1
|
Romero-López MJ, Jiménez-Wences H, Nuñez-Martínez HN, Cruz-De la Rosa MI, Alarcón-Millán J, Fernández-Tilapa G. Overexpression of miR-23b-3p+miR-218-5p+miR-124-3p differentially modifies the transcriptome of C-33A and CaSki cells and the regulation of cellular processes involved in the progression of cervical cancer. Comput Biol Med 2025; 188:109886. [PMID: 40010175 DOI: 10.1016/j.compbiomed.2025.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/12/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Dysregulation of tumor suppressor miRNAs (tsmiRs) is associated with tumor progression in cancer. miR-23b-3p, miR-218-5p and miR-124-3p are tsmiRs in cervical cancer (CC) and regulate the translation of genes involved in metastasis-related biological processes. OBJECTIVE To analyze transcriptome changes in cervical cancer cell lines (C-33A HPV-negative and CaSki HPV-positive) overexpressing miR-23b-3p + miR-218-5p + miR-124-3p, to identify specific target transcripts common to all three miRNAs, as well as signaling pathways and cellular processes related to tumor progression. METHODS The transcriptome of C-33A and CaSki cells transfected with miR-23b-3p + miR-218-5p + miR-124-3p was analyzed by RNA-seq. Differentially expressed genes (DEGs) were subjected to Gene Ontology analysis on the DAVID platform. The function of under-regulated genes was analyzed on the GEPIA 2.0, Kaplan-Meier plotter and STRING platforms. On the TargetScanHuman platform it was determined which transcripts have MREs for miR-23b-3p, miR-218-5p and/or miR-124-3p in their 3'UTR region. RESULTS Simultaneous overexpression of miR-218-5p, miR-124-3p and miR-23b-3p induced changes in global gene expression in C-33A and CaSki cells. In C-33A cells, DEGs included 45 over- and 172 under-regulated transcripts; in CaSki, 125 transcripts were over- and 84 under-regulated. The under-regulated transcripts enrich proliferation, migration, apoptosis and angiogenesis; 20 of these genes are associated with overall survival (OS) in women with CC, and 18 of the 20 mRNAs have MREs for one, two or all three miRNAs. CONCLUSIONS miR-23b-3p + miR-218-5p + miR-124-3p, differentially modify global gene expression in C-33A and CaSki cells. The results indicate that these miRNAs act synergistically and modulate CC progression through individual and shared targets by two or all three miRNAs.
Collapse
Affiliation(s)
- Manuel Joaquín Romero-López
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero. C.P. 39090. México
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero. C.P. 39090. México; Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero. C.P. 39090. México
| | - Hober Nelson Nuñez-Martínez
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, Mexico
| | - Merlin Itsel Cruz-De la Rosa
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero. C.P. 39090. México
| | - Judit Alarcón-Millán
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero. C.P. 39090. México; Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero. C.P. 39090. México
| | - Gloria Fernández-Tilapa
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero. C.P. 39090. México; Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero. C.P. 39090. México.
| |
Collapse
|
2
|
Di Vito A, Ravegnini G, Gorini F, Aasen T, Serrano C, Benuzzi E, Coschina E, Monesmith S, Morroni F, Angelini S, Hrelia P. The multifaceted landscape behind imatinib resistance in gastrointestinal stromal tumors (GISTs): A lesson from ripretinib. Pharmacol Ther 2023:108475. [PMID: 37302758 DOI: 10.1016/j.pharmthera.2023.108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal sarcomas and the gold-standard treatment is represented by tyrosine kinase inhibitors (TKIs). Unfortunately, first-line treatment with the TKI imatinib usually promotes partial response or stable disease rather than a complete response, and resistance appears in most patients. Adaptive mechanisms are immediately relevant at the beginning of imatinib therapy, and they may represent the reason behind the low complete response rates observed in GISTs. Concurrently, resistant subclones can silently continue to grow or emerge de novo, becoming the most representative populations. Therefore, a slow evolution of the primary tumor gradually occurs during imatinib treatment, enriching heterogeneous imatinib resistant clonal subpopulations. The identification of secondary KIT/PDGFRA mutations in resistant GISTs prompted the development of novel multi-targeted TKIs, leading to the approval of sunitinib, regorafenib, and ripretinib. Although ripretinib has broad anti-KIT and -PDGFRA activity, it failed to overcome sunitinib as second-line treatment, suggesting that imatinib resistance is more multifaceted than initially thought. The present review summarizes several biological aspects suggesting that heterogeneous adaptive and resistance mechanisms can also be driven by KIT or PDGFRA downstream mediators, alternative kinases, as well as ncRNAs, which are not targeted by any TKI, including ripretinib. This may explain the modest effect observed with ripretinib and all anti-GIST agents in patients.
Collapse
Affiliation(s)
- Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Cesar Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy; Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
3
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
4
|
miRNA-Dependent Regulation of AKT1 Phosphorylation. Cells 2022; 11:cells11050821. [PMID: 35269443 PMCID: PMC8909289 DOI: 10.3390/cells11050821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The phosphoinositide-3-kinase (PI3K)/AKT pathway regulates cell survival and is over-activated in most human cancers, including ovarian cancer. Following growth factor stimulation, AKT1 is activated by phosphorylation at T308 and S473. Disruption of the AKT1 signaling pathway is sufficient to inhibit the epithelial-mesenchymal transition in epithelial ovarian cancer (EOC) cells. In metastatic disease, adherent EOC cells transition to a dormant spheroid state, characterized previously by low S473 phosphorylation in AKT1. We confirmed this finding and observed that T308 phosphorylation was yet further reduced in EOC spheroids and that the transition from adherent to spheroid growth is accompanied by significantly increased levels of let-7 miRNAs. We then used mechanistic studies to investigate the impact of let-7 miRNAs on AKT1 phosphorylation status and activity in cells. In growth factor-stimulated HEK 293T cells supplemented with let-7a, we found increased phosphorylation of AKT1 at T308, decreased phosphorylation at S473, and enhanced downstream AKT1 substrate GSK-3β phosphorylation. Let-7b and let-7g also deregulated AKT signaling by rendering AKT1 insensitive to growth factor simulation. We uncovered let-7a-dependent deregulation of PI3K pathway components, including PI3KC2A, PDK1, and RICTOR, that govern AKT1 phosphorylation and activity. Together, our data show a new role for miRNAs in regulating AKT signaling.
