1
|
Tian X, Yin Z, Li Z, Wang Z, Xing Z, Liu C, Wang L, Wang C, Zhang J, Dong L. Regeneration of Thyroid Glands in the Spleen Restores Homeostasis in Thyroidectomy Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305913. [PMID: 38059822 PMCID: PMC10853707 DOI: 10.1002/advs.202305913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Surgical removal of the thyroid gland (TG) for treating thyroid disorders leaves the patients on lifelong hormone replacement that partially compensates the physiological needs, but regenerating TG is challenging. Here, an approach is reported to regenerate TG within the spleen for fully restoring the thyroid's functions in mice, by transplanting thyroid tissue blocks to the spleen. Within 48 h, the transplanted tissue efficiently revascularizes, forming thyroid follicles similar to the native gland after 4 weeks. Structurally, the ectopically generated thyroid integrates with the surrounding splenic tissue while maintaining its integrity, separate from the lymphatic tissue. Functionally, it fully restores the native functions of the TG in hormone regulation in response to physiological stimuli, outperforming the established method of oral levothyroxine therapy in maintaining systemic homeostasis. The study demonstrates the full restoration of thyroid functions post-thyroidectomy by intrasplenic TG regeneration, providing fresh insights for designing novel therapies for thyroid-related disorders.
Collapse
Affiliation(s)
- Xue‐Jiao Tian
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhi‐Jie Yin
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen‐Jiang Li
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen‐Zhen Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- NJU Xishan Institute of Applied BiotechnologyXishan DistrictWuxiJiangsu214101China
| | - Chun‐Yan Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Lin‐Tao Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Chun‐Ming Wang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau SAR999078China
| | - Jun‐Feng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- NJU Xishan Institute of Applied BiotechnologyXishan DistrictWuxiJiangsu214101China
- National Resource Center for Mutant MiceNanjing210023China
- Chemistry and Biomedicine Innovative CenterNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
2
|
Romitti M, Costagliola S. Progress Toward and Challenges Remaining for Thyroid Tissue Regeneration. Endocrinology 2023; 164:bqad136. [PMID: 37690118 PMCID: PMC10516459 DOI: 10.1210/endocr/bqad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Thyroid hormones play a pivotal role in diverse physiological processes, and insufficient synthesis of these hormones results in hypothyroidism, a prevalent disorder with a significant global impact. Research has shown that the residual thyroid tissue following surgery fails to fully regenerate the gland and restore normal function. The slow turnover rate of the thyroid gland and the presence of resident stem cells, which may contribute to regeneration within adult thyroid tissue, are topics of ongoing debate. This comprehensive review summarizes current research findings concerning the regeneration of the adult thyroid. Investigations have identified potential cellular mechanisms implicated in thyroid regeneration following partial tissue damage, including cells within microfollicles and a cluster of potential thyroid progenitors cells. Nevertheless, the exact mechanisms remain elusive. In cases of complete removal of the thyroid gland, regeneration does not occur, underscoring the necessity for an external source of thyroid tissue. The transplantation of thyroid organoids has emerged as a promising approach to restore thyroid function. Researchers have successfully derived thyroid organoids from various sources and demonstrated their functionality in both in vitro and in vivo animal models. Despite the challenges that still need to be addressed in achieving full maturation and functionality of human thyroid organoids, significant strides have been made in this regard. This review explores the potential of thyroid organoid transplantation and its implications for the field of regenerative medicine.
