The cervicovaginal specimens that can be used for biobanking include Papanicolaou-stained monolayer preparations and residual material from liquid-based cytology preparations. Different types of specimen preparations of fine-needle aspiration and nongynecologic specimens, including Papanicolaou-stained and Diff-Quik-stained smears, cell blocks. and dedicated passes/residual material from fine-needle aspiration stored frozen in a variety of solutions, can be used for biobanking. Because of several gaps in knowledge regarding the standard of operative procedures for the procurement, storage, and quality assessment of cytology specimens, further studies as well as national conferences and workshops are needed not only to create awareness but also to facilitate the use of cytopathology specimens for biobanking.
Collapse
Affiliation(s)
- Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
9
|
Gao B, Ning SF, Tang YP, Liu HZ, Li JL, Zhang LT. Differential mRNA expression profiles between hepatocellular carcinoma and adjacent normal liver tissue. Shijie Huaren Xiaohua Zazhi 2014; 22:4734-4744. [DOI: 10.11569/wcjd.v22.i31.4734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify differentially expressed genes between hepatocellular carcinoma and normal liver tissues and to carry out bioinformatics analysis.
METHODS: Agilent 8×60 K microarray was used to detect the changes of gene expression between hepatocellular carcinoma and adjacent normal liver tissues. Bioinformatics methods were used to identify differentially expressed genes and perform GO pathway analysis. Real-time PCR was applied to verify microarray data.
RESULTS: Microarray analysis screened a total of up-regulated 924 mRNAs and 1770 down-regulated mRNAs in hepatocellular carcinoma tissues compared with the normal tissues. GO pathway analysis demonstrated that these mRNAs are involved in transcription, redox, signal transduction, ion transport, immune response, cell adhesion, and binding functions. The results of real-time PCR were in high concordance with microarray results.
CONCLUSION: Differentially expressed genes identified in this study may be involved in signal transduction, immune response and other key biological processes. These genes may provide new targets for targeted therapy.
Collapse
|