Collapse
|
5
|
Li J, Guo S, Sun Z, Fu Y. Noncoding RNAs in Drug Resistance of Gastrointestinal Stromal Tumor. Front Cell Dev Biol 2022; 10:808591. [PMID: 35174150 PMCID: PMC8841737 DOI: 10.3389/fcell.2022.808591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the gastrointestinal tracts and a model for the targeted therapy of solid tumors because of the oncogenic driver mutations in KIT and PDGDRA genes, which could be effectively inhibited by the very first targeted agent, imatinib mesylate. Most of the GIST patients could benefit a lot from the targeted treatment of this receptor tyrosine kinase inhibitor. However, more than 50% of the patients developed resistance within 2 years after imatinib administration, limiting the long-term effect of imatinib. Noncoding RNAs (ncRNAs), the non-protein coding transcripts of human, were demonstrated to play pivotal roles in the resistance of various chemotherapy drugs. In this review, we summarized the mechanisms of how ncRNAs functioning on the drug resistance in GIST. During the drug resistance of GIST, there were five regulating mechanisms where the functions of ncRNAs concentrated: oxidative phosphorylation, autophagy, apoptosis, drug target changes, and some signaling pathways. Also, these effects of ncRNAs in drug resistance were divided into two aspects. How ncRNAs regulate drug resistance in GIST was further summarized according to ncRNA types, different drugs and categories of resistance. Moreover, clinical applications of these ncRNAs in GIST chemotherapies concentrated on the prognostic biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuning Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| | - Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| |
Collapse
|
6
|
Buhagiar A, Seria E, Borg M, Borg J, Ayers D. Overview of microRNAs as liquid biopsy biomarkers for colorectal cancer sub-type profiling and chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:934-945. [PMID: 35582382 PMCID: PMC8992439 DOI: 10.20517/cdr.2021.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. It has also been demonstrated that over the last ten years the incidence of CRC among younger people below the age of 50 is also increasing. Screening for colorectal cancer is of utmost importance; the rationale behind screening is to target the malignancy and reduce the incidence and mortality of the disease. Diagnostic methods to screen for incidence or relapse are therefore a requisite to detect cancer as early as possible. Scientific findings demonstrate that many deaths are due to lack of screening and therefore early identification will lead to greater survivability. In colorectal cancer, diagnostic tests include liquid biopsy biomarkers. Since the discovery of microRNAs (miRNAs), many studies have demonstrated the relationship between miRNAs and the various sub-types of CRC. Several miRNAs have been identified after analysing serum or plasma samples in patients, and such miRNAs were found to be significantly dysregulated. Such findings place the possibility of miRNAs to be at the epicentre of novel diagnostic techniques for CRC identification and sub-type stratification, including other characteristics associated with CRC development such as patient prognosis. The following review serves to underline the latest findings for miRNAs with such potential for routine diagnostic employment in CRC diagnostics and treatments.
Collapse
Affiliation(s)
- Alfred Buhagiar
- Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Elisa Seria
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida 2080, Malta
| | - Miriana Borg
- Faculty of medical sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida 2080, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida 2080, Malta
- Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Normann LS, Aure MR, Leivonen SK, Haugen MH, Hongisto V, Kristensen VN, Mælandsmo GM, Sahlberg KK. MicroRNA in combination with HER2-targeting drugs reduces breast cancer cell viability in vitro. Sci Rep 2021; 11:10893. [PMID: 34035375 PMCID: PMC8149698 DOI: 10.1038/s41598-021-90385-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/30/2021] [Indexed: 01/03/2023] Open
Abstract
HER2-positive (HER2 +) breast cancer patients that do not respond to targeted treatment have a poor prognosis. The effects of targeted treatment on endogenous microRNA (miRNA) expression levels are unclear. We report that responsive HER2 + breast cancer cell lines had a higher number of miRNAs with altered expression after treatment with trastuzumab and lapatinib compared to poorly responsive cell lines. To evaluate whether miRNAs can sensitize HER2 + cells to treatment, we performed a high-throughput screen of 1626 miRNA mimics and inhibitors in combination with trastuzumab and lapatinib in HER2 + breast cancer cells. We identified eight miRNA mimics sensitizing cells to targeted treatment, miR-101-5p, mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-106a-5p, and miR-744-3p. A higher expression of miR-101-5p predicted better prognosis in patients with HER2 + breast cancer (OS: p = 0.039; BCSS: p = 0.012), supporting the tumor-suppressing role of this miRNA. In conclusion, we have identified miRNAs that sensitize HER2 + breast cancer cells to targeted therapy. This indicates the potential of combining targeted drugs with miRNAs to improve current treatments for HER2 + breast cancers.