Collapse
Affiliation(s)
- Mírian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
3
|
Li L, Sheng Q, Zeng H, Li W, Wang Q, Ma G, Qiu M, Zhang W, Shan C. Engineering a functional thyroid as a potential therapeutic substitute for hypothyroidism treatment: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1065410. [PMID: 36531472 PMCID: PMC9755335 DOI: 10.3389/fendo.2022.1065410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hypothyroidism is a common hormone deficiency disorder. Although hormone supplemental therapy can be easily performed by daily levothyroxine administration, a proportion of patients suffer from persisting complaints due to unbalanced hormone levels, leaving room for new therapeutic strategies, such as tissue engineering and regenerative medicine. Methods Electronic searches of databases for studies of thyroid regeneration or thyroid organoids were performed. A systematic review including both in vitro and in vivo models of thyroid regenerative medicine was conducted. Results Sixty-six independent studies published between 1959 and May 1st, 2022 were included in the current systematic review. Among these 66 studies, the most commonly involved species was human (19 studies), followed by mouse (18 studies), swine (14 studies), rat (13 studies), calf/bovine (4 studies), sheep/lamb (4 studies) and chick (1 study). In addition, in these experiments, the most frequently utilized tissue source was adult thyroid tissue (46 studies), followed by embryonic stem cells (ESCs)/pluripotent stem cells (iPSCs) (10 studies), rat thyroid cell lines (7 studies), embryonic thyroid tissue (2 studies) and newborn or fetal thyroid tissue (2 studies). Sixty-three studies reported relevant thyroid follicular regeneration experiments in vitro, while 21 studies showed an in vivo experiment section that included transplanting engineered thyroid tissue into recipients. Together, 12 studies were carried out using 2D structures, while 50 studies constructed 3D structures. Conclusions Each aspect of thyroid regenerative medicine was comprehensively described in this review. The recovery of optimal hormonal equilibrium by the transplantation of an engineered functional thyroid holds great therapeutic promise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Zhang
- Department of Thyroid and Breast Surgery of Changzheng Hospital Affiliated with Naval Military Medical University, Shanghai, China
| | - Chengxiang Shan
- Department of Thyroid and Breast Surgery of Changzheng Hospital Affiliated with Naval Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Adult mouse and human organoids derived from thyroid follicular cells and modeling of Graves' hyperthyroidism. Proc Natl Acad Sci U S A 2021; 118:2117017118. [PMID: 34916298 PMCID: PMC8713972 DOI: 10.1073/pnas.2117017118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The thyroid is essential for maintaining systemic homeostasis by regulating thyroid hormone concentrations in the bloodstream. This study describes an organoid-based model system to study mouse and human thyroid biology. Moreover, the study explores the potential of human organoids for modeling autoimmune disease, the anti-TSH receptor (TSHR) antibody-driven Graves’ hyperthyroidism. The thyroid maintains systemic homeostasis by regulating serum thyroid hormone concentrations. Here we report the establishment of three-dimensional (3D) organoids from adult thyroid tissue representing murine and human thyroid follicular cells (TFCs). The TFC organoids (TFCOs) harbor the complete machinery of hormone production as visualized by the presence of colloid in the lumen and by the presence of essential transporters and enzymes in the polarized epithelial cells that surround a central lumen. Both the established murine as human thyroid organoids express canonical thyroid markers PAX8 and NKX2.1, while the thyroid hormone precursor thyroglobulin is expressed at comparable levels to tissue. Single-cell RNA sequencing and transmission electron microscopy confirm that TFCOs phenocopy primary thyroid tissue. Thyroid hormones are readily detectable in conditioned medium of human TFCOs. We show clinically relevant responses (increased proliferation and hormone secretion) of human TFCOs toward a panel of Graves’ disease patient sera, demonstrating that organoids can model human autoimmune disease.
Collapse
|
5
|
Yu M, Wei Y, Zheng Y, Yang L, Meng L, Lin J, Xu P, Mahdy SANA, Zhu L, Peng S, Chen L, Wang L. 17β-Estradiol activates Cl - channels via the estrogen receptor α pathway in human thyroid cells. Channels (Austin) 2021; 15:516-527. [PMID: 34414859 PMCID: PMC8381838 DOI: 10.1080/19336950.2021.1957627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estradiol regulates thyroid function, and chloride channels are involved in the regulation of thyroid function. However, little is known about the role of chloride channels in the regulation of thyroid functions by estrogen. In this study, the effects of estrogen on chloride channel activities in human thyroid Nthy-ori3-1 cells were therefore investigated using the whole cell patch-clamp technique. The results showed that the extracellular application of 17β-estradiol (E2) activated Cl− currents, which reversed at a potential close to Cl− equilibrium potential and showed remarkable outward rectification and an anion permeability of I− > Br− > Cl− > gluconate. The Cl− currents were inhibited by the chloride channel blockers, NPPB and tamoxifen. Quantitative Real-time PCR results demonstrated that ClC-3 expression was highest in ClC family member in Nthy-ori3-1 cells. The down-regulation of ClC-3 expression by ClC-3 siRNA inhibited E2-induced Cl− current. The Cl− current was blocked by the estrogen receptor antagonist, ICI 182780 (fulvestrant). Estrogen receptor alpha (ERα) and not estrogen receptor beta was the protein expressed in Nthy-ori3-1 cells, and the knockdown of ERα expression with ERα siRNA abolished E2-induced Cl− currents. Estradiol can promote the accumulation of ClC-3 in cell membrane. ERα and ClC-3 proteins were partially co-localized in the cell membrane of Nthy-ori3-1 cells after estrogen exposure. The results suggest that estrogen activates chloride channels via ERα in normal human thyroid cells, and ClC-3 proteins play a pivotal role in the activation of E2-induced Cl− current.