Collapse
Affiliation(s)
- Lisa Svartdal Normann
- Department of Research and Innovation, Vestre Viken Hospital Trust, P.O. Box 800, 3004, Drammen, Norway.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Ragle Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Suvi-Katri Leivonen
- Applied Tumor Genomics Research Program, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Mads Haugland Haugen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Vesa Hongisto
- Division of Toxicology, Misvik Biology, Turku, Finland
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Division of Medicine, Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute for Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Kristine Kleivi Sahlberg
- Department of Research and Innovation, Vestre Viken Hospital Trust, P.O. Box 800, 3004, Drammen, Norway. .,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Cen L, Liu R, Liu W, Li Q, Cui H. Competing Endogenous RNA Networks in Glioma. Front Genet 2021; 12:675498. [PMID: 33995499 PMCID: PMC8117106 DOI: 10.3389/fgene.2021.675498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common and malignant primary brain tumors. Various hallmarks of glioma, including sustained proliferation, migration, invasion, heterogeneity, radio- and chemo-resistance, contribute to the dismal prognosis of patients with high-grade glioma. Dysregulation of cancer driver genes is a leading cause for these glioma hallmarks. In recent years, a new mechanism of post-transcriptional gene regulation was proposed, i.e., "competing endogenous RNA (ceRNA)." Long non-coding RNAs, circular RNAs, and transcribed pseudogenes act as ceRNAs to regulate the expression of related genes by sponging the shared microRNAs. Moreover, coding RNA can also exert a regulatory role, independent of its protein coding function, through the ceRNA mechanism. In the latest glioma research, various studies have reported that dysregulation of certain ceRNA regulatory networks (ceRNETs) accounts for the abnormal expression of cancer driver genes and the establishment of glioma hallmarks. These achievements open up new avenues to better understand the hidden aspects of gliomas and provide new biomarkers and potential efficient targets for glioma treatment. In this review, we summarize the existing knowledge about the concept and logic of ceRNET and highlight the emerging roles of some recently found ceRNETs in glioma progression.
Collapse
Affiliation(s)
- Liang Cen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Qianqian Li
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Angerilli V, Galuppini F, Businello G, Dal Santo L, Savarino E, Realdon S, Guzzardo V, Nicolè L, Lazzarin V, Lonardi S, Loupakis F, Fassan M. MicroRNAs as Predictive Biomarkers of Resistance to Targeted Therapies in Gastrointestinal Tumors. Biomedicines 2021; 9:318. [PMID: 33801049 PMCID: PMC8003870 DOI: 10.3390/biomedicines9030318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The advent of precision therapies against specific gene alterations characterizing different neoplasms is revolutionizing the oncology field, opening novel treatment scenarios. However, the onset of resistance mechanisms put in place by the tumor is increasingly emerging, making the use of these drugs ineffective over time. Therefore, the search for indicators that can monitor the development of resistance mechanisms and above all ways to overcome it, is increasingly important. In this scenario, microRNAs are ideal candidate biomarkers, being crucial post-transcriptional regulators of gene expression with a well-known role in mediating mechanisms of drug resistance. Moreover, as microRNAs are stable molecules, easily detectable in tissues and biofluids, they are the ideal candidate biomarker to identify patients with primary resistance to a specific targeted therapy and those who have developed acquired resistance. The aim of this review is to summarize the major studies that have investigated the role of microRNAs as mediators of resistance to targeted therapies currently in use in gastro-intestinal neoplasms, namely anti-EGFR, anti-HER2 and anti-VEGF antibodies, small-molecule tyrosine kinase inhibitors and immune checkpoint inhibitors. For every microRNA and microRNA signature analyzed, the putative mechanisms underlying drug resistance were outlined and the potential to be translated in clinical practice was evaluated.
Collapse
Affiliation(s)
- Valentina Angerilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Francesca Galuppini
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Gianluca Businello
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Luca Dal Santo
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35100 Padua, Italy;
| | - Stefano Realdon
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Vincenza Guzzardo
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Lorenzo Nicolè
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Vanni Lazzarin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Sara Lonardi
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Fotios Loupakis
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Matteo Fassan
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| |
Collapse
|
10
|
Luo XJ, Zheng M, Cao MX, Zhang WL, Huang MC, Dai L, Tang YL, Liang XH. Distinguishable Prognostic miRNA Signatures of Head and Neck Squamous Cell Cancer With or Without HPV Infection. Front Oncol 2021; 10:614487. [PMID: 33643915 PMCID: PMC7902765 DOI: 10.3389/fonc.2020.614487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
Since their discovery in the 1990’s, microRNAs (miRNA) have opened up new vistas in the field of cancer biology and are found to have fundamental roles in tumorigenesis and progression. As head and neck squamous cell carcinoma (HNSCC) with positive human papillomavirus (HPV+) is significantly distinct from its HPV negative (HPV−) counterpart in terms of both molecular mechanisms and clinical prognosis, the current study aimed to separately develop miRNA signatures for HPV+ and HPV− HNSCC as well as to explore the potential functions. Both signatures were reliable for the prediction of prognosis in their respective groups. Then Enrichment analysis was performed to predict the potential biological functions of the signatures. Importantly, combining previous studies and our results, we speculated that HPV+ HNSCC patients with low signature score had better immunity against the tumors and enhanced the sensitivity of therapies leading to improved prognosis, while HPV− HNSCC patients with high signature score acquired resistance to therapeutic approaches as well as dysregulation of cell metabolism leading to poor prognosis. Hence, we believe that the identified signatures respectively for HPV+ and HPV− HNSCC, are of great significance in accessing patient outcomes as well as uncovering new biomarkers and therapeutic targets, which are worth further investigation through molecular biology experiments.
Collapse
Affiliation(s)
- Xiao-Jie Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Long Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wang X, Meng H, Ruan J, Chen W, Meng F. Low G0S2 gene expression levels in peripheral blood may be a genetic marker of acute myocardial infarction in patients with stable coronary atherosclerotic disease: A retrospective clinical study. Medicine (Baltimore) 2021; 100:e23468. [PMID: 33545927 PMCID: PMC7837852 DOI: 10.1097/md.0000000000023468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The G0/G1 switch 2 (G0S2) gene is closely related to lipolysis, cell proliferation, apoptosis, oxidative phosphorylation, and the development of a variety of tumors. The aim of the present study was to expand the sample size to confirm the relationship between the expression of the G0S2 gene in peripheral blood and acute myocardial infarction (AMI) based on previous gene chip results. METHODS Three hundred patients were initially selected, of which 133 were excluded in accordance with the exclusion criteria. Peripheral blood leukocytes were collected from 92 patients with AMI and 75 patients with stable coronary atherosclerotic disease (CAD). mRNA expression levels of G0S2 in peripheral blood leukocytes was measured by RT-PCR, and protein expression levels by Western blot analysis. The results of these assays in the 2 groups were compared. RESULTS mRNA expression levels of GOS2 in the peripheral blood leukocytes of patients with AMI were 0.41-fold lower than those of patients with stable CAD (P < .05), and GOS2 protein expression levels were 0.45-fold lower. Multivariate logistic regression analysis indicated that low expression levels of the G0S2 gene increased the risk of AMI by 2.08-fold in stable CAD patients. CONCLUSIONS G0S2 gene expression in the peripheral blood leukocytes of AMI patients was lower than that of stable CAD patients. Low G0S2 gene expression in peripheral blood leukocytes is an independent risk factor for AMI in stable CAD patients.
Collapse
|
12
|
Mo M, Hu X, He W, Zu X, Wang L, Li Y. Identification of key genes and microRNA regulatory network in development and progression of urothelial bladder carcinoma. Transl Androl Urol 2021; 10:438-447. [PMID: 33532331 PMCID: PMC7844517 DOI: 10.21037/tau-20-1124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Bladder cancer as other cancers contains multiple dynamic alterations in progression. Theoretically, large number of genes participates in cancer progression. In the present study, the interconnections of genesets defined by Gene Set Enrichment Analysis (GSEA) and tumor histopathological stages were characterized. In addition, the outcomes with genesets were discussed in bladder cancer. Methods Transcriptome data from 411 tissues of urothelial bladder carcinoma and 19 samples from adjacent tissues were retrieved from The Cancer Genome Atlas (TCGA) database. Single-sample GSEA (ssGSEA), cluster analysis of geneset enrichment scores and genesets as indicators in prognosis were applied to elucidate the correlations between genesets and bladder cancer progression. Results Chemical and genetic perturbations (CGP), canonical pathways (CP), CP:BIOCARTA (BioCarta gene sets), CP:KEGG (KEGG gene sets) and CP:REACTOME (Reactome gene sets) in C2 collection, upstream cis-regulatory motifs serum response factor (SRF) in C3 collection, KRAS in C6 collection and C8+ T cells in C7 collection were observed as enriched by ssGSEA. The cluster 2 identified from cluster analysis shows a more immune active microenvironment which tended to increase in stage II and decreased in stage IV indicating the crucial role in bladder cancer progression. miR-450, miR-518s, transcription factor PAX3, KRAS and PTEN were potential markers for outcomes of urothelial bladder carcinoma. Activating tumor immune microenvironment had deteriorated prognosis of patients with bladder cancer. Conclusions Our findings demonstrated that activating tumor immune microenvironment is a negative factor for outcomes of urothelial bladder carcinoma. These data provided a potential combination strategy for patients with bladder cancer.
Collapse
Affiliation(s)
- Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Long Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yangle Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Potential therapeutic approaches of microRNAs for COVID-19: Challenges and opportunities. J Oral Biol Craniofac Res 2020; 11:132-137. [PMID: 33398242 PMCID: PMC7772998 DOI: 10.1016/j.jobcr.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) emerges as current outbreak cause by Novel Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2). This infection affects respiratory system and provides uncontrolled systemic inflammatory response as cytokine storm. The main concern about SARS-CoV-2 pandemic is high viral pathogenicity with no specific drugs. MicroRNAs (miRs) as small non-coding RNAs (21–25 nt) regulate gene expression. The SARS-CoV-2 encoded-miRs affect human genes that involved in transcription, translation, apoptosis, immune response and inflammation. Also, they alter self-gene regulation and hijacked host miRs that provide protective environment to maintain its latency. On the other hand, Host miRs play critical role in viral gene expression to restrict infection. Over expression/inhibition of miRs might result in cell cycle irregularity, impaired immune response or cancer. In this manner, exact role of each miR should be specified. Mimic encoded-miRs like antagomirs showed successful result in phases of clinical trial prevent from negative effects of viral encoded-miRs. Products of mimic miRs are inexpensive corresponds to synthesis of primer; they are short and nanoscale in size. Although SARS-CoV-2 genome is undergoing evaluation, detection of exact molecular pathogenesis open up opportunities to for vaccine development. Salivaomics can evaluate SARS-CoV-2 genome, transcriptome, proteome and biomarkers like miRs in oral related and cancer disease. In this review, we studied the challenge and opportunities of miRs in therapeutic approach for SARS-CoV-2 infection, then overviewed the role of miRs in saliva droplet during SARS-CoV-2 infection and related cancer.
Collapse
|
14
|
Amirnasr A, Sleijfer S, Wiemer EAC. Non-Coding RNAs, a Novel Paradigm for the Management of Gastrointestinal Stromal Tumors. Int J Mol Sci 2020; 21:6975. [PMID: 32972022 PMCID: PMC7555847 DOI: 10.3390/ijms21186975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies found in the gastrointestinal tract. At a molecular level, most GISTs are characterized by gain-of-function mutations in V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (KIT) and Platelet Derived Growth Factor Receptor Alpha (PDGFRA), leading to constitutive activated signaling through these receptor tyrosine kinases, which drive GIST pathogenesis. In addition to surgery, treatment with the tyrosine kinase inhibitor imatinib forms the mainstay of GIST treatment, particularly in the advanced setting. Nevertheless, the majority of GISTs develop imatinib resistance. Biomarkers that indicate metastasis, drug resistance and disease progression early on could be of great clinical value. Likewise, novel treatment strategies that overcome resistance mechanisms are equally needed. Non-coding RNAs, particularly microRNAs, can be employed as diagnostic, prognostic or predictive biomarkers and have therapeutic potential. Here we review which non-coding RNAs are deregulated in GISTs, whether they can be linked to specific clinicopathological features and discuss how they can be used to improve the clinical management of GISTs.