Collapse
Affiliation(s)
- Meisheng Yu
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sports University, Guangzhou, China
| | - Yanfang Zheng
- Department of Physiology, Medical College, The Zhuhai Campus of the Zunyi Medical University, Zhuhai, China
| | - Lili Yang
- Academic Affairs Office, Guangzhou Medical University, Guangzhou, China
| | - Long Meng
- Department of Obstetrics, Shiyan Maternal and Child Health Hospital, Hubei, Shiyan, China
| | - Jiawei Lin
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Peisheng Xu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | | | - Linyan Zhu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Weng J, Chen B, Xie M, Wan X, Wang P, Zhou X, Zhou Z, Mei J, Wang L, Huang D, Wang Z, Wang Z, Chen C. Rabbit thyroid extracellular matrix as a 3D bioscaffold for thyroid bioengineering: a preliminary in vitro study. Biomed Eng Online 2021; 20:18. [PMID: 33563294 PMCID: PMC7871622 DOI: 10.1186/s12938-021-00856-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Advances in regenerative medicine technologies have been strongly proposed in the management of thyroid diseases. Mechanistically, the adoption of thyroid bioengineering requires a scaffold that shares a similar three-dimensional (3D) space structure, biomechanical properties, protein component, and cytokines to the native extracellular matrix (ECM). METHODS 24 male New Zealand white rabbits were used in this experimental study. The rabbit thyroid glands were decellularized by immersion/agitation decellularization protocol. The 3D thyroid decellularization scaffolds were tested with histological and immunostaining analyses, scanning electron microscopy, DNA quantification, mechanical properties test, cytokine assay and cytotoxicity assays. Meanwhile, the decellularization scaffold were seeded with human thyroid follicular cells, cell proliferation and thyroid peroxidase were determined to explore the biocompatibility in vitro. RESULTS Notably, through the imaging studies, it was distinctly evident that our protocol intervention minimized cellular materials and maintained the 3D spatial structure, biomechanical properties, ECM composition, and biologic cytokine. Consequently, the decellularization scaffold was seeded with human thyroid follicular cells, thus strongly revealing its potential in reinforcing cell adhesion, proliferation, and preserve important protein expression. CONCLUSIONS The adoption of our protocol to generate a decellularized thyroid scaffold can potentially be utilized in transplantation to manage thyroid diseases through thyroid bioengineering.
Collapse
Affiliation(s)
- Jie Weng
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bi Chen
- Department of Surgical Oncology, Wenzhou People's Hospital, The Wenzhou Third Clinical Institute Affiliated With Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengying Xie
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinlong Wan
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Wang
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoming Zhou
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhiliang Zhou
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jin Mei
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Duping Huang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiyi Wang
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Center for Health Assessment, Wenzhou Medical University, Wenzhou, China.
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Iwadate M, Takizawa Y, Shirai YT, Kimura S. An in vivo model for thyroid regeneration and folliculogenesis. J Transl Med 2018; 98:1126-1132. [PMID: 29946134 PMCID: PMC6138525 DOI: 10.1038/s41374-018-0068-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 01/11/2023] Open
Abstract
While thyroid is considered to be a dormant organ, when required, it can regenerate through increased cell proliferation. However, the mechanism for regeneration remains unknown. Nkx2-1(fl/fl);TPO-cre mouse thyroids exhibit a very disorganized appearance because their thyroids continuously degenerate and regenerate. In mouse thyroids, a cluster of cells are found near the tracheal cartilage and muscle, which are positive for expression of NKX2-1, the master transcription factor governing thyroid development and function. In the present study, we propose that this cluster of NKX2-1-positive cells may be the precursor cells that mature to become thyroid follicular cells, forming thyroid follicles. We also found that phosphorylation of AKT is induced by NKX2-1 in the proposed thyroid progenitor-like side-population cell-derived thyroid cell line (SPTL) cells, suggesting the possibility that NKX2-1 plays a role in differentiation through the modulation of AKT signaling. This study revealed that Nkx2-1(fl/fl);TPO-cre mice provide a suitable model to study in vivo regeneration and folliculogenesis of the thyroid.
Collapse
Affiliation(s)
- Manabu Iwadate
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Thyroid and Endocrinology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yoshinori Takizawa
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Otorhinolaryngology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, 433-8558, Japan
| | - Yo-Taro Shirai
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|