Collapse
Affiliation(s)
| | | | - Erik A. C. Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.A.); (S.S.)
| |
Collapse
|
15
|
Zhang N, Jin Y, Hu Q, Cheng S, Wang C, Yang Z, Wang Y. Circular RNA hsa_circ_0078607 suppresses ovarian cancer progression by regulating miR-518a-5p/Fas signaling pathway. J Ovarian Res 2020; 13:64. [PMID: 32503653 PMCID: PMC7275507 DOI: 10.1186/s13048-020-00664-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/24/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Increasing researches have demonstrated the critical functions of circular RNAs (circRNAs) in the progression of malignant tumors, including ovarian cancer. In this study, we aim to investigate abnormally expression of hsa_circ_0078607 and the role of hsa_circ_0078607 during ovarian cancer pathogenesis. METHODS RT-PCR were used to detect the expression of circ_0078607 in ovarian cancer tissues. To determine the functional roles of circ_0078607 in ovarian cancer, cell proliferation and cell invasion assays were performed. Bioinformatics and luciferase reporter analysis were used to predict the target of circ_0078607. RESULTS In the present study, we first found that circ_0078607 was downregulated in ovarian cancer. Forced circ_0078607 expression significantly suppressed proliferation and promoted apoptosis of ovarian cancer cells. Mechanically, bioinformatics and luciferase reporter analysis identified miR-518a-5p as a direct target of circ_0078607, while Fas as a direct target of miR-518a-5p. MiR-518a-5p negatively regulated Fas in ovarian cancer cells, while overexpression of circ_0078607 could increase the expression of Fas inhibited by miR-518a-5p. Furthermore, overexpression of circ_0078607 could inhibit the proliferation and invasion of ovarian cancer cells caused by miR-518a-5p mimic. CONCLUSION The results of the present study revealed that circ_0078607 suppressed ovarian cancer progression by sponging oncogenic miR-518a-5p to induce Fas expression, which may provide new therapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiubo Hu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chao Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiyou Yang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
16
|
Wang K, Song K, Ma Z, Yao Y, Liu C, Yang J, Xiao H, Zhang J, Zhang Y, Zhao W. Identification of EMT-related high-risk stage II colorectal cancer and characterisation of metastasis-related genes. Br J Cancer 2020; 123:410-417. [PMID: 32435058 PMCID: PMC7403418 DOI: 10.1038/s41416-020-0902-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 11/09/2022] Open
Abstract
Background Our laboratory previously reported an individual-level prognostic signature for patients with stage II colorectal cancer (CRC). However, this signature was not applicable for RNA-sequencing datasets. In this study, we constructed a robust epithelial-to-mesenchymal transition (EMT)- related gene pair prognostic signature. Methods Based on EMT-related genes, metastasis-associated gene pairs were identified between metastatic and non-metastatic samples. Then, we selected prognosis-associated gene pairs, which were significantly correlated with disease-free survival of stage II CRC using multivariate Cox regression model, as the EMT-related prognosis signature. Results An EMT-related signature composed of fifty-one gene pairs (51-GPS) for prediction-relapse risk of patients with stage II CRC was developed, whose prognostic efficiency was validated in independent datasets. Moreover, 51-GPS achieved better predictive performance than other reported signatures, including a commercial signature Oncotype Dx colon cancer and an immune-related gene pair signature. Besides, EMT-related functional gene sets achieved high enrichment scores in high-risk samples. Especially, loss-of-function antisense approach showed that DEGs between the predicted two clusters were metastasis-related. Conclusions The EMT-related gene pair signature can identify the high relapse-risk patients with stage II CRC, which can facilitate individualised management of patients.
Collapse
Affiliation(s)
- Kai Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Zhigang Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150001, China
| | - Yang Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150001, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150001, China
| | - Jing Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Huiting Xiao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Jiashuai Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150001, China.
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
17
|
Fulzele S, Sahay B, Yusufu I, Lee TJ, Sharma A, Kolhe R, Isales CM. COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile. Aging Dis 2020; 11:509-522. [PMID: 32489698 PMCID: PMC7220294 DOI: 10.14336/ad.2020.0428] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
The World health organization (WHO) declared Coronavirus disease 2019 (COVID-19) a global pandemic and a severe public health crisis. Drastic measures to combat COVID-19 are warranted due to its contagiousness and higher mortality rates, specifically in the aged patient population. At the current stage, due to the lack of effective treatment strategies for COVID-19 innovative approaches need to be considered. It is well known that host cellular miRNAs can directly target both viral 3'UTR and coding region of the viral genome to induce the antiviral effect. In this study, we did in silico analysis of human miRNAs targeting SARS (4 isolates) and COVID-19 (29 recent isolates from different regions) genome and correlated our findings with aging and underlying conditions. We found 848 common miRNAs targeting the SARS genome and 873 common microRNAs targeting the COVID-19 genome. Out of a total of 848 miRNAs from SARS, only 558 commonly present in all COVID-19 isolates. Interestingly, 315 miRNAs are unique for COVID-19 isolates and 290 miRNAs unique to SARS. We also noted that out of 29 COVID-19 isolates, 19 isolates have identical miRNA targets. The COVID-19 isolates, Netherland (EPI_ISL_422601), Australia (EPI_ISL_413214), and Wuhan (EPI_ISL_403931) showed six, four, and four unique miRNAs targets, respectively. Furthermore, GO, and KEGG pathway analysis showed that COVID-19 targeting human miRNAs involved in various age-related signaling and diseases. Recent studies also suggested that some of the human miRNAs targeting COVID-19 decreased with aging and underlying conditions. GO and KEGG identified impaired signaling pathway may be due to low abundance miRNA which might be one of the contributing factors for the increasing severity and mortality in aged individuals and with other underlying conditions. Further, in vitro and in vivo studies are needed to validate some of these targets and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA.
| | - Ibrahim Yusufu
- Department of Medicine, Augusta University, Augusta, GA, USA.
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA.
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA.
| | - Ravindra Kolhe
- Departments of Pathology, Augusta University, Augusta, GA 30912, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| |
Collapse
|
18
|
Kosela-Paterczyk H, Paziewska A, Kulecka M, Balabas A, Kluska A, Dabrowska M, Piatkowska M, Zeber-Lubecka N, Ambrozkiewicz F, Karczmarski J, Mikula M, Rutkowski P, Ostrowski J. Signatures of circulating microRNA in four sarcoma subtypes. J Cancer 2020; 11:874-882. [PMID: 31949491 PMCID: PMC6959019 DOI: 10.7150/jca.34723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Sarcomas are rare malignant tumors of mesenchymal origin. The discovery of circulating biomarkers with high diagnostic value could supplement diagnosis of this heterogenous group of tumors. The aim of this study was to identify the profiles of circulating miRNA (c-miRNAs) in four groups of common bone and soft tissue sarcomas. Methods: At the time of diagnosis, blood samples were collected from 86 patients: 36 with locally advanced/unresectable/metastatic gastrointestinal stromal tumor (GIST) who received first-line treatment with imatinib; 16 with locally advanced osteosarcoma (OS); 26 with locally advanced synovial sarcoma (SS); and eight with locally advanced Ewing sarcoma (ES). In addition, samples were collected from 30 healthy controls. C-miRNAs were isolated using a miRCURY RNA Isolation Kit, followed by preparation of cDNA libraries and sequencing on the Ion Proton platform. Results: Pair-wise comparisons identified 156 unique c-miRNAs (adjusted P-value < 0.05) showing significant dysregulation between controls and patients; of these, 24, 36, 42, and 99 differentiated controls from pretherapeutic OS, SS, ES, and GIST, respectively. Ten c-miRNAs were commonly altered in at least three sarcoma types. Receiver operating characteristic curves and area under the curve (ROC-AUC) analyses revealed that a four-miRNA diagnostic classifier was able to differentiate controls from ES, GIST, OS, and SS, with AUC-ROC values of 1, 0.97, 0.95, and 0.94, respectively. Conclusions: Aberrant miRNA expression signatures were identified in serum from patients with four different sarcoma subtypes. Differences in miRNA expression profiles between sarcoma patients and healthy volunteers suggest that miRNAs may play a role in sarcoma development.
Collapse
Affiliation(s)
- Hanna Kosela-Paterczyk
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Centre, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Aneta Balabas
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Magdalena Piatkowska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Centre, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| |
Collapse
|
19
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
20
|
Amirnasr A, Gits CMM, van Kuijk PF, Smid M, Vriends ALM, Rutkowski P, Sciot R, Schöffski P, Debiec-Rychter M, Sleijfer S, Wiemer EAC. Molecular Comparison of Imatinib-Naïve and Resistant Gastrointestinal Stromal Tumors: Differentially Expressed microRNAs and mRNAs. Cancers (Basel) 2019; 11:882. [PMID: 31238586 PMCID: PMC6627192 DOI: 10.3390/cancers11060882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the success of imatinib in advanced gastrointestinal stromal tumor (GIST) patients, 50% of the patients experience resistance within two years of treatment underscoring the need to get better insight into the mechanisms conferring imatinib resistance. Here the microRNA and mRNA expression profiles in primary (imatinib-naïve) and imatinib-resistant GIST were examined. Fifty-three GIST samples harboring primary KIT mutations (exon 9; n = 11/exon 11; n = 41/exon 17; n = 1) and comprising imatinib-naïve (IM-n) (n = 33) and imatinib-resistant (IM-r) (n = 20) tumors, were analyzed. The microRNA expression profiles were determined and from a subset (IM-n, n = 14; IM-r, n = 15) the mRNA expression profile was established. Ingenuity pathway analyses were used to unravel biochemical pathways and gene networks in IM-r GIST. Thirty-five differentially expressed miRNAs between IM-n and IM-r GIST samples were identified. Additionally, miRNAs distinguished IM-r samples with and without secondary KIT mutations. Furthermore 352 aberrantly expressed genes were found in IM-r samples. Pathway and network analyses revealed an association of differentially expressed genes with cell cycle progression and cellular proliferation, thereby implicating genes and pathways involved in imatinib resistance in GIST. Differentially expressed miRNAs and mRNAs between IM-n and IM-r GIST were identified. Bioinformatic analyses provided insight into the genes and biochemical pathways involved in imatinib-resistance and highlighted key genes that may be putative treatment targets.
Collapse
Affiliation(s)
- Azadeh Amirnasr
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands.
| | - Caroline M M Gits
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands.
| | - Patricia F van Kuijk
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands.
| | - Anne L M Vriends
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands.
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Marie Skłodowska-Curie Institute-Oncology Center, 00-001 Warsaw, Poland.
| | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Patrick Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium.
- Research Unit Laboratory of Experimental Oncology, Deptartment of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium.
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands.
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Chen J, Xing C, Yan L, Wang Y, Wang H, Zhang Z, Yu D, Li J, Li H, Li J, Cai Y. Transcriptome profiling reveals the role of ZBTB38 knock-down in human neuroblastoma. PeerJ 2019; 7:e6352. [PMID: 30697495 PMCID: PMC6348090 DOI: 10.7717/peerj.6352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
ZBTB38 belongs to the zinc finger protein family and contains the typical BTB domains. As a transcription factor, ZBTB38 is involved in cell regulation, proliferation and apoptosis, whereas, functional deficiency of ZBTB38 induces the human neuroblastoma (NB) cell death potentially. To have some insight into the role of ZBTB38 in NB development, high throughput RNA sequencing was performed using the human NB cell line SH-SY5Y with the deletion of ZBTB38. In the present study, 2,438 differentially expressed genes (DEGs) in ZBTB38−/− SH-SY5Y cells were obtained, 83.5% of which was down-regulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the neurotrophin TRK receptor signaling pathway, including PI3K/Akt and MAPK signaling pathway. we also observed that ZBTB38 affects expression of CDK4/6, Cyclin E, MDM2, ATM, ATR, PTEN, Gadd45, and PIGs in the p53 signaling pathway. In addition, ZBTB38 knockdown significantly suppresses the expression of autophagy-related key genes including PIK3C2A and RB1CC1. The present meeting provides evidence to molecular mechanism of ZBTB38 modulating NB development and targeted anti-tumor therapies.
Collapse
Affiliation(s)
- Jie Chen
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,The Secondary Hospital of Wuhu, WuHu, China
| | - Chaofeng Xing
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Yan
- Department of Radiation Oncology, Linyi People Hospital, Linyi, China
| | - Yabing Wang
- The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | | | - Zongmeng Zhang
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China
| | - Daolun Yu
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China
| | - Jie Li
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta State University, Augusta, GA, USA
| | - Jun Li
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Serum miR-518e-5p is a potential biomarker for secondary imatinib-resistant gastrointestinal stromal tumor. J Biosci 2018. [DOI: 10.1007/s12038-018-9805-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
Ghidini M, Hahne JC, Frizziero M, Tomasello G, Trevisani F, Lampis A, Passalacqua R, Valeri N. MicroRNAs as Mediators of Resistance Mechanisms to Small-Molecule Tyrosine Kinase Inhibitors in Solid Tumours. Target Oncol 2018; 13:423-436. [PMID: 30006826 DOI: 10.1007/s11523-018-0580-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor tyrosine kinases (RTKs) are widely expressed transmembrane proteins that act as receptors for growth factors and other extracellular signalling molecules. Upon ligand binding, RTKs activate intracellular signalling cascades, and as such are involved in a broad variety of cellular functions including differentiation, proliferation, migration, invasion, angiogenesis, and survival under physiological as well as pathological conditions. Aberrant RTK activation can lead to benign proliferative conditions as well as to various forms of cancer. Indeed, more than 70% of the known oncogene and proto-oncogene transcripts involved in cancer code for RTKs. Consequently, these receptors are broadly studied as targets in the treatment of different tumours, and a large variety of small-molecule tyrosine kinase inhibitors (TKIs) are approved for therapy. In most cases, patients develop resistance to the TKIs within a short time. MicroRNAs are short (18-22 nucleotides) non-protein-coding RNAs that fine-tune cell homeostasis by controlling gene expression at the post-transcriptional level. Deregulation of microRNAs is common in many cancers, and increasing evidence exists for an important role of microRNAs in the development of resistance to therapies, including TKIs. In this review we focus on the role of microRNAs in mediating resistance to small-molecule TKIs in solid tumours.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Jens C Hahne
- Centre for Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Melissa Frizziero
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Gianluca Tomasello
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Francesco Trevisani
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Lampis
- Centre for Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Rodolfo Passalacqua
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Nicola Valeri
- Centre for Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Yang Z, Pan L, Liu S, Li F, Lv W, Shu Y, Dong P. Inhibition of stromal-interacting molecule 1-mediated store-operated Ca 2+ entry as a novel strategy for the treatment of acquired imatinib-resistant gastrointestinal stromal tumors. Cancer Sci 2018; 109:2792-2800. [PMID: 29957833 PMCID: PMC6125455 DOI: 10.1111/cas.13718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
Imatinib has revolutionized the treatment of gastrointestinal stromal tumors (GIST); however, primary and secondary resistance to imatinib is still a major cause of treatment failure. Multiple mechanisms are involved in this progression. In the present study, we reported a novel mechanism for the acquired resistance to imatinib, which was induced by enhanced Ca2+ influx via stromal‐interacting molecule 1 (STIM1)‐mediated store‐operated Ca2+ entry (SOCE). We found that the STIM1 expression level was related to the acquired resistance to imatinib in our studied cohort. The function of STIM1 in imatinib‐resistant GIST cells was also confirmed both in vivo and in vitro. The results showed that STIM1 overexpression contributed to SOCE and drug response in imatinib‐sensitive GIST cells. Blockage of SOCE by STIM1 knockdown suppressed the proliferation of imatinib‐resistant GIST cell lines and xenografts. In addition, STIM1‐mediated SOCE exerted an antiapoptotic effect via the MEK/ERK pathway. The results from this study provide a basis for further research into potential novel therapeutic strategies in acquired imatinib‐resistant GIST.
Collapse
Affiliation(s)
- Ziyi Yang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Lijia Pan
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Fengnan Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Wenjie Lv
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yijun Shu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| |
Collapse
|
26
|
Liu X, Chu KM. Molecular biomarkers for prognosis of gastrointestinal stromal tumor. Clin Transl Oncol 2018; 21:145-151. [PMID: 30003531 DOI: 10.1007/s12094-018-1914-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. However, the development of molecular markers, especially circulating biomarkers, remains largely undone for the prognosis of GIST. We discussed the clinical-pathological characteristics of GIST and identified potential biomarkers for guidance of therapy and prognosis of GIST. Around 90% of GISTs contain mutations in KIT or PDGFRA and the remaining 10% of GISTs are wild-type. Recent studies have indicated that various DNAs and miRNAs could serve as potential biomarkers for prognosis of GIST, including KIT, PDGFRA, other DNAs (such as BRAF, SDH, SETD2 and ROR2), and microRNAs (miRNAs). The pressing need and challenges in the development of circulating prognostic biomarkers for GIST are also discussed. Although challenges remain, DNAs and miRNAs are promising circulating biomarkers for surveillance and prognosis of GIST. Advances in clarification of aberrant molecular alterations may open new avenues for exploration of reliable and robust biomarkers to improve the management of GIST.
Collapse
Affiliation(s)
- X Liu
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong.
| | - K-M Chu
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong. .,Department of Surgery, Queen Mary Hospital, Pokfulam, Hong Kong.
| |
Collapse
|
27
|
Kupcinskas J. Small Molecules in Rare Tumors: Emerging Role of MicroRNAs in GIST. Int J Mol Sci 2018; 19:E397. [PMID: 29385688 PMCID: PMC5855619 DOI: 10.3390/ijms19020397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of gastrointestinal tract. GISTs have very different clinical phenotypes and underlying molecular characteristics that are not yet completely understood. microRNAs (miRNAs) have been shown to participate in carcinogenesis pathways through post-transcriptional regulation of gene expression in different tumors. Over the last years emerging evidence has highlighted the role of miRNAs in GISTs. This review provides an overview of original research papers that analyze miRNA deregulation patterns, functional role, diagnostic, therapeutic and prognostic implications in GIST as well as provides directions for further research in the field.
Collapse
Affiliation(s)
- Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania.
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania.
| |
Collapse
|
28
|
Yilmaz AF, Kaymaz B, Aktan Ç, Soyer N, Kosova B, Güneş A, Şahin F, Cömert M, Saydam G, Vural F. Determining expression of miRNAs that potentially regulate STAT5A and 5B in dasatinib-sensitive K562 cells. Turk J Biol 2017; 41:926-934. [PMID: 30814857 DOI: 10.3906/biy-1705-66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the era of tyrosine kinase inhibitors, resistance still constitutes a problem in chronic myeloid leukemia (CML) patients; thus, new pathway-specific inhibitors like miRNAs have become important in the treatment of refractory patients. There are no satisfying data regarding the miRNAs and anti-miRNA treatment targeting STAT5A and 5B. In this study, we first researched the effect of dasatinib on apoptosis in the CML cell line K562. The expressions of miRNAs possibly targeting both STAT5A and 5B were then determined. The down- and upregulation of the miRNAs were compared using the ΔΔCT method. At the last stage of the study, we used a new primer probe in order to validate the results. The level of hsa-miR-940 was decreased 4.4 times and the levels of hsa-miR-527 and hsa-miR-518a-5p were increased 12.1 and 8 times, respectively, in the dasatinib-treated group when compared to the control group. We detected similar results in the validation step. As a conclusion, we determined the expression profiles of miRNAs targeting STAT5A and 5B that had an important role in the pathogenesis of CML. The data obtained could lead to determining new therapeutic targets for CML patients.
Collapse
Affiliation(s)
- Asu Fergün Yilmaz
- Department of Hematology, İzmir Kâtip Çelebi University Atatürk Training and Research Hospital , İzmir , Turkey
| | - Burçin Kaymaz
- Department of Medical Biology, Ege University Hospital , İzmir , Turkey
| | - Çağdaş Aktan
- Department of Medical Biology, School of Medicine, Beykent University , İstanbul , Turkey
| | - Nur Soyer
- Department of Hematology, Internal Medicine, Ege University Hospital , İzmir , Turkey
| | - Buket Kosova
- Department of Medical Biology, Ege University Hospital , İzmir , Turkey
| | - Ajda Güneş
- Department of Hematology, Sivas Numune Hospital , Sivas , Turkey
| | - Fahri Şahin
- Department of Hematology, Internal Medicine, Ege University Hospital , İzmir , Turkey
| | - Melda Cömert
- Department of Hematology, Internal Medicine, İnönü University Hospital , Malatya , Turkey
| | - Güray Saydam
- Department of Hematology, Internal Medicine, Ege University Hospital , İzmir , Turkey
| | - Filiz Vural
- Department of Hematology, Internal Medicine, Ege University Hospital , İzmir , Turkey
| |
Collapse
|
29
|
Ravegnini G, Sammarini G, Nannini M, Pantaleo MA, Biasco G, Hrelia P, Angelini S. Gastrointestinal stromal tumors (GIST): Facing cell death between autophagy and apoptosis. Autophagy 2017; 13:452-463. [PMID: 28055310 DOI: 10.1080/15548627.2016.1256522] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Autophagy and apoptosis are 2 fundamental biological mechanisms that may cooperate or be antagonistic, although both are involved in deciding the fate of cells in physiological or pathological conditions. These 2 mechanisms coexist simultaneously in cells and share common upstream signals and stimuli. Autophagy and apoptosis play pivotal roles in cancer development. Autophagy plays a key function in maintaining tumor cell survival by providing energy during unfavorable metabolic conditions through its recycling mechanism, and supporting the high energy requirement for metabolism and growth. This review focuses on gastrointestinal stromal tumors and cell death through autophagy and apoptosis, taking into account the involvement of both of these processes in tumor development and growth and as mechanisms of drug resistance. We also focus on the crosstalk between autophagy and apoptosis as an emerging field with major implications for the development of novel therapeutic options.
Collapse
Affiliation(s)
- Gloria Ravegnini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna Italy
| | - Giulia Sammarini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna Italy
| | - Margherita Nannini
- b Department of Specialized , Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy
| | - Maria A Pantaleo
- b Department of Specialized , Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy.,c "Giorgio Prodi" Cancer Research Center, University of Bologna , Bologna , Italy
| | - Guido Biasco
- b Department of Specialized , Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy.,c "Giorgio Prodi" Cancer Research Center, University of Bologna , Bologna , Italy
| | - Patrizia Hrelia
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna Italy
| | - Sabrina Angelini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna Italy
| |
Collapse
|
30
|
Ketcham CM, Umezawa A, Zou H, Siegal GP. Laboratory Investigation web focus on China. J Transl Med 2016; 96:1144-1146. [PMID: 27777411 DOI: 10.1038/labinvest.2016.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The vast growth of China's publishing output is a reflection of the increasing strength of Chinese science. The editors of Laboratory Investigation (LI) present a collection of papers that showcases research by authors from institutions across China, highlighting the significant contributions of Chinese scientists to the journal.
Collapse
Affiliation(s)
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|